A General Strategy for Adaptation
in Case-Based Reasoning

Béatrice Fuchs!, Jean Lieber?, Alain Mille!, Amedeo Napoli?
L LIRIS, Nautibus, 8 bd Niels Bohr, 69 100 Villeurbanne,
bfuchs@liris.univ-lyonl.fr, amille@liris.univ-lyonl.fr
2 Orpailleur research group, LORTIA, (CNRS, INRIA, Nancy Universities),
B.P. 239 54506 Vandceuvre-lés-Nancy,
lieber@loria.fr, napoli@loria.fr.

Abstract

The case-based reasoning process relies on three main steps, retrieval, adaptation
and learning. This article proposes a general, domain-independent, and operational
formalization of the adaptation process, where a solution of the target problem is designed
on the basis of the relations existing between a source case problem and solution and
the target problem. The ideas underlying the article are that adaptation in case-based
reasoning may be guided by a general strategy, relying on the decomposition of the target
problem into (target) sub-problems, on the existence of local operators able to solve the
sub-problems, and finally on the existence of global operators able to combine the set
of local solutions for building a global solution of the target problem. This general
formalization is used for defining a general strategy of adaptation that is operational
and that is illustrated by a real-world application. This general strategy is of first
importance, allowing a better understanding of the adaptation process, and a reuse of
general adaptation operators for different real-world situations. In addition, this article
aims at providing a general framework for studying the adaptation process, both from
theoretical and practical points of view.

1 Introduction

The case-based reasoning process relies on three main steps, retrieval, adaptation and learn-
ing |36, 25]. This article holds on the second step of this process and proposes a general
formalization of the adaptation step, based on the relations existing between a source prob-
lem and a target problem. This general formalization is of first importance, whereas in the
majority of the situations, the adaptation process closely depends on the application being
studied. This paper presents the results of studies carried on by the authors for several years
on the formalization of the adaptation step within the CBR process. It extends and completes
a first tentative of formalization that has been proposed in [13].

Let us suppose that are given a target problem and a case base including a collection
of source cases, where a source case is a pair composed of a source problem and the asso-
ciated source solution. During the retrieval step, several source problems of the case base
are retrieved and compared to the target problem. The matching process establishes locally
the correspondence between a feature —or a descriptor— of the source problem and the corre-
sponding feature of the target problem. The similarities and differences between the features
of the local source and target problem are made explicit. Then, a global similarity measure
may combine the local feature similarities for assessing a global similarity between the source

and the target problem. Accordingly, a general schema of the adaptation process is proposed
in figure 1, where a source case (on the left of the figure) has been selected by the retrieval
process as the “best” candidate for solving the target problem, meaning that the solution
of this best candidate can be reused for designing the solution of the target problem. The
framework proposed for formalizing the adaptation process relies on two dimensions: (i) the
vertical dimension corresponds to the case dimension, including the problem and the solution,
with the source case on the left and the target case on the right, (ii) the horizontal dimen-
sion corresponds to the matching of source and target problems, and to the corresponding
modification of the source solution for designing the target solution.

Source case Target case
Source problem Target problem
matching
-

Dependencies

Adaptation

Source solution Target solution

Figure 1: The general scheme of the adaptation process.

This is the task of the adaptation process to rely on the selected source case for designing a
solution of the target problem. Firstly, the solution of the source case may be copied as a first
solution of the target problem. Furthermore, this first and raw solution is modified for erasing
the differences existing between the source and target problems, that have been pointed out by
the matching process. The adaptation process is then guided both by the matching process,
indicating what adjustments are needed, and by the dependencies indicating what are the
problem features having an influence on the solution features. Given a difference between
a source problem feature and the corresponding target problem feature, and a dependency
between the source problem feature and a source solution feature, an elementary adaptation
operation is in charge of modifying the source solution feature for designing the target solution
feature.

As illustration, let us consider the simple following example, inspired from a talk of Tan
Watson at ICCBR 99: knowing that 4 x 4 = 16, what is the solution of 4 x 57 The adaptation
problem is the following: let the source problem be 4 x 4 whose solution is 16 (source case
= source problem and source solution), what is the solution of the target problem 4 x 57
Here, the problem has two main features, namely the two operands, and the solution has
one feature, namely the result. The differences between the features of the source and the
target problems are 0 for the first operator and +1 for the second feature. The dependency
between the source problem and the source solution may be expressed as follows: “the effect
of an elementary variation of an operand on the result is proportional to the value of the

other operand”. Consequently, considering that 4 x 5 is equal to 4 x (4 + 1), the variation of
the result caused by the variation of the operands in the target problem will be of 0 for the
first operand (namely 4) and of 1 x 4 = 4for the second operand (namely 5). The adapted
solution feature will be given by the source solution feature and the effect of the variation
using the + operator, i.e. 4 x 5 =164 0+ 4 = 20.

Although this example is easy to understand and rather easy to solve, it shows all the
elements that are involved within the adaptation process. Moreover, even if target problems
are more complex in the real-world case, the adaptation process relies on the principles that
are illustrated in the above example, namely a source problem, a source solution, dependencies
and influences between features.

In this article, we promote the idea that adaptation in case-based reasoning may be
guided by a general level strategy. This strategy relies first on the decomposition of the target
problem into sub-problems, second on the existence and the use of local operators able to solve
the sub-problems, third on a process able to combine the set of local solutions for building
a global solution for the target problem. The decomposition of the target problem into sub-
problems (simpler to solve) is achieved in the problem space, and performed according to the
so-called similarity paths reifying a possible sequence of modification relations leading from
the target problem to a source problem (or, from the target problem to the source problem).
A modification relation characterizes an elementary modification, i.e. a local operator, that
may be applied on either the target problem or the source problem. The similarity path
has a corresponding path in the solution space, that allows to modify the source solution for
building a target solution. The local operators in the problem space for splitting the target
problem into sub-problems, have corresponding local operators in the solution space, for
adapting the source solution into a target solution. A set of differences emphasizes the global
difference between the source and target problems, while a set of dependencies emphasizes
the relations between operations in the space of problems and the corresponding operations
in the space of solutions.

The above principles are materialized within a practical and general algorithm for adap-
tation, that may be instantiated in an application domain for a specific purpose. Accordingly,
the main contributions of the paper can be read as follows:

e A general strategy for taking into account the adaptation step in the case-based reason-
ing process exists and may be implemented according to domain-independent principles.

e This strategy is based on the general problem-solving method consisting in decomposing
a complex problem into sub-problems more easy to be solved.

e The decomposition of the problem guides the decomposition of the adaptation process:
to a local sub-problem corresponds a local solution, and the local solutions may be
combined for building a global solution.

The metaphor that has been chosen for illustrating the different dependencies between
the problem and its solution, and between the source and target problems, relies on (partial)
differentials that materialize a dependence, knowing however that there is not an effective use
of the differential calculus as in mathematics. Here, the differential materializes a dependence.

The framework for adaptation presented in this article is general and unifying. Indeed, the
research work holding on adaptation usually relies on the fact that there exists a set of local
operators that can be combined for building a global solution for the target problem. Most
of the time, these local operators are domain-dependent and there is an ad hoc combination
of the local solution for building a global solution. By contrast, the present strategy is

general and may be reused in different contexts or application domains, considering either
local operators for problem decomposition or for solution adaptation.

The summary of the article is as follows. First, a general review of the state of the
art on the adaptation process is proposed, with a historical perspective. Then, a frame-
work for formalizing the adaptation process is proposed, relying on the two-dimensional
point of view introduced in figure 1, i.e. the vertical case dimension and the horizontal
matching/modification dimension. Based on these two dimensions, the relations between the
problem and its solution are studied, and a general dependency-driven adaptation strategy is
proposed, using a set of generic adaptation operators. The description of a real-world expe-
rience, namely the Prolabo experiment, illustrates the way this general adaptation strategy
may be implemented. A discussion and a comparison with related work terminate the article.

2 Survey on adaptation in CBR

2.1 The pioneers of CBR and the adaptation process

Roger C. Schank [35, 26] and Janet Kolodner |27] probably have invented the expression
“Case-Based Reasoning” for denoting the general process of reusing past experiences for facing
new situations [36]. The CBR process is mainly memory-oriented and a model of dynamic
memory is proposed for indexing and retrieving the best adapted memorized scripts, that fit
a new situation and that only need a few adjustments to be reused. It is not so surprising
that these first efforts for building a theory of the adaptation process were oriented towards
memory search strategies, for finding structures or values which could be good candidates
for replacing structures or values in the past experience to fit a new situation [17]. During
the DARPA conference in 1989 [18], Janet Kolodner explained that the best case for a CBRr
system is the case that is the most useful to complete the reasoning process [24]|. According
to her definition she was working on plan reuse the best case is the case satisfying as well
as possible the current goal and the easiest one to be adapted. The notion of “easiest case
to be adapted” is of central concern within a CBR system. Nevertheless, Janet Kolodner
only proposed generic similarity measures showing to which extent the current goal could be
satisfied given the past experience.

2.2 Strategies for adaptation

Thomas Hinrichs considered two families of adaption strategies [21]: (1) walue selection and
(2) structure modification. The value selection relies on either a “local search principle” or
a “transformation principle”. The local search principle consists in navigating an available
concept hierarchy for generalizing the value to replace, and then to specialize this value again,
choosing a value satisfying as well as possible the constraints expressed by the target prob-
lem and violated by the source case. The transformation principle assumes that values are
structured objects which can be transformed in new ones by adding, deleting or substituting
parts of the objects. This point of view on adaptation enlightens the nature of adaptation:
adaptation needs specific knowledge on the dependencies between problem parts and solution
parts of a case. Moreover, these dependencies have to be taken into account within the sim-
ilarity measure used to select a source case for solving a target problem, providing in this
way a “semantics” to the similarity measure. The structure modification principle consists in
merging equivalent information pieces in the same variable or, conversely, in splitting infor-
mation in two different variables. In both cases, there is a simplification process transforming
the source solution for making feasible the adaptation process. These principles are applied

for numerical values representing geometrical dimensions in |22].

2.3 The transformational and derivational approaches

Concurrently, a transformational approach for plan reuse was studied by J.G. Carbonell
around 1983 [10]. A plan is compared to another one on the basis of the initial state, the
final state, the respective constraints within the path described in the target problem and
in the source problem, and the proportion of operator preconditions satisfied in the target
problem situation. This measure is called the “applicability measure of a source solution”
because it maximizes adaptation possibilities. Adaptation consists in solving a problem of
different nature called “transposed problem”- starting from an initial state, i.e. the source
problem, to a final state, i.e. the target problem, through a set of intermediate states, where
each one solves a difference pointed out at matching time. The intermediate states may
correspond as well to meaningless plans. Thus, the adaptation process consists in building
a “transposed plan space”, i.e. a kind of parallel plan space of adapted plans corresponding
to the intermediate states of the planification problems (as introduced above), giving birth
to an adaptation path. A set of adaptation operators is proposed for solving each step of
the adaptation path (11 so-called T-operators are valid in the transposed space). This way
of representing an adaptation path can be connected to the so-called “reformulations” and
“similarity paths” presented in [31, 29] and discussed hereafter. Following the same idea, in
[32], it is proposed to build an adaptation from the source case by exploring successively
(best-first search) hypotheses allowing to get closer to the desired goal (configuration domain
problems).

J.G. Carbonell developed later another point of view characterized by a “derivational
approach” also based on analogical reasoning [11]. He noticed that it is possible to keep a
trace of the use of the different transformation operators used in a plan. Consequently, instead
of switching from the source plan space to the transposed plan space, he proposed to “replay”
operator selection rules by substituting the source context for the target context in the rules.
J.G. Carbonell stresses the fact that the applicability measure is modified since problems are
considered as similar when the initial reasoning process is similar. The reasoning process
has to be adapted to the new context, and then to be replayed within in it. An example
is given concerning the adaptation of a sort function in Pascal to a sort function in LISP.
Actually, the “case” to be adapted is the reasoning process itself, using a transformational
approach. The complexity of this plan adaptation approach has been studied in [3]. Plan
reuse and reasoning process adaptation have inspired numerous theoretical works, as in [19],
where the authors consider adaptability as the measure of the adaptation effort in terms of
the corresponding computation complexity. In [23], this theoretical work is completed, and it
is demonstrated that the adaptation effort cannot be easily controlled, and that this approach
needs knowledge for solving the problem from scratch. A nice survey of case-based planning
may be found in [37].

2.4 Adaptation categories

In 1993, a survey of various adaptation processes, either transformational or derivational, has
been reported in the book of Janet Kolodner [25]:

e Copy of the source solution.
e Modification of the source solution,

— by substitution:

*x with re-instantiation, i.e. abstraction and specialization,
* with parameter adjustment, i.e. dependency with respect to a problem item,
x with memory search for a set of possible close values:

- using local search, i.e. selecting an existing value close to the source value,

- using a specialized search, i.e. a heuristic for selecting a value beyond
close ones;

— by transformation:

* using “common sense” transformations,

* using a repair process guided by a domain model;
— by plan derivation replay:

* searching methods or explanations in the source case,

* applying again concerned methods in the target case.

This list makes more precise the proposals of Thomas Hinrichs from 1989. Parameter
adjustment was reported in different articles of the DARPA 89 Conference, without being
completely explained in terms of knowledge units to be reused either for adaptation or for
similar case retrieval.

Another taxonomy of adaptation knowledge units was reported in [20], according to the
role played in the adaptation process at the different steps of the CBR cycle: operators for
the elaboration of the target problem, operators for role substitution, operators for subgoals
decomposition, and operators for dependence management. This taxonomy was not initially
aimed at qualifying working knowledge for adaptation, but appeared to be very useful to
highlight it.

2.5 Adaptation as constraint solving

Case-based design is one of the major application domain of ¢BR [30]|. Several works were
published on adaptation formalization involving a constraint-solving approach: [22] intro-
duces the notion of “surface case descriptors” that does not include complete knowledge for
reasoning (thus excluding a derivational approach). An important improvement of the op-
erators of Thomas Hinrichs is proposed within the JULIA system [21]: numerical constraints
are expressed on geometric patterns instead of on symbolic terms.

Some authors consider adaptation as a set of source case modifications which are con-
strained by the target problem. There exists a set of integrity constraints represented by a
set of equalities or inequalities to be satisfied for solving the target problem. Based on a
source case satisfying at best the target constraints, just a few dimensions have to be taken
into account for adaptation. The general adaptation methodology is the following:

1. Select a case satisfying mandatory constraints: this step is usually performed by the
user.

2. Select an initial set of parameters covering the target constraints: this dimension ex-
pansion" step is usually performed by the user too.

3. Establish whether the system is over-constrained (too many constraints and thus no
solution), under-constrained (not enough constraints and thus too many solutions), or
has just one solution. This “dimension analysis step” may be automatized.

4. When the system is over-constrained, the selection of an initial set of parameters (step
2) may be replayed.

5. If the system is under-constrained, apply a “dimension reduction” process.

6. Solve the residual constraints with a classical constraint solver.

This approach points out the notion of “influence” in the selection of a source case, by
minimizing the set of violated constraints to satisfy the target problem, for minimizing in
turn the adaptation cost.

2.6 CBR “without” adaptation

OBR is widely used for classification or interpretation tasks that consist in assigning a target
problem to a specific class, with respect to its similarity with a well-classified source problem
[28]. A source case or “source class” may be seen an abstraction of solutions of similar
problems.

Here, the interesting step within the CBR process is the retrieval step and the associ-
ated retrieval knowledge: the adaptation step is not necessary and the problem is solved
as soon as a source class has been found, providing a generic solution for the target prob-
lem. Knowledge units for similarity may be acquired according to three approaches: (1)
the inductive approach is based on automatic learning from data [2|, using the information
contribution of case descriptors for selecting the source class, (2) “ad hoc” approaches build-
ing similarity or dissimilarity measures according to more or less general methods [34]; (3)
an “explanation-driven” approach using a few well chosen source problems for explaining a
source class [5]. This last approach relies on the explicit building of dependency relation-
ships between problem descriptors and an abstract solution class. This approach stresses the
differences between the different classes, and applies quite well to problem-solving since it
provides necessary information for adaptation [1, 6, 15, 14].

3 A general strategy of adaptation

3.1 Basic notations

(** articuler

o)

A case is the association of a problem and of a solution to this problem: (pb,Sol(pb)). A
source case is denoted by (srce,Sol(srce)), where srce is the source problem and Sol(srce)
is the source solution. A target case is denoted by (tgt,Sol(tgt)), where tgt is the target

problem and Sol(tgt) is the target solution that has to be built by the adaptation process.

Cases (problems and solutions) are represented by sets of descriptors. A descriptor d is
defined by a pair d = (a,v) where a is an attribute and v is the value associated to this
attribute. The following convention is adopted hereafter: lower cases are used for problem
descriptors d = (a,v) and upper cases, for solution descriptors D = (A, V). In accordance
with this vocabulary, source and target cases are defined as follows:

, where d) = (a?,v?) is a descriptor of the source

e srce = {d},...d0} = {dV}

problem:;

i=1...n

e Sol(srce) ={D?,...D}} = {D?}j _, y Where D? = (A(;-, Vjo) is a descriptor of the
source solution;

o tgt = {df,...dn} = {df},_, , where d} = (af,v}) is a descriptor of the target

17 71
problem:;
e Sol(tgt) = {D},...D%} = {D?}j: |y Where D? = (A;I-,qu) is a descriptor of the
target solution.

Let us consider a simple example of the same type as the example introduced in section 1.
Let 4 x 4 be the source problem, whose solution is 16, and 3 x 5 be the target problem.
Conforming to this formalism, the adaptation specification is described as follows:

srce = {d} = (a} = 1°* operand, v{ = 4),
d3 = (a3 = 2 operand, v] = 4)}

tgt = {d! = (a] = 1°% operand, v{ = 3),
dd = (a} = 2™ operand, vd = 5)}

AY = result, V = 16)}
Al = result, VI = 7)}

Sol(srce) = {D{ =
Sol(tgt) = {DI =

(
(

3.2 From source to target

In this section, we are interested in the “horizontal view” of figure 1, i.e., on the relationships
between the source and the target. This horizontal view of adaptation can be decomposed
in two main steps:

Similarity assessment (or matching process) is the study of the relationships between
srce and tgt. It aims at pointing out what makes srce and tgt similar and what
makes them dissimilar. The similarity assessment provides a matching from srce to
tgt denoted by M(srce,tgt). The profile of the similarity assessment, which specifies
its inputs and output, is

(srce,tgt) — M(srce,tgt)

Solution modification is the study of the relationships between Sol(srce) and (what will
be) Sol(tgt). This study is based on the matching M(srce, tgt), thus its profile is

(srce,Sol(srce),tgt, M(srce, tgt)) — Sol(tgt)

In the following, we are interested in two types of matchings (and to the corresponding
solution modifications): the descriptor matching approach and the approach based on simi-
larity paths. The former approach is based on the descriptors that compose the cases. The
latter approach aims at decomposing the matching and the solution modification in several
“simple” steps.

3.2.1 Descriptor matching

The descriptor matching approach is based on the elements composing problems, i.e., their
descriptors: the question “How can two problems be matched?” is reduced to the question
“What descriptors of two problems can be matched, and how?” The descriptor matching
consists in matching descriptors having the same attribute names. This means that the

similarity assessment associates to srce and tgt a set M(srce,tgt) of triples (dY,d!, Ad;)

such that d? = (a;,0)) € srce and d! = (a;,v!) € tgt have the same attribute name

a; = a? = al. Therefore, a matching can be written
M(srce,tgt) = {(d, d], Ad;)}, (1)

where Ad; encodes the differences between the values UZQ and v}, i.e., some pieces of infor-
mation about their similarities and dissimilarities. Ad; is computed thanks to a domain-
dependent operator denoted by ©:

Adl = Uiq @U?

The solution modification following this similarity assessment is detailed in section 3.4.

3.2.2 Matching by similarity paths

We assume that Problems, the collection of any problems, is structured with a finite set of
relations between problems denoted by R. The space (Problems,R) is called the problem
space. The matching from srce to tgt is assumed to be a similarity path, i.e., a path in the
problem space:

M(srce,tgt) = (pbO rlpblr?pb?.. . pb? ! r? pb?)
with pb” = srce, pb? = tgt and r' € R,ic {1,2,...q}
The problems pb', pb?, ... pb?~! are created by the matching process and are called inter-

mediate problems.

The relations reR are assumed to have the following property:

if pb r pb’ (pb is related to pb’ by r)
then any solution Sol(pb) of pb can be (2)
adapted into a solution Sol(pb’) of pb’.

This adaptation is performed thanks to a specific adaptation function with the following
profile:
Ay : (pb,Sol(pb), pb’) — Sol(pbd’)
for pb, pb’ € Problems, such that pb r pb’.
The ordered pair (r,A;) is called a reformulation. The set of the available reformulations
constitute the available adaptation knowledge.

Once the similarity path is found, the solution modification can be processed simply by
following this path in the solution space:

(1) The solution Sol(srce) = Sol(pb") of srce = pb is adapted into a solution Sol(pb') of
pb! thanks to A1 ;

(2) The solution Sol(pb') of pb! is adapted into a solution Sol(pb?) of pb? thanks to A,2;

(q¢) The solution Sol(pb?~!) of pb?~! is adapted into a solution Sol(pb?) of pb? thanks to
Arq .

These solution modification steps can be performed because property (2) holds for each
(r', A,:): as soon as a similarity path is found, the solution modification process is ensured.
Figure 2 shows such a solution modification.

Problems

r! r? s
srce —— pbl pb? tgt
Solﬁtions
Sol(srce) Sol(pbt) Sol(pb?) Sol(tgt)
A A2 Ays

Figure 2: Solution modification following a similarity path.

Combining descriptor matching and matching by similarity path. The two previ-
ous approaches of matching can be combined as follows: each of the step of a similarity path,
pb”® r¥ pbF*1 can be represented by a descriptor matching M (pb¥, pb**+1):

M (pb®, pb") = {(df di !, Ady)}, (3)

7

where AdF = vf’“ of
Therefore, the similarity path matching between srce and tgt is composed of the M (pb¥, pb**+1):

M(srce, tgt) = {./\/l(pbk,pbk+1)}k (4)

On the previous simple example, a similarity path from srce =4 x 4 to tgt =3 X 5 can
be defined by introducing a single intermediate problem, pb! = 3 x 4 as shown in figure 3.
In this example, the differences Adf’ are computed by a numerical difference:

k _ k+1 k
Adf = v/ —vy;

The abstract operator © is instantiated by the numerical difference between real numbers:

© = —. For example, Ad) = v} — 1) =3 -4 =—1.
srce Ad — —1 pb! Adl =0 tgt
4x4 ! 3x4 ! 3x5
AdY =0 Ady = +1

Figure 3: The similarity path linking the source problem 4 x 4 and the target problem 3 x 5.
The problem pb! = 3 x 4 is an intermediate problem.

3.3 From problem to solution

In this section, we are interested in the “vertical view” of figure 1. We assume that there
exists relations between the problem and its solution called dependencies indicating that some

10

problem descriptors influence some solution descriptors. A dependency expresses that the
variation of a problem descriptor has an influence on the variation of a solution descriptor.

Let pb® be a problem and Sol(pb*) be a solution of pb* (if k& = 0, pb¥ = pb” = srce,
if k = ¢, pb* = pb? = tgt, else pb* is an intermediate problem of a similarity path). Let
d¥ € pb* and D;? € Sol(pb*). If the variation of df have an influence on the variation of Df,
then the dependency of d¥ on D;? is a triple (df,Df,Z(D;?/df)). d¥ is called the influencing
and D;-“ is called the influencee of the dependency. I(Df/df) is part of the adaptation
knowledge that has to be modelled and consists in an influence function indicating the impact
of the influencing on the influencee. The influence function is at the basis of the adaptation
operators of the adaptation strategy presented in section 3.4.

The set of dependencies of pb* descriptors on Sol(pb*) descriptors is denoted by D(pb*, So1(pb*)):
D(pb*, So1(pb")) = {(df, D}, T(Df/d}))},

27]'

In the example, for each k € {0, 1}, there are two dependencies between descriptors of
pb* and the descriptor of Sol(pb*). For one operand, the influence function expresses that
the effect of the variation of this operand is proportional to the other operand:

{(d1, D, Z(DY/dY)),
(d3, DY, Z(DY/d3))}

D(srce,Sol(srce)) = D(pb’, Sol(pb®))

Z(DY/dY) = v}
(DY) =} =
D(pb?, S01(pb')) = {(d}, D}, Z(D}/ah),

(d, D1, Z(Dy/dy))}

This is summarized in figure 4.

1
srce Ad(f 1 pb Ad% —0 tgt
4 x4 3 x4 3 x5
JI (DY/dY) = 4 JI (D}/d}) =4 l
Z(DY/d3) = 4 I(Di/dy) =3
Sol(srce) Sol(pb!) Sol(tgt)
16

Figure 4: The influence functions between problems and solutions.

3.4 Generic adaptation operators

Classically, similarity assessment evaluates a similarity local to a descriptor and further a
global similarity combines local similarities. In a similar way, we propose to assess the local
influence of problem descriptors on solution descriptors, and then further to assess a global
influence for each solution descriptor by combining local influences. The global influences are

11

finally mapped to the values of source solution descriptors in order to obtain the values of
the target solution descriptors.

A parallel of these principles can be established with partial derivatives:
dyj = — X dxz
. i
7

where dy; features the variation on a given target solution descriptor which is obtained

by combining several combinations of influence functions featured by % and variations of
problem descriptors featured by dx;.

3.4.1 Local variation

The adaptation process combines together several elementary adaptation operations, each of
them expressing the contribution of a given problem descriptor to a solution descriptor. An
elementary adaptation operation denoted by Ain is obtained thanks to a difference Adf

and an influence function I(D}“/df) that are combined using an abstract operator ®:

A;D¥ = 7(D¥/dF) ® Ad¥

AiD;? is the contribution of the variation of a problem descriptor df to the variation of a
solution descriptor D;-“ and ® is an abstract operator expressing how to combine the difference
Adi-C between problem descriptors and the influence I(D;?/df) of this problem descriptor on
the solution descriptor D;-“.

This abstract operator @ has to be instantiated in a given application domain. In the
domain of our example it simply consists in a product between numbers: ® = x.

ADY =Z(DY/d)) x AdY =4 x (—1) = —4
Ay DY =T(DY/d3) x Ady=4x0=0
ADI =T(D}/d}) x Ad} =4 x0=0
AoD} =I(D}/d}) x Ady =3 x (+1) = +3

3.4.2 Global variation

Once the individual contributions AiD;? of each problem descriptor to a given solution de-
scriptor has been assessed, they are gathered in a global contribution AD;? expressed using
an abstract operator @:

AD} = (...(A\D} & A2Df) & ... & A, DS)

It is assumed that @ is associative and commutative. Thus the expression above can be
written:

AD} = A;D}

AD;-C is the global variation that has to be applied to D}“ in order to obtain D;-“‘H by
combining all the local variations AZ-D;-C of d¥ on D;-“.

12

In the example, ® = +:

ADY = A1DY + AyDY = —44+0=—
AD} = A1D} + AyD{ =0+3 =43

3.4.3 Adaptation of target solution descriptors

For k € {0,1,...,q — 1}, in order to compute the value of the solution descriptor D;T’H of
Sol(pb**!) from the solution descriptor D;-“ of So1(pb”), the value of AD;? is used in the
following way:

k+1 _ y/k k
Vit = vE e AD) (5)

Therefore, to compute the descriptors D? of Sol(tgt) starting from the known descriptors
D;) of Sol(srce), the equation (5) is used with k =0, k=1, ..., and, finally £k = ¢ — 1.

In the example,
Vi=V'® ADY =16 + (—4) = 12
Vi=V!@®ADI =124+3=15

Thus, So1(3 x 5) = 15.

The figure 5 summarizes the adaptation process.

1
srce Ad(l) — pb Ad% _0 tgt
4 x4 3 x4 3 X5
lz (DY/dY) = 4 lz tdi) =4 l
Z(DY/dS) = 4 Z(Di/d}) =3
Sol(srce) Sol(pbl) Sol(tgt)
16 12 15

Figure 5: The sequence of adaptation operations from the source problem 4 x 4 to the target
problem 3 x 5.

(** articulation™*)

4 The Prolabo application

4.1 An overview of the “Prolabo” application

Prolabo is a company manufacturing and marketing products and devices for chemical, phar-
maceutical, biochemical and biological laboratories. One of these devices is a guided mi-
crowave digester, i.e. a device aimed at preparing product samples for chemical analysis
thanks to various analysis processes. The analysis process is performed by an analyzer, whose
type depends on the digester type. The analysis process needs also that the samples are only
constituted of the chemical atomic elements of the products to be analyzed. The guided
microwave digester is in charge of breaking all molecular bonds between atoms using either
special chemical agents, e.g. aggressive chemical agents, or microwave effects, e.g. mechanical
and thermal effects. The guided microwave digester relies on injection pumps controlling the
special chemical agent injection, and on a magnetron controlling the microwave effects. This

13

‘ Descriptors ‘ Type ‘ Id ‘

Analyzer Type Symbol | d;

Injection Speed Real ds
Magnetron power Real dy
Tube capacity Real ds
Max power gradient Real dg
Analysis class Symbol | dr
Sample weight Real dg
Lipids Quantity Real dy

Glucide Quantity Real dig
Mineral Quantity Real di1
Cellulose Quantity Real di2
Water Quantity Real di3

Table 1: The descriptors of a problem.

device is fully automated: injection pumps are driven according to three main parameters,
namely the chemical agents to be injected, the injection speed, and the injection duration,
while the main parameters of the magnetron are the power value and the emission duration.

A digestion program is composed of a number of sequential steps (from 5 to 20 steps) where
each step is controlled by the five above parameters (actually, this list is a simplified one):
choice of the chemical agent to be injected, injection speed of the chemical agent, injection
duration, magnetron power (percent of the magnetron maximum power), and magnetron
powering duration.

A case includes the description of a problem with its associated solution. The problem
describes a generic digestion program, called hereafter a digestion plan, and the problem
descriptors are: digestion constraints, analysis process constraints (see figures 9 and 10).
In this paper, for confidentiality reasons and for the sake of simplicity, only a part of the
descriptors is considered (see Table 1). The solution is composed of a synthesis of the digestion
program (see figures 11 and 12) that can be processed further by an automate designing the
associated digestion program (see for example figure 13). For a given target problem and a
retrieved source case, adaptation is performed according to dependencies existing between
source solution descriptors and source problem descriptors.

There exists a straightforward conceptual dependency between the analyzer type and the
digestion plan type (see figure 6). The value of D; (Plan Type) depends on the value of dy
(Analyzer Type) of the concerned analyzer. The more the analyzer is sensitive to aggressive
chemical agents the more the digestion plan is moderated with respect to the energy provided
within each step.

The dependencies between the numerical descriptors of the problem and the numerical
descriptors of the solution are expressed by a ratio. For example, the value of D;3 (Total
Energy) to be provided within a step of type j depends on dg (Sample Weight). The higher
is the value of “Sample Weight”, the higher is the value of the “Total Energy” to be provided
within a step of type j.

It must be noticed that the dependency relations are only true for given “differences”.
When the “difference” between the source and the target problem descriptors is greater than a
given threshold, the existing dependencies for building the corresponding solution descriptors
cannot work anymore. Moreover, this kind of knowledge is local (see figures 7 and 8).

Hereafter, a concrete example is detailed, involving problem and solution descriptors.

14

‘ Digestion program description

Plan type Symbol | Dy
Moderation level | Integer | Do

Type by type step descriptions

‘ Type 1
Number Integer | D1y
Total duration Real D19
Total energy Real | Dy3

Injected product | Symbol | Dyy
Injected quantity Real Dis

Type j

Number Integer | D;
Total duration Real D;
Total energy Real D;

Injected product | Symbol | D;
Injected quantity | Real | D;

Table 2: The solution descriptors are the five digestion plan parameters.

AnalyzerType

AnalyzerType1

Aﬂ yzerType2

DependsO

AnalyzerType3
+1

AnalyzerType4d

PlanType

PlanType1

PlanTy
+1

PlanType3
+1

PlanType4
+1

PlanType5
Figure 6: The dependencies between the analyzer type and the plan type.

4.2 A case study
4.2.1 A case description

For this example, we consider the following problem descriptors corresponding to the following
attributes:

15

Problem attributes ‘

‘ Identifier ‘ Acronym ‘

Definition |

af AT Analyzer Type
a? AC Analysis Class
ag SW Sample Weight

The solution descriptors are the followings (there are only three different types of program
steps, namely type 1, type 2 and type 3):

Solution attributes

‘ Identifier ‘ Acronym ‘ Definition ‘
AY PT Plan Type
A9 ML Moderation Level
AY, TE1 Total Energy for steps of type 1
AY, IP1 Injected Product for steps of type 1
AY, V1 Injected Volume for steps of type 1
AY, TE2 Total Energy for steps of type 2
AY, 1P2 Injected Product for steps of type 2
AY Iv2 Injected Volume for steps of type 2
Al TE3 Total Energy for steps of type 3
AY, IP3 Injected Product for steps of type 3
AY IvV3 Injected Volume for steps of type 3

The attributes of the target problem are the followings:

Target problem descriptors

‘ Identifier ‘ Attribute ‘ Value ‘ Definition ‘
di AT AnalyzerTypel | Analyzer Type
di AC AnalysisClass3 | Analysis Class
dg SW 0.8 Sample Weight

The attributes of the (retrieved) source case are the followings:

Source problem descriptors

‘ Identifier ‘ Attribute ‘ Value ‘ Definition ‘
d) AT AnalyzerType3 | Analyzer Type
d9 AC AnalysisClass6 | Analysis Class
d? SW 0.6 Sample Weight

16

‘ Source solution descriptors ‘

‘ Identifier ‘ Attribute ‘ Value Definition ‘
DY PT PlanType5 Plan Type
DY ML 4 Moderation Level
DY, TE1 156 Total Energy for steps of type 1
DY, IP1 Product3 | Injected Product for steps of type 1
DY, V1 12 Injected Volume for steps of type 1
DY, TE2 0 Total Energy for steps of type 2
DY, P2 Null Injected Product for steps of type 2
DY, IvV2 0 Injected Volume for steps of type 2
DY, TE3 120 Total Energy for steps of type 3
DY, IP3 Productl | Injected Product for steps of type 3
DY, V3 18 Injected Volume for steps of type 3

These cases are processed as explained hereafter.

4.2.2 The description of influences

The influence Z(D;/dy) of “Analyzer Type” acts on “Plan Type™: the larger is the numerical
label of the analyzer type, the more the plan type can be “blended”, in taking care of not
combining dangerous products. This is a conceptual influence stating that if the value of
the source analyzer type is larger of one degree than the value of the target analyzer type,
then one or more degrees have to be added to the value of the solution plan type (in the
source case). Thus, descriptors such as “AnalyzerType” or “PlanType” are ordered according
to discrete degrees, represented by an integer, e.g. AnalyzerType3, PlanTypeb5...

The influence of D; on dy is computed by a function f;, whose values are recorded in
a table, returning the number of degrees to add or to subtract to the analyzer type. This
function is not linear, and depends on the source value of “Analyzer Type” and on the
magnitude of the difference Ad;. The influence Z(D;/d;) reads as follows:

Z(D1/dr) = fi(dr, D1, Agy) (6)

The influence Z(D3/dr) of “Analysis Class” acts on “Moderation Level™: the larger is the
“Analysis Class”, the more the analysis is constrained by the presence of volatile products,
and, hence, the more the digestion program has to be “moderated”, i.e. involving weaker
temperature gradients in each step (entailing generally more steps in the program). A function
f2 is used to compute the Influence value Z(Ds/d7):

‘I(D2/d7) = fa(dz, D2, Agy) ‘ (7)

The figure 8 illustrates how could be graphically represented the computation of Influence
for symbolic values.

The influence Z(D;5/ds) of “Sample Weight” acts on product quantity at each step type i.
The larger is “Sample Weight”, the larger is the product volume to be injected. The function
f3 used to compute this influence is not linear, and Z(D;5/dg) has the following general form:

Z(Dis/ds) = f3(ds, Dis, Adg) (8)

17

The influence Z(D;3/dg) of Sample Weight acts also on the “Total Energy” to be provided
at each step of type ¢. The larger is the weight value the larger is the total energy value
provided. The influence Z(D;3/ds) reads as follows:

‘I(Dz‘:%/ds) = fa(ds, Diz, Agg) ‘ (9)

Figure 7 illustrates the computation of an influence in the case of numerical values.

It can be noticed that function descriptions and abacus for the influence function are
quite easy to obtain from domain experts, while it is impossible to find out the function
formula for directly computing a target solution descriptor from a source solution descriptor
(no theoretical and practical knowledge is available).

4.2.3 The adaptation of the source solution descriptors for building a target
solution

The matching between srce and tgt is defined by:

M(srce, tgt) = {(d?,d], Ad; = vl ©v{)};
@:(m,y)eZQr—W:@y—x—yGZ forzG{l,?}
Adlzvf—v?:—Q,

Ad2:vg—1}9:—3

S:(r,y) ER?—»rxoy=0—ycR, fori =8
Adg = v — v = 0.2,

M(srce, tgt) = {(d),dI, Ady = —2), (3, d, Ady = —3), (3, d%, Ads = 0.2)}

Dependencies between srce and Sol(srce) are given by:

D(srce,Sol(srce)) = {(dg,D?,I(D?/d?))} with

Z(DY/dY) = fi(AnalyzerType3, PlanType5, —2) = 0 for all i and j, i # j.

This means that for each type of analyzer, a type difference lower than 3 does not entail
plan type modification (i.e. null influence).

I(DY/dY) = fa(AnalysisClass6,4,—3) = 1 meaning that for this analysis type and this
difference, a difference of one degree on the analysis type entails a difference of one degree
on “Moderation Level”.

Z(DY/d);) = £3(0.6,12,0.2) = 25
I(Dg/dss) = £3(0.6,0,0.2) = 0
Z(D3/dS;) = £3(0.6,18,0.2) = 25
Z(DY/d95) = £4(0.6,156,0.2) = 200
I(Dg/dgs) = £4(0.6,0,0.2) =0
Z(DY/d}s) = £4(0.6,120,0.2) = 200

A difference of 1 between problem descriptor values involves an influence that may be
computed from the case base (taking into account non linearity if needed).

An elementary variation of a source descriptor value is computed by:

A;D; = Ad; @ Z(DY /dy)

18

I=f(D,d) local gradient

Admin d Admax

Figure 7: Numerical influence. In the numerical case, the influence 7 is the the same for any
value in the interval Ay.

PlanType 4 I=f(D,d) local variation « slope »
for the difference Aaz-aj

PT2-PT1 +1x Aaz-

P1 -

A1 A> As A4 AnalyzerType

Figure 8: Symbolic influence. The difference between the analyzer type A2 to the analyzer
type A3 yields a null influence on the plan type.

The ® operator is defined as follows:

Q:(r,y) eRP—z@y=azxyecR

The elementary variations are the followings:

ADy = Ady @ Z(DY/dY)
AlDl =-2x0=0

A7Dy = Ady @ Z(DY/d)
A7Dy=-3x1=-3

AgD;5 = Ads ® Z(DY%/d3) for i € {1,2,3}
A8D15 =02x25=5

A8D25 =02x0=0

A8D35 =02x25=5

AgD;3 = Ads ® I(DY%/d3) for i € {1,2,3}
A8D13 = 0.2 x 200 = 40

A8D23 =02x0=0

A8D33 = 0.2 x 200 = 40

In the equation defining an elementary adaptation, i.e. qu = Vj0 ® ADj, the @ operator
is defined as follows:

19

®:(r,y) eERP—z@dy=2+ycR

Recall that the target problem is described by the following descriptors:

dl = (AT, AnalyzerTypel),
dl = (AC, AnalysisClass3),
di = (SW,0.8)

The value of a target solution descriptor D{ is computed as stated above. For example, the

descriptor DY = (PT, V") = (PT, V> ® AD;) is computed as DY = (PT, PlanType5 + 0) =
(PT, PlanType5). The descriptor D, = (IV1,ViL) = (IV1,V2 & AD;;5) is computed as
D, = (IV1,12 +5) = (IV1,17).

The full target solution Sol(tgt) reads as:

‘ Target solution descriptors ‘
DY = (PT, PlanType5 + 0) = (PT, PlanType5)
DY = (ML, 4 + (—3)) = (ML, 1)
DT — (TEL,156 + 40) = (TET, 196)
D}, = (IP1, Product3) = (IP1, Product3)
DY = (IV1,12+5) = (IVL,17)
Dg3 —(TE2,0+0) = (T'E2,0)
Di, = (IP2,null) = (IP2,null)

(

(

(

(

DL = (IV2,0 1 0) = (IV2,0)

Di, = (TE3,120 + 40) = (TE3,160)
Di, = (IP3, Productl) = (IP3, Productl)
Dis =

TE3,18 +5) = (IV3,23)

The Prolabo application enlightens two important points on knowledge engineering for
case-based reasoning:

1. Case elaboration needs a rather large amount of knowledge on the way of adapting a

case. Actually, the (internal) representation of a case for being manipulated by the
case-based reasoning process is probably different from the mental user representation.
The Prolabo experience (and some other industry applications) shows that the repre-
sentation of a case must be well-known by the current user of the case-based reasoning
system. Accordingly, in the Prolabo application, a graphical synthesis of the case being
processed within reasoning is proposed to the user (see figure 12).

. Influences constitute the main knowledge units for adaptation, and therefore for simi-
larity assessment as well. These kinds of influences do not generally depend on linear
global functions, but rather on local functions depending on the value of the source
solution descriptor, the value of the source problem descriptor, and on the magnitude
of the difference to be adjusted between problem descriptors. In some application do-
mains, knowledge on influences may be easily available from domain experts. Probably
knowledge on influences may be elicited and/or mined (using an automatic learning
process) from a set of cases put in correspondence by an expert.

20

5 Discussion and Related Work

The state of the art shows that unless adaptation is presented as the most important step in
the case-based reasoning process taken into account by authors working on problem-solving
applications, there is only a few research works on the formalization of adaptation.

In [6], there is a proposition of using domain knowledge for explaining the solution of a
specific problem. According to this approach, domain knowledge provides knowledge units
for similarity measures as adaptation operations as well. Actually, the paper highlights
the key role played by dependencies between solution descriptors and problem descriptors.
In the same way, a generic method is presented in [8, 7|, dealing with generalization and
specialization. The case generalization is carried out within a learning phase of the system,
by organizing cases in an abstraction tree. The case specialization is carried out within a
problem-solving phase, using a planner performing a heuristic search in the solution space.
This approach relies both on a case model but also on a relevant model of the domain as
needed by a planner such as STRIPS.

In [33], there is a proposition of a formalization of the adaptation in the context of
design problems based on a particular case representation allowing case processing with CSp
(constraint satisfaction problems) methods. Following a similar approach as in [8, 7|, cases
are split down into sub-cases, and global consistency is guaranteed by the constraint-solving
method, that relies on an efficient heuristic: the source cases minimizing the constraints to
be solved have to be preferred. “Consistency” here and hereafter means that the solution is
actually a working solution of the target problem. In this context, dependencies are expressed
as constraints to be satisfied, and the solver needs a detailed domain model for delivering an
efficient processing.

The two preceding approaches are mainly related to generative case adaptation, while
some research works have addressed transformational and substitution adaptation processes.
In [9], adaptation knowledge is presented under the form of local functions transforming a
source case into a target case according to expected quality measures. Adaptation is then
performed by applying a set of adequate transformation functions allowing an improvement,
i.e. a better quality measure, of the target case. Hence, there is a need for a global function
allowing the composition of local quality improvements into a global quality improvement.
In a certain way, this approach is rather close to the approach presented in this paper.
Moreover, authors make the hypothesis that there exists a kind of “feed-back” associated with
the solution in each stored case used for the measure of quality improvement. By default,
each case is considered as having the best possible quality. Finally, it must be noticed that
this approach does not guarantee a complete consistency of the adapted solution.

In [12]|, a simple local adaptation method uses interpolation functions for adapting a
source solution descriptor depending on an observed difference between the source and target
problem descriptors. Several interpolation techniques are enumerated according to the type
of the descriptors: digital values, symbolic values, fuzzy quantifiers, ordinals, etc. This kind
of interpolation requires a partial order relationship between descriptor values for working
(especially between arbitrary symbolic values). This approach does not guarantee the con-
sistency of the adapted solution, that must be in turn tested by another mean. By contrast,
the knowledge units needed for guiding retrieval and adaptation are local, and may be more
easily acquired by mining a case base or by eliciting expert knowledge (actually, a similar
remark applies to the Prolabo experience, see 4).

In [4], the general idea “the most similar case is the case that is the easiest to adapt”
is considered as the basic principle. Accordingly, the authors introduce a “metric” based on
the relations existing between the problem descriptors and the solution descriptors, i.e. an

21

adaptation function for adapting a source solution into a target solution, provided that the
matching between source and target is satisfied (a “maintenance” function, external to the
adaptation process, is also available). Moreover, an “adaptation cost” guides the choice of the
best source case among the cases satisfying the matching condition. A kind of “topology” can
then be defined for selecting the most adaptable case during the retrieval step. This formal
approach has not been implemented, and has not been extended, as far as we know.

In [16], the adaptation model is based on substitution as an adaptation operator. A case is
connected to two individuals representing the problem and its solution in the considered case.
Each solution individual is related through “dependency relations” to a set of individuals that
are elementary descriptors of the solution. The substitution algorithm for adaptation propa-
gates changes, i.e. substitutions on the descriptors of source solution, on solution descriptors
as follows: (i) the list of the source solution elements to be adapted is built from the relations
characterizing the observed differences between source and target problem descriptors, (ii)
each element to be modified is substituted by a new one, taking into account the differences
between the source and the target problems, and then the dependencies between solution
descriptors. The search of substitutions to be performed relies on a specialized and guided
search in an associated knowledge base.

6 Conclusion and perspectives

In this paper, we have presented a general and domain-independent formalization of the
adaptation step within the CBR process. Several new and generic ideas have been introduced
and discussed in the paper.

Firstly, adaptation is viewed as a central step in the CBR process for designing a solution
of the target problem, based on the relations existing between a source case and a target
problem. These relations are considered according to two main dimensions: (i) the vertical
dimension refers to the case dimension and is based on the correspondence between the
problem and its solution, (ii) the horizontal dimension refers to the matching of the source
and target problems in the problem space, and to the corresponding modification/adaptation
of the source solution for designing the target solution in the solution space. A general
algorithm reifies these ideas and is detailed, taking into account these two dimensions for
building a solution of the target problem.

Another important idea underlying the article is that adaptation is guided by a general
strategy, relying on the decomposition of the target problem into sub-problems. Accordingly,
local operators exist and have the ability to solve the sub-problems. Then, global operators
control the local problem-solving processes and are able to merge the local solutions for
building a global solution of the target problem.

In addition, this article aims at proposing a general framework for the adaptation process,
i.e. a general strategy of adaptation that is operational and that can be used both for
theoretical and practical purposes. This general strategy allows a better understanding of the
adaptation process within the CBR process, and provides guidelines and general adaptation
operators to be reused in real-world situations. Moreover, a complex real-world application
is detailed and may be used as a referring example for other future practical applications.

Going further, the CBR process needs, in several aspects, to be guided by domain knowl-
edge, at every step of the process. Domain knowledge may be used either by the human in
charge of the system or by the system itself for designing a solution. It should become actual
and important to consider CBR as a powerful inference schema, to be used for completing
deduction and induction schemes in implemented knowledge-based systems, aimed at solving

22

real-world problems. In such a context, a complete system should take advantage of a case
base and a knowledge base. Moreover, regarding the present needs, e.g. Semantic Web appli-
cations, such a complete system should be coupled with a KDD system —knowledge-discovery
in databases able to feed the case and knowledge bases. The design of a theoretical and
practical framework for combining CBR, knowledge-based system technology, and knowledge-
discovery technology, is an important next challenge, from the point of view of the authors,
to be studied and made fully operational.

References

1]

2]

3]

[4]

[5]

6]

7]

8]

19]

[10]

[11]

Agnar Aamodt. Explanation-driven retrieval, reuse and learning of cases. In EWCBR
93, Otzenhauzen, Germany, pages 279 284, 1993.

David Aha. Editorial. Artificial Intelligence Review, 11(1-5):1 6, 1997. Special Issue on
Lazy Learning.

Tsz-Chiu Au, Héctor Munioz-Avila, and Dana Nau. On the complexity of plan adaptation
by derivational analogy in a universal classical planning framework. In 6th Furopean
Conference, ECCBR-2002, Aberdeen, Scotland, UK, 2002.

Paolo Avesani and Enrico Blanzieri. Adaptation-dependent retrieval problem: A formal
definition. In Proceedings of ICCBR’99, 1999.

Ray Bareiss, Bruce Porter, and Creg Wier. Protos- an exemplar based learning appren-
tice. International Journal of Man-Machines Studies, 29:549-561, 1988.

Ralph Bergmann, Gerd Pews, and Wolfgang Wilke. Explanation-based similarity: a
unifying approach for integrating domain knowledge into case-based reasoning for di-
agnosis and planning tasks. In Stephan Wess, Klaus-Dieter Althoff, and Michael M.
Richter, editors, Workshop on Case-Based Reasoning, Topics in Case-Based Reasoning,
pages 182 196. Springer, Berlin, 1994.

Ralph Bergmann and Wolfgang Wilke. Building and refining abstract planning cases by
change of representation language. Journal of Artificial Intelligence Research, 3:53-118,
1995.

Ralph Bergmann and Wolfgang Wilke. Paris : Flexible plan adaptation by abstraction
and refinement. In A. Vo, R. Bergmann, and B. Bartsch-Sporl, editors, Workshop on
Adaptation in Case-Based Reasoning, FCAI-96, Budapest, Hungary, August 1996.

Ralph Bergmann and Wolfgang Wilke. Towards a new formal model of transformational
adaptation in case-based reasoning. In Henri Prade, editor, ECAI 98, 13th Furopean
Conference on Artificial Intelligence, pages 53-57. John Wiley and Sons, Ltd, 1998.

Jaime G. Carbonell. Learning by analogy: Formulating and generalizing plans from
past experience. In R.S. Michalsky, J.G. Carbonnel, and T.M. Mitchel, editors, Machine
Learning: an Artificial Intelligence Approach, pages 137 162. Tioga, Palo Alto, 1983.

J.G. Carbonell. Derivational Analogy: A Theory of Reconstructive Problem Solving
and Expertise Acquisition. In R.S. Michalski, J.G. Carbonell, and T.M. Mitchell, edi-
tors, Machine Learning, an Artificial Intelligence Approach, Volume II, pages 371 392.
Morgan Kaufmann Publishers, Inc., Los Altos, California, 1986.

23

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

23]

[24]

[25]
[26]

[27]

N. Chatterjee and J.A. Campbell. Interpolation as a means of fast adaptation in case-
based problem solving. In Ralph Bergmann and Wolfgang Wilke, editors, Fifth German
Workshop on Case-Based Reasoning, pages 65—74, Kaiserslautern, Germany, 1997.

Béatrice Fuchs, Jean Lieber, Alain Mille, and Amedeo Napoli. An Algorithm for Adap-
tation in Case-based Reasoning. In W. Horn, editor, Proceedings of the 14th Furopean
Conference on Artificial Intelligence (ECAI-2000), Berlin, pages 45 49. I0S Press, Am-
sterdam, 2000.

Béatrice Fuchs and Alain Mille. Explanation driven adaptation. In proceedings of the
workshop on adaptation in CBR, 1996. Workshop on Case Based Reasoning - ECAI96.

Béatrice Fuchs, Alain Mille, and Benoit Chiron. Operator decision aiding by adapta-
tion of supervision strategies. Lecture Notes in Artificial Intelligence vol 1010, First
International Conference, ICCBR95, Sesimbra, Portugal, pages 23—-32, 1995.

Pedro A. Gonzalez-Galero, Mercedes Gomez-Albarran, and Belén Diaz-Agudo. A
substitution-based adaptation model. In Proceedings of ICCBR’99, 1999.

Kristian J. Hammond. Case-Based Planning: Viewing Planning as a Memory Task.
Academic Press, Boston, 1989.

Kristian J. Hammond, editor. Workshop on case-based Reasoning, DARPA 89, Pensacola
Beach, Florida, 1989. Morgan-Kaufmann, San Mateo.

Steve Hanks and Daniel S. Weld. A domain-independent algorithm for plan adaptation.
Journal of Artificial Intelligence Research, 2:319 360, 1995.

Kathleen Hanney, Mark T. Keane, Barry Smyth, and Padraig Cunningham. Systems,
tasks, and adaptation knowledge. In Manuela Veloso and Agnar Aamodt, editors, Inter-
national Conference on Case-Based Reasoning, Lecture Notes in Artificial Intelligence,
pages 461 470, Sesimbra, Portugal, 1995. Springer, Verlag.

Thomas R. Hinrichs. Strategies for adaptation and recovery in design problem solver.
In Workshop on case-based Reasoning, DARPA 89, pages 115 118. Morgan-Kaufmann,
San Mateo, 1989.

K. Hua, B. Faltings, and I. Smith. Cadre: Case-based geometric design. Journal of
Artificial Intelligence in Engineering, 10:171 183, 1996.

Jana Koehler. Planning from second principles. Artificial Intelligence, 87:145-186, 1996.

Janet Kolodner. Judging which is the "best" case for a case-based reasoner. In DARPA
Case-Based Reasoning Workshop, pages 77 81. Morgan Kaufmann, San Mateo, CA,
1989.

Janet Kolodner. Case Based Reasoning. Morgan Kaufman Publishers, 1993.

Janet Kolodner, R. Simpson, and Katia Sycara-Cyranski. A process model of case-based
reasoning in problem solving. In Proceedings of the Ninth International Joint Conference
on Artificial Intelligence (IJCAI-85), volume 1, pages 284 290, Los Angeles, CA, 18th-
23rd August 1985 1985.

Janet L. Kolodner. Reconstructive memory: A computer model. Cognitive Science,
7:281-328, 1983.

24

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

7

David B. Leake, editor. Case-Based Reasoning: Ezxperiences, Lessons and Future Direc-
tions. AAAI Press, 1996.

Jean Lieber. Reformulations and Adaptation Decomposition. In J. Lieber, E. Melis,
A. Mille, and A. Napoli, editors, Formalisation of Adaptation in Case-Based Reason-
ing. Third International Conference on Case-Based Reasoning Workshop, ICCBR-99
Workshop number 3, S. Schmitt and I. Vollrath (volume editor), LSA, University of
Kaiserslautern, 1999.

Mary Lou Maher, M. Bala Balachandran, and Dong Mei Zhang. Case-based reasoning
in design. Lawrence Erlbaum Associates, 1995.

Erica Melis, Jean Lieber, and Amedeo Napoli. Reformulation in Case-Based Reasoning.
In B. Smyth and P. Cunningham, editors, Fourth European Workshop on Case-Based
Reasoning, EWCBR-98, Lecture Notes in Artificial Intelligence 1488, pages 172-183.

Springer, 1998.

E. Plaza and J.-L. Arcos. Constructive adaptation. In S. Craw and A. Preece, editors,
Proc. 6th ECCBR 2002, volume Advances in Case-Based Reasoning of Lecture Notes on
Artificial Intelligence 2416, pages 306 320. Springer-Verlag, Berlin, 2002.

Pearl Pu and Lisa Purvis. Formalizing the adaptation process for case-based design. In
Mary Lou Maher and Pearl Pu, editors, Issues and Applications of Case-Based Reasoning
in Design, pages 221-240. Lawrence Erlbaum Associates, 1997.

Michael Richter. Classification and learning of similarity measures. In Clas Opiz and
Lausen Klar, editors, Proceedings der Jahrestangung der Gesellschaft fiir Klassifikation,
Studies in Classification, Data Analysis and Knowledge Organisation. Springer Verlag,
1992.

Roger C. Schank. Dynamic Memory: A theory of reminding and learning in computers
and people. Cambridge University Press, 1982.

Roger C. Schank and Christopher K. Riesbeck. Inside Case Based Reasoning. LEA
Publishers, Hillsdale, New Jersey(07642, 1989.

Manuela M. Veloso, Héctor Munoz-Avila, and Ralph Bergmann. General-purpose case-
based planning: Methods and systems. AI Communications, 9(3):128-137, 1996.

Annex: The Prolabo application

7.0.4 An illustration of the digestion process

The following figures 9, 10, 11, 12 and 13, proposes views of the specification of a digestion
problem, and a digestion solution, through the application interface.

25

& Description du cas

Generaus Operatoire | Matrice' Prolocnle' Infos |

Elément & dozer:

Methode d'analyse: Iﬁ._.& faur ﬂ
tinéralisateur: IMichDigestmm j
Vaisselle: IBnrnsiIicate [\Werme] j

Prize d'essai [g): |1

Fermer | bide |

Figure 9: An example of a description of a digestion specification (part 1 of the problem).

Generauxl Operataire Matice |F'rc:tu:uc:u:ule| Infos I

Type de matrice [Efalell=yleE

" aleLr | Compozants

800 Eau [% masze]
200 Lipides [% mazze)
N.00 Glucides [% masse)]
4200 Protides [& mazse]
200 Celluloze [masse]
4.00 btingral [% mazze)

Maote estimation renzeignement I n

Figure 10: An example of a description of a digestion specification (part 2 of the problem).

26

=101 %]

< Description du cas

Generadix I:Iperah:nirel Matricel Frotocole Infioz

Mombre détapes: 7

Temps Total de Chauffe 35 mind7 . Temps Total du Protocole 40 min 43 5
[uantité Totale de Réactifs - Sels:
Réactit | ‘ol Tatal (mi) |
HCl a 350
HCI04 2
HHO3 14
Hz2504 2

Figure 11: An example of a description of a digestion solution (numerical balance).

& 40 %
30 %
5 ml
18 min 4 min A0 min 43 s
36 6 7

2 3 4 5

Figure 12: An example of a description of a digestion solution (graphical balance).

27

" Description du cas

Generau:-:l Dperah:uirel Matice FProtocole |Infu:us |

Référence: Mo

IEssaiMas 270195 SEcuiité | Lommentaires I.&Iiment zpecial pour pondeus

Phase | Beéactf | Vitesse | wol [ml) | Puiss (%) | Temps | Dm | Sels(g)
1 H2504 7 2 23
2 HMO3] 14 1.2
3 10 Erminlls
4 15 E min
5 HCIO4 5 2 20 1 i 36 &

B 0 18 rrin 5
7 HCl g 5 40 4 min
1| |]

Figure 13: An example of a description of a digestion solution (the whole program).

28

