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2 Orpailleur researh group, LORIA, (CNRS, INRIA, Nany Universities),B.P. 239 54 506 Vand÷uvre-lès-Nany,lieber�loria.fr, napoli�loria.fr.AbstratThe ase-based reasoning proess relies on three main steps, retrieval, adaptationand learning. This artile proposes a general, domain-independent, and operationalformalization of the adaptation proess, where a solution of the target problem is designedon the basis of the relations existing between a soure ase �problem and solution� andthe target problem. The ideas underlying the artile are that adaptation in ase-basedreasoning may be guided by a general strategy, relying on the deomposition of the targetproblem into (target) sub-problems, on the existene of loal operators able to solve thesub-problems, and �nally on the existene of global operators able to ombine the setof loal solutions for building a global solution of the target problem. This generalformalization is used for de�ning a general strategy of adaptation that is operationaland that is illustrated by a real-world appliation. This general strategy is of �rstimportane, allowing a better understanding of the adaptation proess, and a reuse ofgeneral adaptation operators for di�erent real-world situations. In addition, this artileaims at providing a general framework for studying the adaptation proess, both fromtheoretial and pratial points of view.1 IntrodutionThe ase-based reasoning proess relies on three main steps, retrieval, adaptation and learn-ing [36, 25℄. This artile holds on the seond step of this proess and proposes a generalformalization of the adaptation step, based on the relations existing between a soure prob-lem and a target problem. This general formalization is of �rst importane, whereas in themajority of the situations, the adaptation proess losely depends on the appliation beingstudied. This paper presents the results of studies arried on by the authors for several yearson the formalization of the adaptation step within the br proess. It extends and ompletesa �rst tentative of formalization that has been proposed in [13℄.Let us suppose that are given a target problem and a ase base inluding a olletionof soure ases, where a soure ase is a pair omposed of a soure problem and the asso-iated soure solution. During the retrieval step, several soure problems of the ase baseare retrieved and ompared to the target problem. The mathing proess establishes loallythe orrespondene between a feature �or a desriptor� of the soure problem and the orre-sponding feature of the target problem. The similarities and di�erenes between the featuresof the loal soure and target problem are made expliit. Then, a global similarity measuremay ombine the loal feature similarities for assessing a global similarity between the soure1



and the target problem. Aordingly, a general shema of the adaptation proess is proposedin �gure 1, where a soure ase (on the left of the �gure) has been seleted by the retrievalproess as the �best� andidate for solving the target problem, meaning that the solutionof this best andidate an be reused for designing the solution of the target problem. Theframework proposed for formalizing the adaptation proess relies on two dimensions: (i) thevertial dimension orresponds to the ase dimension, inluding the problem and the solution,with the soure ase on the left and the target ase on the right, (ii) the horizontal dimen-sion orresponds to the mathing of soure and target problems, and to the orrespondingmodi�ation of the soure solution for designing the target solution.

Figure 1: The general sheme of the adaptation proess.This is the task of the adaptation proess to rely on the seleted soure ase for designing asolution of the target problem. Firstly, the solution of the soure ase may be opied as a �rstsolution of the target problem. Furthermore, this �rst and raw solution is modi�ed for erasingthe di�erenes existing between the soure and target problems, that have been pointed out bythe mathing proess. The adaptation proess is then guided both by the mathing proess,indiating what adjustments are needed, and by the dependenies indiating what are theproblem features having an in�uene on the solution features. Given a di�erene betweena soure problem feature and the orresponding target problem feature, and a dependenybetween the soure problem feature and a soure solution feature, an elementary adaptationoperation is in harge of modifying the soure solution feature for designing the target solutionfeature.As illustration, let us onsider the simple following example, inspired from a talk of IanWatson at ibr 99: knowing that 4×4 = 16, what is the solution of 4×5? The adaptationproblem is the following: let the soure problem be 4 × 4 whose solution is 16 (soure ase= soure problem and soure solution), what is the solution of the target problem 4 × 5?Here, the problem has two main features, namely the two operands, and the solution hasone feature, namely the result. The di�erenes between the features of the soure and thetarget problems are 0 for the �rst operator and +1 for the seond feature. The dependenybetween the soure problem and the soure solution may be expressed as follows: �the e�etof an elementary variation of an operand on the result is proportional to the value of the2



other operand�. Consequently, onsidering that 4× 5 is equal to 4× (4 + 1), the variation ofthe result aused by the variation of the operands in the target problem will be of 0 for the�rst operand (namely 4) and of 1 × 4 = 4 for the seond operand (namely 5). The adaptedsolution feature will be given by the soure solution feature and the e�et of the variationusing the + operator, i.e. 4 × 5 = 16 + 0 + 4 = 20.Although this example is easy to understand and rather easy to solve, it shows all theelements that are involved within the adaptation proess. Moreover, even if target problemsare more omplex in the real-world ase, the adaptation proess relies on the priniples thatare illustrated in the above example, namely a soure problem, a soure solution, dependeniesand in�uenes between features.In this artile, we promote the idea that adaptation in ase-based reasoning may beguided by a general level strategy. This strategy relies �rst on the deomposition of the targetproblem into sub-problems, seond on the existene and the use of loal operators able to solvethe sub-problems, third on a proess able to ombine the set of loal solutions for buildinga global solution for the target problem. The deomposition of the target problem into sub-problems (simpler to solve) is ahieved in the problem spae, and performed aording to theso-alled similarity paths reifying a possible sequene of modi�ation relations leading fromthe target problem to a soure problem (or, from the target problem to the soure problem).A modi�ation relation haraterizes an elementary modi�ation, i.e. a loal operator, thatmay be applied on either the target problem or the soure problem. The similarity pathhas a orresponding path in the solution spae, that allows to modify the soure solution forbuilding a target solution. The loal operators in the problem spae for splitting the targetproblem into sub-problems, have orresponding loal operators in the solution spae, foradapting the soure solution into a target solution. A set of di�erenes emphasizes the globaldi�erene between the soure and target problems, while a set of dependenies emphasizesthe relations between operations in the spae of problems and the orresponding operationsin the spae of solutions.The above priniples are materialized within a pratial and general algorithm for adap-tation, that may be instantiated in an appliation domain for a spei� purpose. Aordingly,the main ontributions of the paper an be read as follows:
• A general strategy for taking into aount the adaptation step in the ase-based reason-ing proess exists and may be implemented aording to domain-independent priniples.
• This strategy is based on the general problem-solving method onsisting in deomposinga omplex problem into sub-problems more easy to be solved.
• The deomposition of the problem guides the deomposition of the adaptation proess:to a loal sub-problem orresponds a loal solution, and the loal solutions may beombined for building a global solution.The metaphor that has been hosen for illustrating the di�erent dependenies betweenthe problem and its solution, and between the soure and target problems, relies on (partial)di�erentials that materialize a dependene, knowing however that there is not an e�etive useof the di�erential alulus as in mathematis. Here, the di�erential materializes a dependene.The framework for adaptation presented in this artile is general and unifying. Indeed, theresearh work holding on adaptation usually relies on the fat that there exists a set of loaloperators that an be ombined for building a global solution for the target problem. Mostof the time, these loal operators are domain-dependent and there is an ad ho ombinationof the loal solution for building a global solution. By ontrast, the present strategy is3



general and may be reused in di�erent ontexts or appliation domains, onsidering eitherloal operators for problem deomposition or for solution adaptation.The summary of the artile is as follows. First, a general review of the state of theart on the adaptation proess is proposed, with a historial perspetive. Then, a frame-work for formalizing the adaptation proess is proposed, relying on the two-dimensionalpoint of view introdued in �gure 1, i.e. the vertial ase dimension and the horizontalmathing/modi�ation dimension. Based on these two dimensions, the relations between theproblem and its solution are studied, and a general dependeny-driven adaptation strategy isproposed, using a set of generi adaptation operators. The desription of a real-world expe-riene, namely the Prolabo experiment, illustrates the way this general adaptation strategymay be implemented. A disussion and a omparison with related work terminate the artile.2 Survey on adaptation in CBR2.1 The pioneers of CBR and the adaptation proessRoger C. Shank [35, 26℄ and Janet Kolodner [27℄ probably have invented the expression�Case-Based Reasoning� for denoting the general proess of reusing past experienes for faingnew situations [36℄. The br proess is mainly memory-oriented and a model of dynamimemory is proposed for indexing and retrieving the best adapted memorized sripts, that �ta new situation and that only need a few adjustments to be reused. It is not so surprisingthat these �rst e�orts for building a theory of the adaptation proess were oriented towardsmemory searh strategies, for �nding strutures or values whih ould be good andidatesfor replaing strutures or values in the past experiene to �t a new situation [17℄. Duringthe darpa onferene in 1989 [18℄, Janet Kolodner explained that the best ase for a brsystem is the ase that is the most useful to omplete the reasoning proess [24℄. Aordingto her de�nition �she was working on plan reuse� the best ase is the ase satisfying as wellas possible the urrent goal and the easiest one to be adapted. The notion of �easiest aseto be adapted� is of entral onern within a br system. Nevertheless, Janet Kolodneronly proposed generi similarity measures showing to whih extent the urrent goal ould besatis�ed given the past experiene.2.2 Strategies for adaptationThomas Hinrihs onsidered two families of adaption strategies [21℄: (1) value seletion and(2) struture modi�ation. The value seletion relies on either a �loal searh priniple� ora �transformation priniple�. The loal searh priniple onsists in navigating an availableonept hierarhy for generalizing the value to replae, and then to speialize this value again,hoosing a value satisfying as well as possible the onstraints expressed by the target prob-lem and violated by the soure ase. The transformation priniple assumes that values arestrutured objets whih an be transformed in new ones by adding, deleting or substitutingparts of the objets. This point of view on adaptation enlightens the nature of adaptation:adaptation needs spei� knowledge on the dependenies between problem parts and solutionparts of a ase. Moreover, these dependenies have to be taken into aount within the sim-ilarity measure used to selet a soure ase for solving a target problem, providing in thisway a �semantis� to the similarity measure. The struture modi�ation priniple onsists inmerging equivalent information piees in the same variable or, onversely, in splitting infor-mation in two di�erent variables. In both ases, there is a simpli�ation proess transformingthe soure solution for making feasible the adaptation proess. These priniples are applied4



for numerial values representing geometrial dimensions in [22℄.2.3 The transformational and derivational approahesConurrently, a transformational approah for plan reuse was studied by J.G. Carbonellaround 1983 [10℄. A plan is ompared to another one on the basis of the initial state, the�nal state, the respetive onstraints within the path desribed in the target problem andin the soure problem, and the proportion of operator preonditions satis�ed in the targetproblem situation. This measure is alled the �appliability measure of a soure solution�beause it maximizes adaptation possibilities. Adaptation onsists in solving a problem �ofdi�erent nature alled �transposed problem�� starting from an initial state, i.e. the soureproblem, to a �nal state, i.e. the target problem, through a set of intermediate states, whereeah one solves a di�erene pointed out at mathing time. The intermediate states mayorrespond as well to meaningless plans. Thus, the adaptation proess onsists in buildinga �transposed plan spae�, i.e. a kind of parallel plan spae of adapted plans orrespondingto the intermediate states of the plani�ation problems (as introdued above), giving birthto an adaptation path. A set of adaptation operators is proposed for solving eah step ofthe adaptation path (11 so-alled T-operators are valid in the transposed spae). This wayof representing an adaptation path an be onneted to the so-alled �reformulations� and�similarity paths� presented in [31, 29℄ and disussed hereafter. Following the same idea, in[32℄, it is proposed to build an adaptation from the soure ase by exploring suessively(best-�rst searh) hypotheses allowing to get loser to the desired goal (on�guration domainproblems).J.G. Carbonell developed later another point of view haraterized by a �derivationalapproah� also based on analogial reasoning [11℄. He notied that it is possible to keep atrae of the use of the di�erent transformation operators used in a plan. Consequently, insteadof swithing from the soure plan spae to the transposed plan spae, he proposed to �replay�operator seletion rules by substituting the soure ontext for the target ontext in the rules.J.G. Carbonell stresses the fat that the appliability measure is modi�ed sine problems areonsidered as similar when the initial reasoning proess is similar. The reasoning proesshas to be adapted to the new ontext, and then to be replayed within in it. An exampleis given onerning the adaptation of a sort funtion in Pasal to a sort funtion in lisp.Atually, the �ase� to be adapted is the reasoning proess itself, using a transformationalapproah. The omplexity of this plan adaptation approah has been studied in [3℄. Planreuse and reasoning proess adaptation have inspired numerous theoretial works, as in [19℄,where the authors onsider adaptability as the measure of the adaptation e�ort in terms ofthe orresponding omputation omplexity. In [23℄, this theoretial work is ompleted, and itis demonstrated that the adaptation e�ort annot be easily ontrolled, and that this approahneeds knowledge for solving the problem from srath. A nie survey of ase-based planningmay be found in [37℄.2.4 Adaptation ategoriesIn 1993, a survey of various adaptation proesses, either transformational or derivational, hasbeen reported in the book of Janet Kolodner [25℄:
• Copy of the soure solution.
• Modi�ation of the soure solution,� by substitution: 5



∗ with re-instantiation, i.e. abstration and speialization,
∗ with parameter adjustment, i.e. dependeny with respet to a problem item,
∗ with memory searh for a set of possible lose values:

· using loal searh, i.e. seleting an existing value lose to the soure value,
· using a speialized searh, i.e. a heuristi for seleting a value beyondlose ones;� by transformation:

∗ using �ommon sense� transformations,
∗ using a repair proess guided by a domain model;� by plan derivation replay:
∗ searhing methods or explanations in the soure ase,
∗ applying again onerned methods in the target ase.This list makes more preise the proposals of Thomas Hinrihs from 1989. Parameteradjustment was reported in di�erent artiles of the darpa 89 Conferene, without beingompletely explained in terms of knowledge units to be reused either for adaptation or forsimilar ase retrieval.Another taxonomy of adaptation knowledge units was reported in [20℄, aording to therole played in the adaptation proess at the di�erent steps of the br yle: operators forthe elaboration of the target problem, operators for role substitution, operators for subgoalsdeomposition, and operators for dependene management. This taxonomy was not initiallyaimed at qualifying working knowledge for adaptation, but appeared to be very useful tohighlight it.2.5 Adaptation as onstraint solvingCase-based design is one of the major appliation domain of br [30℄. Several works werepublished on adaptation formalization involving a onstraint-solving approah: [22℄ intro-dues the notion of �surfae ase desriptors� that does not inlude omplete knowledge forreasoning (thus exluding a derivational approah). An important improvement of the op-erators of Thomas Hinrihs is proposed within the julia system [21℄: numerial onstraintsare expressed on geometri patterns instead of on symboli terms.Some authors onsider adaptation as a set of soure ase modi�ations whih are on-strained by the target problem. There exists a set of integrity onstraints represented by aset of equalities or inequalities to be satis�ed for solving the target problem. Based on asoure ase satisfying at best the target onstraints, just a few dimensions have to be takeninto aount for adaptation. The general adaptation methodology is the following:1. Selet a ase satisfying mandatory onstraints: this step is usually performed by theuser.2. Selet an initial set of parameters overing the target onstraints: this dimension ex-pansion" step is usually performed by the user too.3. Establish whether the system is over-onstrained (too many onstraints and thus nosolution), under-onstrained (not enough onstraints and thus too many solutions), orhas just one solution. This �dimension analysis step� may be automatized.6



4. When the system is over-onstrained, the seletion of an initial set of parameters (step2) may be replayed.5. If the system is under-onstrained, apply a �dimension redution� proess.6. Solve the residual onstraints with a lassial onstraint solver.This approah points out the notion of �in�uene� in the seletion of a soure ase, byminimizing the set of violated onstraints to satisfy the target problem, for minimizing inturn the adaptation ost.2.6 CBR �without� adaptationbr is widely used for lassi�ation or interpretation tasks that onsist in assigning a targetproblem to a spei� lass, with respet to its similarity with a well-lassi�ed soure problem[28℄. A soure ase or �soure lass� may be seen an abstration of solutions of similarproblems.Here, the interesting step within the br proess is the retrieval step and the assoi-ated retrieval knowledge: the adaptation step is not neessary and the problem is solvedas soon as a soure lass has been found, providing a generi solution for the target prob-lem. Knowledge units for similarity may be aquired aording to three approahes: (1)the indutive approah is based on automati learning from data [2℄, using the informationontribution of ase desriptors for seleting the soure lass, (2) �ad ho� approahes build-ing similarity or dissimilarity measures aording to more or less general methods [34℄; (3)an �explanation-driven� approah using a few well hosen soure problems for explaining asoure lass [5℄. This last approah relies on the expliit building of dependeny relation-ships between problem desriptors and an abstrat solution lass. This approah stresses thedi�erenes between the di�erent lasses, and applies quite well to problem-solving sine itprovides neessary information for adaptation [1, 6, 15, 14℄.3 A general strategy of adaptation3.1 Basi notations(** artiuler **)A ase is the assoiation of a problem and of a solution to this problem: (pb, Sol(pb)). Asoure ase is denoted by (sre, Sol(sre)), where sre is the soure problem and Sol(sre)is the soure solution. A target ase is denoted by (tgt, Sol(tgt)), where tgt is the targetproblem and Sol(tgt) is the target solution that has to be built by the adaptation proess.Cases (problems and solutions) are represented by sets of desriptors. A desriptor d isde�ned by a pair d = (a, v) where a is an attribute and v is the value assoiated to thisattribute. The following onvention is adopted hereafter: lower ases are used for problemdesriptors �d = (a, v)� and upper ases, for solution desriptors�D = (A,V ). In aordanewith this voabulary, soure and target ases are de�ned as follows:
• sre = {d0

1, . . . d
0
n} = {d0

i }i = 1 . . . n
, where d0

i = (a0
i , v

0
i ) is a desriptor of the soureproblem;

• Sol(sre) = {D0
1 , . . . D

0
N} = {D0

j}j = 1 . . . N
where D0

j = (A0
j , V

0
j ) is a desriptor of thesoure solution; 7



• tgt = {dq
1
, . . . dq

n} = {dq
i }i = 1 . . . n

where dq
i = (aq

i , v
q
i ) is a desriptor of the targetproblem;

• Sol(tgt) = {Dq
1
, . . . Dq

N} = {Dq
j}j = 1 . . . N

where Dq
j = (Aq

j , V
q
j ) is a desriptor of thetarget solution.Let us onsider a simple example of the same type as the example introdued in setion 1.Let 4 × 4 be the soure problem, whose solution is 16, and 3 × 5 be the target problem.Conforming to this formalism, the adaptation spei�ation is desribed as follows:sre = {d0

1 = (a0
1 = 1st operand, v0

1 = 4),

d0
2 = (a0

2 = 2nd operand, v0
2 = 4)}tgt = {dq

1
= (aq

1
= 1st operand, vq

1
= 3),

dq
2

= (aq
2

= 2nd operand, vq
2

= 5)}Sol(sre) = {D0
1 = (A0

1 = result, V 0
1 = 16)}Sol(tgt) = {Dq

1
= (Aq

1
= result, V q

1
= ?)}3.2 From soure to targetIn this setion, we are interested in the �horizontal view� of �gure 1, i.e., on the relationshipsbetween the soure and the target. This horizontal view of adaptation an be deomposedin two main steps:Similarity assessment (or mathing proess) is the study of the relationships betweensre and tgt. It aims at pointing out what makes sre and tgt similar and whatmakes them dissimilar. The similarity assessment provides a mathing from sre totgt denoted by M(sre, tgt). The pro�le of the similarity assessment, whih spei�esits inputs and output, is

(sre, tgt) 7→ M(sre, tgt)Solution modi�ation is the study of the relationships between Sol(sre) and (what willbe) Sol(tgt). This study is based on the mathing M(sre, tgt), thus its pro�le is
(sre, Sol(sre), tgt,M(sre, tgt)) 7→ Sol(tgt)In the following, we are interested in two types of mathings (and to the orrespondingsolution modi�ations): the desriptor mathing approah and the approah based on simi-larity paths. The former approah is based on the desriptors that ompose the ases. Thelatter approah aims at deomposing the mathing and the solution modi�ation in several�simple� steps.3.2.1 Desriptor mathingThe desriptor mathing approah is based on the elements omposing problems, i.e., theirdesriptors: the question �How an two problems be mathed?� is redued to the question�What desriptors of two problems an be mathed, and how?� The desriptor mathingonsists in mathing desriptors having the same attribute names. This means that thesimilarity assessment assoiates to sre and tgt a set M(sre, tgt) of triples (d0

i , d
q
i ,∆di)8



suh that d0
i = (ai, v

0
i ) ∈ sre and dq

i = (ai, v
q
i ) ∈ tgt have the same attribute name

ai = a0
i = aq

i . Therefore, a mathing an be written
M(sre, tgt) = {(d0

i , d
q
i ,∆di)}i

(1)where ∆di enodes the di�erenes between the values v0
i and vq

i , i.e., some piees of infor-mation about their similarities and dissimilarities. ∆di is omputed thanks to a domain-dependent operator denoted by ⊖:
∆di = vq

i ⊖ v0
iThe solution modi�ation following this similarity assessment is detailed in setion 3.4.3.2.2 Mathing by similarity pathsWe assume that Problems, the olletion of any problems, is strutured with a �nite set ofrelations between problems denoted by R. The spae (Problems,R) is alled the problemspae. The mathing from sre to tgt is assumed to be a similarity path, i.e., a path in theproblem spae:

M(sre, tgt) =
(pb0 r1 pb1 r2 pb2 . . . pbq−1 rq pbq

)with pb0 = sre, pbq = tgt and ri ∈ R, i ∈ {1, 2, . . . q}The problems pb1, pb2, ... pbq−1 are reated by the mathing proess and are alled inter-mediate problems.The relations r∈R are assumed to have the following property:if pb r pb′ (pb is related to pb′ by r)then any solution Sol(pb) of pb an beadapted into a solution Sol(pb′) of pb′. (2)This adaptation is performed thanks to a spei� adaptation funtion with the followingpro�le:
Ar : (pb, Sol(pb), pb′) 7→ Sol(pb′)for pb, pb′ ∈ Problems, suh that pb r pb′.The ordered pair (r,Ar) is alled a reformulation. The set of the available reformulationsonstitute the available adaptation knowledge.One the similarity path is found, the solution modi�ation an be proessed simply byfollowing this path in the solution spae:(1) The solution Sol(sre) = Sol(pb0) of sre = pb0 is adapted into a solution Sol(pb1) ofpb1 thanks to A r1 ;(2) The solution Sol(pb1) of pb1 is adapted into a solution Sol(pb2) of pb2 thanks to A r2 ;

· · ·(q) The solution Sol(pbq−1) of pbq−1 is adapted into a solution Sol(pbq) of pbq thanks to
A rq .These solution modi�ation steps an be performed beause property (2) holds for eah

( ri ,A ri ): as soon as a similarity path is found, the solution modi�ation proess is ensured.Figure 2 shows suh a solution modi�ation. 9



PSfrag replaements sre tgtpb1 pb2

Sol(sre) Sol(tgt)Sol(pb1) Sol(pb2)

Problems
Solutions

r1 r2 r3

A r1 A r2 A r3Figure 2: Solution modi�ation following a similarity path.Combining desriptor mathing and mathing by similarity path. The two previ-ous approahes of mathing an be ombined as follows: eah of the step of a similarity path,pbk rk pbk+1, an be represented by a desriptor mathing M(pbk, pbk+1):
M(pbk, pbk+1) = {(dk

i , dk+1

i ,∆dk
i )}i

(3)where ∆dk
i = vk+1

i ⊖ vk
iTherefore, the similarity path mathing between sre and tgt is omposed of theM(pbk, pbk+1):

M(sre, tgt) = {M(pbk, pbk+1)}
k

(4)On the previous simple example, a similarity path from sre = 4× 4 to tgt = 3× 5 anbe de�ned by introduing a single intermediate problem, pb1 = 3 × 4 as shown in �gure 3.In this example, the di�erenes ∆dk
i are omputed by a numerial di�erene:

∆dk
i = vk+1

i − vk
iThe abstrat operator ⊖ is instantiated by the numerial di�erene between real numbers:

⊖ = −. For example, ∆d0
1 = v1

1 − v0
1 = 3 − 4 = −1.sre

4 × 4
∆d0

1 = −1
−−−−−−−−−−−−−−→

∆d0
2 = 0

pb1

3 × 4
∆d1

1 = 0
−−−−−−−−−−−−−−→

∆d1
2 = +1

tgt
3 × 5Figure 3: The similarity path linking the soure problem 4× 4 and the target problem 3× 5.The problem pb1 = 3 × 4 is an intermediate problem.3.3 From problem to solutionIn this setion, we are interested in the �vertial view� of �gure 1. We assume that thereexists relations between the problem and its solution alled dependenies indiating that some10



problem desriptors in�uene some solution desriptors. A dependeny expresses that thevariation of a problem desriptor has an in�uene on the variation of a solution desriptor.Let pbk be a problem and Sol(pbk) be a solution of pbk (if k = 0, pbk = pb0 = sre,if k = q, pbk = pbq = tgt, else pbk is an intermediate problem of a similarity path). Let
dk

i ∈ pbk and Dk
j ∈ Sol(pbk). If the variation of dk

i have an in�uene on the variation of Dk
j ,then the dependeny of dk

i on Dk
j is a triple (dk

i ,D
k
j ,I(Dk

j /dk
i )). dk

i is alled the in�ueningand Dk
j is alled the in�uenee of the dependeny. I(Dk

j /dk
i ) is part of the adaptationknowledge that has to be modelled and onsists in an in�uene funtion indiating the impatof the in�uening on the in�uenee. The in�uene funtion is at the basis of the adaptationoperators of the adaptation strategy presented in setion 3.4.The set of dependenies of pbk desriptors on Sol(pbk) desriptors is denoted byD(pbk, Sol(pbk)):

D(pbk, Sol(pbk)) = {(dk
i ,Dk

j ,I(Dk
j /dk

i ))}
i, jIn the example, for eah k ∈ {0, 1}, there are two dependenies between desriptors ofpbk and the desriptor of Sol(pbk). For one operand, the in�uene funtion expresses thatthe e�et of the variation of this operand is proportional to the other operand:
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0
2) = v0

1 = 4

D(pb1, Sol(pb1)) = {(d1
1,D

1
1 ,I(D1

1/d
1
1)),
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1 = 3This is summarized in �gure 4.sre
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−−−−−−−−−−−−−−−−−→ Sol(pb1) −−−−−−−−−−−−−−−−−→ Sol(tgt)Figure 4: The in�uene funtions between problems and solutions.3.4 Generi adaptation operatorsClassially, similarity assessment evaluates a similarity loal to a desriptor and further aglobal similarity ombines loal similarities. In a similar way, we propose to assess the loalin�uene of problem desriptors on solution desriptors, and then further to assess a globalin�uene for eah solution desriptor by ombining loal in�uenes. The global in�uenes are11



�nally mapped to the values of soure solution desriptors in order to obtain the values ofthe target solution desriptors.A parallel of these priniples an be established with partial derivatives:
dyj =

∑

i

∂yj

∂xi
× dxiwhere dyj features the variation on a given target solution desriptor whih is obtainedby ombining several ombinations of in�uene funtions featured by ∂yj

∂xi
and variations ofproblem desriptors featured by dxi.3.4.1 Loal variationThe adaptation proess ombines together several elementary adaptation operations, eah ofthem expressing the ontribution of a given problem desriptor to a solution desriptor. Anelementary adaptation operation denoted by ∆iD

k
j is obtained thanks to a di�erene ∆dk

iand an in�uene funtion I(Dk
j /dk

i ) that are ombined using an abstrat operator ⊗:
∆iD

k
j = I(Dk

j /dk
i ) ⊗ ∆dk

i

∆iD
k
j is the ontribution of the variation of a problem desriptor dk

i to the variation of asolution desriptor Dk
j and ⊗ is an abstrat operator expressing how to ombine the di�erene

∆dk
i between problem desriptors and the in�uene I(Dk

j /dk
i ) of this problem desriptor onthe solution desriptor Dk

j .This abstrat operator ⊗ has to be instantiated in a given appliation domain. In thedomain of our example it simply onsists in a produt between numbers: ⊗ = ×.
{
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1
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2 = 3 × (+1) = +33.4.2 Global variationOne the individual ontributions ∆iD
k
j of eah problem desriptor to a given solution de-sriptor has been assessed, they are gathered in a global ontribution ∆Dk

j expressed usingan abstrat operator ⊕:
∆Dk

j = (. . . (∆1D
k
j ⊕ ∆2D

k
j ) ⊕ . . . ⊕ ∆nDk

j )It is assumed that ⊕ is assoiative and ommutative. Thus the expression above an bewritten:
∆Dk

j =
⊕

i

∆iD
k
j

∆Dk
j is the global variation that has to be applied to Dk

j in order to obtain Dk+1

j byombining all the loal variations ∆iD
k
j of dk

i on Dk
j .12



In the example, ⊕ = +:
∆D0

1 = ∆1D
0
1 + ∆2D

0
1 = −4 + 0 = −4

∆D1
1 = ∆1D

1
1 + ∆2D

1
1 = 0 + 3 = +33.4.3 Adaptation of target solution desriptorsFor k ∈ {0, 1, . . . , q − 1}, in order to ompute the value of the solution desriptor Dk+1

j ofSol(pbk+1) from the solution desriptor Dk
j of Sol(pbk), the value of ∆Dk

j is used in thefollowing way:
V k+1

j = V k
j ⊕ ∆Dk

j (5)Therefore, to ompute the desriptors Dq
j of Sol(tgt) starting from the known desriptors

D0
j of Sol(sre), the equation (5) is used with k = 0, k = 1, . . . , and, �nally k = q − 1.In the example,

V 1
1 = V 0

1 ⊕ ∆D0
1 = 16 + (−4) = 12

V 2
1 = V 1

1 ⊕ ∆D1
1 = 12 + 3 = 15Thus, Sol(3 × 5) = 15.The �gure 5 summarizes the adaptation proess.sre
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−−−−−−−−−−−−−−−−−→ Sol(tgt)
15Figure 5: The sequene of adaptation operations from the soure problem 4× 4 to the targetproblem 3 × 5.(** artiulation**)4 The Prolabo appliation4.1 An overview of the �Prolabo� appliationProlabo is a ompany manufaturing and marketing produts and devies for hemial, phar-maeutial, biohemial and biologial laboratories. One of these devies is a guided mi-rowave digester, i.e. a devie aimed at preparing produt samples for hemial analysisthanks to various analysis proesses. The analysis proess is performed by an analyzer, whosetype depends on the digester type. The analysis proess needs also that the samples are onlyonstituted of the hemial atomi elements of the produts to be analyzed. The guidedmirowave digester is in harge of breaking all moleular bonds between atoms using eitherspeial hemial agents, e.g. aggressive hemial agents, or mirowave e�ets, e.g. mehanialand thermal e�ets. The guided mirowave digester relies on injetion pumps ontrolling thespeial hemial agent injetion, and on a magnetron ontrolling the mirowave e�ets. This13



Desriptors Type IdAnalyzer Type Symbol d1Injetion Speed Real d3Magnetron power Real d4Tube apaity Real d5Max power gradient Real d6Analysis lass Symbol d7Sample weight Real d8Lipids Quantity Real d9Gluide Quantity Real d10Mineral Quantity Real d11Cellulose Quantity Real d12Water Quantity Real d13Table 1: The desriptors of a problem.devie is fully automated: injetion pumps are driven aording to three main parameters,namely the hemial agents to be injeted, the injetion speed, and the injetion duration,while the main parameters of the magnetron are the power value and the emission duration.A digestion program is omposed of a number of sequential steps (from 5 to 20 steps) whereeah step is ontrolled by the �ve above parameters (atually, this list is a simpli�ed one):hoie of the hemial agent to be injeted, injetion speed of the hemial agent, injetionduration, magnetron power (perent of the magnetron maximum power), and magnetronpowering duration.A ase inludes the desription of a problem with its assoiated solution. The problemdesribes a generi digestion program, alled hereafter a digestion plan, and the problemdesriptors are: digestion onstraints, analysis proess onstraints (see �gures 9 and 10).In this paper, for on�dentiality reasons and for the sake of simpliity, only a part of thedesriptors is onsidered (see Table 1). The solution is omposed of a synthesis of the digestionprogram (see �gures 11 and 12) that an be proessed further by an automate designing theassoiated digestion program (see for example �gure 13). For a given target problem and aretrieved soure ase, adaptation is performed aording to dependenies existing betweensoure solution desriptors and soure problem desriptors.There exists a straightforward oneptual dependeny between the analyzer type and thedigestion plan type (see �gure 6). The value of D1 (Plan Type) depends on the value of d1(Analyzer Type) of the onerned analyzer. The more the analyzer is sensitive to aggressivehemial agents the more the digestion plan is moderated with respet to the energy providedwithin eah step.The dependenies between the numerial desriptors of the problem and the numerialdesriptors of the solution are expressed by a ratio. For example, the value of Dj3 (TotalEnergy) to be provided within a step of type j depends on d8 (Sample Weight). The higheris the value of �Sample Weight�, the higher is the value of the �Total Energy� to be providedwithin a step of type j.It must be notied that the dependeny relations are only true for given �di�erenes�.When the �di�erene� between the soure and the target problem desriptors is greater than agiven threshold, the existing dependenies for building the orresponding solution desriptorsannot work anymore. Moreover, this kind of knowledge is loal (see �gures 7 and 8).Hereafter, a onrete example is detailed, involving problem and solution desriptors.14



Digestion program desriptionPlan type Symbol D1Moderation level Integer D2Type by type step desriptionsType 1Number Integer D11Total duration Real D12Total energy Real D13Injeted produt Symbol D14Injeted quantity Real D15...Type jNumber Integer Dj1Total duration Real Dj2Total energy Real Dj3Injeted produt Symbol Dj4Injeted quantity Real Dj5...Table 2: The solution desriptors are the �ve digestion plan parameters.

Figure 6: The dependenies between the analyzer type and the plan type.4.2 A ase study4.2.1 A ase desriptionFor this example, we onsider the following problem desriptors orresponding to the followingattributes: 15



Problem attributesIdenti�er Aronym De�nition
a0

1 AT Analyzer Type
a0

7 AC Analysis Class
a0

8 SW Sample WeightThe solution desriptors are the followings (there are only three di�erent types of programsteps, namely type 1, type 2 and type 3):Solution attributesIdenti�er Aronym De�nition
A0

1 PT Plan Type
A0

2 ML Moderation Level
A0

13 TE1 Total Energy for steps of type 1
A0

14 IP1 Injeted Produt for steps of type 1
A0

15 IV1 Injeted Volume for steps of type 1
A0

23 TE2 Total Energy for steps of type 2
A0

24 IP2 Injeted Produt for steps of type 2
A0

25 IV2 Injeted Volume for steps of type 2
A0

33 TE3 Total Energy for steps of type 3
A0

34 IP3 Injeted Produt for steps of type 3
A0

35 IV3 Injeted Volume for steps of type 3The attributes of the target problem are the followings:Target problem desriptorsIdenti�er Attribute Value De�nition
dq
1

AT AnalyzerType1 Analyzer Type
dq
7

AC AnalysisClass3 Analysis Class
dq
8

SW 0.8 Sample WeightThe attributes of the (retrieved) soure ase are the followings:Soure problem desriptorsIdenti�er Attribute Value De�nition
d0
1 AT AnalyzerType3 Analyzer Type

d0
7 AC AnalysisClass6 Analysis Class

d0
8 SW 0.6 Sample Weight

16



Soure solution desriptorsIdenti�er Attribute Value De�nition
D0

1 PT PlanType5 Plan Type
D0

2 ML 4 Moderation Level
D0

13 TE1 156 Total Energy for steps of type 1
D0

14 IP1 Produt3 Injeted Produt for steps of type 1
D0

15 IV1 12 Injeted Volume for steps of type 1
D0

23 TE2 0 Total Energy for steps of type 2
D0

24 IP2 Null Injeted Produt for steps of type 2
D0

25 IV2 0 Injeted Volume for steps of type 2
D0

33 TE3 120 Total Energy for steps of type 3
D0

34 IP3 Produt1 Injeted Produt for steps of type 3
D0

35 IV3 18 Injeted Volume for steps of type 3These ases are proessed as explained hereafter.4.2.2 The desription of in�uenesThe in�uene I(D1/d1) of �Analyzer Type� ats on �Plan Type�: the larger is the numeriallabel of the analyzer type, the more the plan type an be �blended�, in taking are of notombining dangerous produts. This is a oneptual in�uene stating that if the value ofthe soure analyzer type is larger of one degree than the value of the target analyzer type,then one or more degrees have to be added to the value of the solution plan type (in thesoure ase). Thus, desriptors suh as �AnalyzerType� or �PlanType� are ordered aordingto disrete degrees, represented by an integer, e.g. AnalyzerType3, PlanType5...The in�uene of D1 on d1 is omputed by a funtion f1, whose values are reorded ina table, returning the number of degrees to add or to subtrat to the analyzer type. Thisfuntion is not linear, and depends on the soure value of �Analyzer Type� and on themagnitude of the di�erene ∆di. The in�uene I(D1/d1) reads as follows:
I(D1/d1) = f1(d1,D1,∆d1

) (6)The in�uene I(D2/d7) of �Analysis Class� ats on �Moderation Level�: the larger is the�Analysis Class�, the more the analysis is onstrained by the presene of volatile produts,and, hene, the more the digestion program has to be �moderated�, i.e. involving weakertemperature gradients in eah step (entailing generally more steps in the program). A funtion
f2 is used to ompute the In�uene value I(D2/d7):

I(D2/d7) = f2(d7,D2,∆d7
) (7)The �gure 8 illustrates how ould be graphially represented the omputation of In�uenefor symboli values.The in�uene I(Di5/d8) of �Sample Weight� ats on produt quantity at eah step type i.The larger is �Sample Weight�, the larger is the produt volume to be injeted. The funtion

f3 used to ompute this in�uene is not linear, and I(Di5/d8) has the following general form:
I(Di5/d8) = f3(d8,Di5,∆d8

) (8)17



The in�uene I(Di3/d8) of Sample Weight ats also on the �Total Energy� to be providedat eah step of type i. The larger is the weight value the larger is the total energy valueprovided. The in�uene I(Di3/d8) reads as follows:
I(Di3/d8) = f4(d8,Di3,∆d8

) (9)Figure 7 illustrates the omputation of an in�uene in the ase of numerial values.It an be notied that funtion desriptions and abaus for the in�uene funtion arequite easy to obtain from domain experts, while it is impossible to �nd out the funtionformula for diretly omputing a target solution desriptor from a soure solution desriptor(no theoretial and pratial knowledge is available).4.2.3 The adaptation of the soure solution desriptors for building a targetsolutionThe mathing between sre and tgt is de�ned by:
M(sre, tgt) = {(d0

i , d
q
i ,∆di = vq

i ⊖ v0
i )}i

⊖ : (x, y) ∈ Z
2 7→ x ⊖ y = x − y ∈ Z, for i ∈ {1, 7}

∆d1 = vq
1
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1 = −2,
∆d2 = vq

7
− v0

7 = −3

⊖ : (x, y) ∈ R
2 7→ x ⊖ y = x − y ∈ R, for i = 8

∆d8 = vq
8
− v0

8 = 0.2,

M(sre, tgt) = {(d0
1, d

q
1
,∆d1 = −2), (d0

2, d
q
2
,∆d2 = −3), (d0

8, d
q
8
,∆d8 = 0.2)}Dependenies between sre and Sol(sre) are given by:

D(sre, Sol(sre)) = {(d0
i ,D

0
j ,I(D0

i /d
0
j ))} with

I(D0
1/d

0
1) = f1(AnalyzerType3, P lanType5,−2) = 0 for all i and j, i 6= j.This means that for eah type of analyzer, a type di�erene lower than 3 does not entailplan type modi�ation (i.e. null in�uene).

I(D0
7/d

0
2) = f2(AnalysisClass6, 4,−3) = 1 meaning that for this analysis type and thisdi�erene, a di�erene of one degree on the analysis type entails a di�erene of one degreeon �Moderation Level�.
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15) = f3(0.6, 12, 0.2) = 25

I(D0
8/d
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8/d

0
23) = f4(0.6, 0, 0.2) = 0

I(D0
8/d

0
13) = f4(0.6, 120, 0.2) = 200A di�erene of 1 between problem desriptor values involves an in�uene that may beomputed from the ase base (taking into aount non linearity if needed).An elementary variation of a soure desriptor value is omputed by:

∆iDj = ∆di ⊗ I(D0
j/d

0
i )18



Figure 7: Numerial in�uene. In the numerial ase, the in�uene I is the the same for anyvalue in the interval ∆d.

Figure 8: Symboli in�uene. The di�erene between the analyzer type A2 to the analyzertype A3 yields a null in�uene on the plan type.The ⊗ operator is de�ned as follows:
⊗ : (x, y) ∈ R

2 7→ x ⊗ y = x × y ∈ RThe elementary variations are the followings:
∆1D1 = ∆d1 ⊗ I(D0

1/d
0
1)

∆1D1 = −2 × 0 = 0

∆7D2 = ∆d7 ⊗ I(D0
2/d

0
7)

∆7D2 = −3 × 1 = −3

∆8Di5 = ∆d8 ⊗ I(D0
i5/d

0
8) for i ∈ {1, 2, 3}

∆8D15 = 0.2 × 25 = 5
∆8D25 = 0.2 × 0 = 0
∆8D35 = 0.2 × 25 = 5

∆8Di3 = ∆d8 ⊗ I(D0
i3/d

0
8) for i ∈ {1, 2, 3}

∆8D13 = 0.2 × 200 = 40
∆8D23 = 0.2 × 0 = 0
∆8D33 = 0.2 × 200 = 40In the equation de�ning an elementary adaptation, i.e. V q

j = V 0
j ⊕ ∆Dj , the ⊕ operatoris de�ned as follows: 19



⊕ : (x, y) ∈ R
2 7→ x ⊕ y = x + y ∈ RReall that the target problem is desribed by the following desriptors:

dq
1

= (AT,AnalyzerType1),
dq
7

= (AC,AnalysisClass3),
dq
8

= (SW, 0.8)The value of a target solution desriptor Dq
i is omputed as stated above. For example, thedesriptor Dq

1
= (PT, V q

1
) = (PT, V 0

1 ⊕ ∆D1) is omputed as Dq
1

= (PT,P lanType5 + 0) =
(PT,P lanType5). The desriptor Dq

15
= (IV 1, V q

15
) = (IV 1, V 0

15 ⊕ ∆D15) is omputed as
Dq

15
= (IV 1, 12 + 5) = (IV 1, 17).The full target solution Sol(tgt) reads as:Target solution desriptors

Dq
1

= (PT,P lanType5 + 0) = (PT,P lanType5)

Dq
2

= (ML, 4 + (−3)) = (ML, 1)

Dq
13

= (TE1, 156 + 40) = (TE1, 196)

Dq
14

= (IP1, P roduct3) = (IP1, P roduct3)

Dq
15

= (IV 1, 12 + 5) = (IV 1, 17)

Dq
23

= (TE2, 0 + 0) = (TE2, 0)

Dq
24

= (IP2, null) = (IP2, null)

Dq
25

= (IV 2, 0 + 0) = (IV 2, 0)

Dq
33

= (TE3, 120 + 40) = (TE3, 160)

Dq
34

= (IP3, P roduct1) = (IP3, P roduct1)

Dq
35

= (TE3, 18 + 5) = (IV 3, 23)The Prolabo appliation enlightens two important points on knowledge engineering forase-based reasoning:1. Case elaboration needs a rather large amount of knowledge on the way of adapting aase. Atually, the (internal) representation of a ase for being manipulated by thease-based reasoning proess is probably di�erent from the mental user representation.The Prolabo experiene (and some other industry appliations) shows that the repre-sentation of a ase must be well-known by the urrent user of the ase-based reasoningsystem. Aordingly, in the Prolabo appliation, a graphial synthesis of the ase beingproessed within reasoning is proposed to the user (see �gure 12).2. In�uenes onstitute the main knowledge units for adaptation, and therefore for simi-larity assessment as well. These kinds of in�uenes do not generally depend on linearglobal funtions, but rather on loal funtions depending on the value of the souresolution desriptor, the value of the soure problem desriptor, and on the magnitudeof the di�erene to be adjusted between problem desriptors. In some appliation do-mains, knowledge on in�uenes may be easily available from domain experts. Probablyknowledge on in�uenes may be eliited and/or mined (using an automati learningproess) from a set of ases put in orrespondene by an expert.
20



5 Disussion and Related WorkThe state of the art shows that unless adaptation is presented as the most important step inthe ase-based reasoning proess taken into aount by authors working on problem-solvingappliations, there is only a few researh works on the formalization of adaptation.In [6℄, there is a proposition of using domain knowledge for explaining the solution of aspei� problem. Aording to this approah, domain knowledge provides knowledge unitsfor similarity measures as adaptation operations as well. Atually, the paper highlightsthe key role played by dependenies between solution desriptors and problem desriptors.In the same way, a generi method is presented in [8, 7℄, dealing with generalization andspeialization. The ase generalization is arried out within a learning phase of the system,by organizing ases in an abstration tree. The ase speialization is arried out within aproblem-solving phase, using a planner performing a heuristi searh in the solution spae.This approah relies both on a ase model but also on a relevant model of the domain asneeded by a planner suh as strips.In [33℄, there is a proposition of a formalization of the adaptation in the ontext ofdesign problems based on a partiular ase representation allowing ase proessing with sp(onstraint satisfation problems) methods. Following a similar approah as in [8, 7℄, asesare split down into sub-ases, and global onsisteny is guaranteed by the onstraint-solvingmethod, that relies on an e�ient heuristi: the soure ases minimizing the onstraints tobe solved have to be preferred. �Consisteny� here and hereafter means that the solution isatually a working solution of the target problem. In this ontext, dependenies are expressedas onstraints to be satis�ed, and the solver needs a detailed domain model for delivering ane�ient proessing.The two preeding approahes are mainly related to generative ase adaptation, whilesome researh works have addressed transformational and substitution adaptation proesses.In [9℄, adaptation knowledge is presented under the form of loal funtions transforming asoure ase into a target ase aording to expeted quality measures. Adaptation is thenperformed by applying a set of adequate transformation funtions allowing an improvement,i.e. a better quality measure, of the target ase. Hene, there is a need for a global funtionallowing the omposition of loal quality improvements into a global quality improvement.In a ertain way, this approah is rather lose to the approah presented in this paper.Moreover, authors make the hypothesis that there exists a kind of �feed-bak� assoiated withthe solution in eah stored ase used for the measure of quality improvement. By default,eah ase is onsidered as having the best possible quality. Finally, it must be notied thatthis approah does not guarantee a omplete onsisteny of the adapted solution.In [12℄, a simple loal adaptation method uses interpolation funtions for adapting asoure solution desriptor depending on an observed di�erene between the soure and targetproblem desriptors. Several interpolation tehniques are enumerated aording to the typeof the desriptors: digital values, symboli values, fuzzy quanti�ers, ordinals, et. This kindof interpolation requires a partial order relationship between desriptor values for working(espeially between arbitrary symboli values). This approah does not guarantee the on-sisteny of the adapted solution, that must be in turn tested by another mean. By ontrast,the knowledge units needed for guiding retrieval and adaptation are loal, and may be moreeasily aquired by mining a ase base or by eliiting expert knowledge (atually, a similarremark applies to the Prolabo experiene, see 4).In [4℄, the general idea �the most similar ase is the ase that is the easiest to adapt�is onsidered as the basi priniple. Aordingly, the authors introdue a �metri� based onthe relations existing between the problem desriptors and the solution desriptors, i.e. an21



adaptation funtion for adapting a soure solution into a target solution, provided that themathing between soure and target is satis�ed (a �maintenane� funtion, external to theadaptation proess, is also available). Moreover, an �adaptation ost� guides the hoie of thebest soure ase among the ases satisfying the mathing ondition. A kind of �topology� anthen be de�ned for seleting the most adaptable ase during the retrieval step. This formalapproah has not been implemented, and has not been extended, as far as we know.In [16℄, the adaptation model is based on substitution as an adaptation operator. A ase isonneted to two individuals representing the problem and its solution in the onsidered ase.Eah solution individual is related through �dependeny relations� to a set of individuals thatare elementary desriptors of the solution. The substitution algorithm for adaptation propa-gates hanges, i.e. substitutions on the desriptors of soure solution, on solution desriptorsas follows: (i) the list of the soure solution elements to be adapted is built from the relationsharaterizing the observed di�erenes between soure and target problem desriptors, (ii)eah element to be modi�ed is substituted by a new one, taking into aount the di�erenesbetween the soure and the target problems, and then the dependenies between solutiondesriptors. The searh of substitutions to be performed relies on a speialized and guidedsearh in an assoiated knowledge base.6 Conlusion and perspetivesIn this paper, we have presented a general and domain-independent formalization of theadaptation step within the br proess. Several new and generi ideas have been introduedand disussed in the paper.Firstly, adaptation is viewed as a entral step in the br proess for designing a solutionof the target problem, based on the relations existing between a soure ase and a targetproblem. These relations are onsidered aording to two main dimensions: (i) the vertialdimension refers to the ase dimension and is based on the orrespondene between theproblem and its solution, (ii) the horizontal dimension refers to the mathing of the soureand target problems in the problem spae, and to the orresponding modi�ation/adaptationof the soure solution for designing the target solution in the solution spae. A generalalgorithm rei�es these ideas and is detailed, taking into aount these two dimensions forbuilding a solution of the target problem.Another important idea underlying the artile is that adaptation is guided by a generalstrategy, relying on the deomposition of the target problem into sub-problems. Aordingly,loal operators exist and have the ability to solve the sub-problems. Then, global operatorsontrol the loal problem-solving proesses and are able to merge the loal solutions forbuilding a global solution of the target problem.In addition, this artile aims at proposing a general framework for the adaptation proess,i.e. a general strategy of adaptation that is operational and that an be used both fortheoretial and pratial purposes. This general strategy allows a better understanding of theadaptation proess within the br proess, and provides guidelines and general adaptationoperators to be reused in real-world situations. Moreover, a omplex real-world appliationis detailed and may be used as a referring example for other future pratial appliations.Going further, the br proess needs, in several aspets, to be guided by domain knowl-edge, at every step of the proess. Domain knowledge may be used either by the human inharge of the system or by the system itself for designing a solution. It should beome atualand important to onsider br as a powerful inferene shema, to be used for ompletingdedution and indution shemes in implemented knowledge-based systems, aimed at solving22
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Figure 9: An example of a desription of a digestion spei�ation (part 1 of the problem).

Figure 10: An example of a desription of a digestion spei�ation (part 2 of the problem).
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Figure 11: An example of a desription of a digestion solution (numerial balane).

Figure 12: An example of a desription of a digestion solution (graphial balane).
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Figure 13: An example of a desription of a digestion solution (the whole program).
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