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tThe 
ase-based reasoning pro
ess relies on three main steps, retrieval, adaptationand learning. This arti
le proposes a general, domain-independent, and operationalformalization of the adaptation pro
ess, where a solution of the target problem is designedon the basis of the relations existing between a sour
e 
ase �problem and solution� andthe target problem. The ideas underlying the arti
le are that adaptation in 
ase-basedreasoning may be guided by a general strategy, relying on the de
omposition of the targetproblem into (target) sub-problems, on the existen
e of lo
al operators able to solve thesub-problems, and �nally on the existen
e of global operators able to 
ombine the setof lo
al solutions for building a global solution of the target problem. This generalformalization is used for de�ning a general strategy of adaptation that is operationaland that is illustrated by a real-world appli
ation. This general strategy is of �rstimportan
e, allowing a better understanding of the adaptation pro
ess, and a reuse ofgeneral adaptation operators for di�erent real-world situations. In addition, this arti
leaims at providing a general framework for studying the adaptation pro
ess, both fromtheoreti
al and pra
ti
al points of view.1 Introdu
tionThe 
ase-based reasoning pro
ess relies on three main steps, retrieval, adaptation and learn-ing [36, 25℄. This arti
le holds on the se
ond step of this pro
ess and proposes a generalformalization of the adaptation step, based on the relations existing between a sour
e prob-lem and a target problem. This general formalization is of �rst importan
e, whereas in themajority of the situations, the adaptation pro
ess 
losely depends on the appli
ation beingstudied. This paper presents the results of studies 
arried on by the authors for several yearson the formalization of the adaptation step within the 
br pro
ess. It extends and 
ompletesa �rst tentative of formalization that has been proposed in [13℄.Let us suppose that are given a target problem and a 
ase base in
luding a 
olle
tionof sour
e 
ases, where a sour
e 
ase is a pair 
omposed of a sour
e problem and the asso-
iated sour
e solution. During the retrieval step, several sour
e problems of the 
ase baseare retrieved and 
ompared to the target problem. The mat
hing pro
ess establishes lo
allythe 
orresponden
e between a feature �or a des
riptor� of the sour
e problem and the 
orre-sponding feature of the target problem. The similarities and di�eren
es between the featuresof the lo
al sour
e and target problem are made expli
it. Then, a global similarity measuremay 
ombine the lo
al feature similarities for assessing a global similarity between the sour
e1



and the target problem. A

ordingly, a general s
hema of the adaptation pro
ess is proposedin �gure 1, where a sour
e 
ase (on the left of the �gure) has been sele
ted by the retrievalpro
ess as the �best� 
andidate for solving the target problem, meaning that the solutionof this best 
andidate 
an be reused for designing the solution of the target problem. Theframework proposed for formalizing the adaptation pro
ess relies on two dimensions: (i) theverti
al dimension 
orresponds to the 
ase dimension, in
luding the problem and the solution,with the sour
e 
ase on the left and the target 
ase on the right, (ii) the horizontal dimen-sion 
orresponds to the mat
hing of sour
e and target problems, and to the 
orrespondingmodi�
ation of the sour
e solution for designing the target solution.

Figure 1: The general s
heme of the adaptation pro
ess.This is the task of the adaptation pro
ess to rely on the sele
ted sour
e 
ase for designing asolution of the target problem. Firstly, the solution of the sour
e 
ase may be 
opied as a �rstsolution of the target problem. Furthermore, this �rst and raw solution is modi�ed for erasingthe di�eren
es existing between the sour
e and target problems, that have been pointed out bythe mat
hing pro
ess. The adaptation pro
ess is then guided both by the mat
hing pro
ess,indi
ating what adjustments are needed, and by the dependen
ies indi
ating what are theproblem features having an in�uen
e on the solution features. Given a di�eren
e betweena sour
e problem feature and the 
orresponding target problem feature, and a dependen
ybetween the sour
e problem feature and a sour
e solution feature, an elementary adaptationoperation is in 
harge of modifying the sour
e solution feature for designing the target solutionfeature.As illustration, let us 
onsider the simple following example, inspired from a talk of IanWatson at i

br 99: knowing that 4×4 = 16, what is the solution of 4×5? The adaptationproblem is the following: let the sour
e problem be 4 × 4 whose solution is 16 (sour
e 
ase= sour
e problem and sour
e solution), what is the solution of the target problem 4 × 5?Here, the problem has two main features, namely the two operands, and the solution hasone feature, namely the result. The di�eren
es between the features of the sour
e and thetarget problems are 0 for the �rst operator and +1 for the se
ond feature. The dependen
ybetween the sour
e problem and the sour
e solution may be expressed as follows: �the e�e
tof an elementary variation of an operand on the result is proportional to the value of the2



other operand�. Consequently, 
onsidering that 4× 5 is equal to 4× (4 + 1), the variation ofthe result 
aused by the variation of the operands in the target problem will be of 0 for the�rst operand (namely 4) and of 1 × 4 = 4 for the se
ond operand (namely 5). The adaptedsolution feature will be given by the sour
e solution feature and the e�e
t of the variationusing the + operator, i.e. 4 × 5 = 16 + 0 + 4 = 20.Although this example is easy to understand and rather easy to solve, it shows all theelements that are involved within the adaptation pro
ess. Moreover, even if target problemsare more 
omplex in the real-world 
ase, the adaptation pro
ess relies on the prin
iples thatare illustrated in the above example, namely a sour
e problem, a sour
e solution, dependen
iesand in�uen
es between features.In this arti
le, we promote the idea that adaptation in 
ase-based reasoning may beguided by a general level strategy. This strategy relies �rst on the de
omposition of the targetproblem into sub-problems, se
ond on the existen
e and the use of lo
al operators able to solvethe sub-problems, third on a pro
ess able to 
ombine the set of lo
al solutions for buildinga global solution for the target problem. The de
omposition of the target problem into sub-problems (simpler to solve) is a
hieved in the problem spa
e, and performed a

ording to theso-
alled similarity paths reifying a possible sequen
e of modi�
ation relations leading fromthe target problem to a sour
e problem (or, from the target problem to the sour
e problem).A modi�
ation relation 
hara
terizes an elementary modi�
ation, i.e. a lo
al operator, thatmay be applied on either the target problem or the sour
e problem. The similarity pathhas a 
orresponding path in the solution spa
e, that allows to modify the sour
e solution forbuilding a target solution. The lo
al operators in the problem spa
e for splitting the targetproblem into sub-problems, have 
orresponding lo
al operators in the solution spa
e, foradapting the sour
e solution into a target solution. A set of di�eren
es emphasizes the globaldi�eren
e between the sour
e and target problems, while a set of dependen
ies emphasizesthe relations between operations in the spa
e of problems and the 
orresponding operationsin the spa
e of solutions.The above prin
iples are materialized within a pra
ti
al and general algorithm for adap-tation, that may be instantiated in an appli
ation domain for a spe
i�
 purpose. A

ordingly,the main 
ontributions of the paper 
an be read as follows:
• A general strategy for taking into a

ount the adaptation step in the 
ase-based reason-ing pro
ess exists and may be implemented a

ording to domain-independent prin
iples.
• This strategy is based on the general problem-solving method 
onsisting in de
omposinga 
omplex problem into sub-problems more easy to be solved.
• The de
omposition of the problem guides the de
omposition of the adaptation pro
ess:to a lo
al sub-problem 
orresponds a lo
al solution, and the lo
al solutions may be
ombined for building a global solution.The metaphor that has been 
hosen for illustrating the di�erent dependen
ies betweenthe problem and its solution, and between the sour
e and target problems, relies on (partial)di�erentials that materialize a dependen
e, knowing however that there is not an e�e
tive useof the di�erential 
al
ulus as in mathemati
s. Here, the di�erential materializes a dependen
e.The framework for adaptation presented in this arti
le is general and unifying. Indeed, theresear
h work holding on adaptation usually relies on the fa
t that there exists a set of lo
aloperators that 
an be 
ombined for building a global solution for the target problem. Mostof the time, these lo
al operators are domain-dependent and there is an ad ho
 
ombinationof the lo
al solution for building a global solution. By 
ontrast, the present strategy is3



general and may be reused in di�erent 
ontexts or appli
ation domains, 
onsidering eitherlo
al operators for problem de
omposition or for solution adaptation.The summary of the arti
le is as follows. First, a general review of the state of theart on the adaptation pro
ess is proposed, with a histori
al perspe
tive. Then, a frame-work for formalizing the adaptation pro
ess is proposed, relying on the two-dimensionalpoint of view introdu
ed in �gure 1, i.e. the verti
al 
ase dimension and the horizontalmat
hing/modi�
ation dimension. Based on these two dimensions, the relations between theproblem and its solution are studied, and a general dependen
y-driven adaptation strategy isproposed, using a set of generi
 adaptation operators. The des
ription of a real-world expe-rien
e, namely the Prolabo experiment, illustrates the way this general adaptation strategymay be implemented. A dis
ussion and a 
omparison with related work terminate the arti
le.2 Survey on adaptation in CBR2.1 The pioneers of CBR and the adaptation pro
essRoger C. S
hank [35, 26℄ and Janet Kolodner [27℄ probably have invented the expression�Case-Based Reasoning� for denoting the general pro
ess of reusing past experien
es for fa
ingnew situations [36℄. The 
br pro
ess is mainly memory-oriented and a model of dynami
memory is proposed for indexing and retrieving the best adapted memorized s
ripts, that �ta new situation and that only need a few adjustments to be reused. It is not so surprisingthat these �rst e�orts for building a theory of the adaptation pro
ess were oriented towardsmemory sear
h strategies, for �nding stru
tures or values whi
h 
ould be good 
andidatesfor repla
ing stru
tures or values in the past experien
e to �t a new situation [17℄. Duringthe darpa 
onferen
e in 1989 [18℄, Janet Kolodner explained that the best 
ase for a 
brsystem is the 
ase that is the most useful to 
omplete the reasoning pro
ess [24℄. A

ordingto her de�nition �she was working on plan reuse� the best 
ase is the 
ase satisfying as wellas possible the 
urrent goal and the easiest one to be adapted. The notion of �easiest 
aseto be adapted� is of 
entral 
on
ern within a 
br system. Nevertheless, Janet Kolodneronly proposed generi
 similarity measures showing to whi
h extent the 
urrent goal 
ould besatis�ed given the past experien
e.2.2 Strategies for adaptationThomas Hinri
hs 
onsidered two families of adaption strategies [21℄: (1) value sele
tion and(2) stru
ture modi�
ation. The value sele
tion relies on either a �lo
al sear
h prin
iple� ora �transformation prin
iple�. The lo
al sear
h prin
iple 
onsists in navigating an available
on
ept hierar
hy for generalizing the value to repla
e, and then to spe
ialize this value again,
hoosing a value satisfying as well as possible the 
onstraints expressed by the target prob-lem and violated by the sour
e 
ase. The transformation prin
iple assumes that values arestru
tured obje
ts whi
h 
an be transformed in new ones by adding, deleting or substitutingparts of the obje
ts. This point of view on adaptation enlightens the nature of adaptation:adaptation needs spe
i�
 knowledge on the dependen
ies between problem parts and solutionparts of a 
ase. Moreover, these dependen
ies have to be taken into a

ount within the sim-ilarity measure used to sele
t a sour
e 
ase for solving a target problem, providing in thisway a �semanti
s� to the similarity measure. The stru
ture modi�
ation prin
iple 
onsists inmerging equivalent information pie
es in the same variable or, 
onversely, in splitting infor-mation in two di�erent variables. In both 
ases, there is a simpli�
ation pro
ess transformingthe sour
e solution for making feasible the adaptation pro
ess. These prin
iples are applied4



for numeri
al values representing geometri
al dimensions in [22℄.2.3 The transformational and derivational approa
hesCon
urrently, a transformational approa
h for plan reuse was studied by J.G. Carbonellaround 1983 [10℄. A plan is 
ompared to another one on the basis of the initial state, the�nal state, the respe
tive 
onstraints within the path des
ribed in the target problem andin the sour
e problem, and the proportion of operator pre
onditions satis�ed in the targetproblem situation. This measure is 
alled the �appli
ability measure of a sour
e solution�be
ause it maximizes adaptation possibilities. Adaptation 
onsists in solving a problem �ofdi�erent nature 
alled �transposed problem�� starting from an initial state, i.e. the sour
eproblem, to a �nal state, i.e. the target problem, through a set of intermediate states, whereea
h one solves a di�eren
e pointed out at mat
hing time. The intermediate states may
orrespond as well to meaningless plans. Thus, the adaptation pro
ess 
onsists in buildinga �transposed plan spa
e�, i.e. a kind of parallel plan spa
e of adapted plans 
orrespondingto the intermediate states of the plani�
ation problems (as introdu
ed above), giving birthto an adaptation path. A set of adaptation operators is proposed for solving ea
h step ofthe adaptation path (11 so-
alled T-operators are valid in the transposed spa
e). This wayof representing an adaptation path 
an be 
onne
ted to the so-
alled �reformulations� and�similarity paths� presented in [31, 29℄ and dis
ussed hereafter. Following the same idea, in[32℄, it is proposed to build an adaptation from the sour
e 
ase by exploring su

essively(best-�rst sear
h) hypotheses allowing to get 
loser to the desired goal (
on�guration domainproblems).J.G. Carbonell developed later another point of view 
hara
terized by a �derivationalapproa
h� also based on analogi
al reasoning [11℄. He noti
ed that it is possible to keep atra
e of the use of the di�erent transformation operators used in a plan. Consequently, insteadof swit
hing from the sour
e plan spa
e to the transposed plan spa
e, he proposed to �replay�operator sele
tion rules by substituting the sour
e 
ontext for the target 
ontext in the rules.J.G. Carbonell stresses the fa
t that the appli
ability measure is modi�ed sin
e problems are
onsidered as similar when the initial reasoning pro
ess is similar. The reasoning pro
esshas to be adapted to the new 
ontext, and then to be replayed within in it. An exampleis given 
on
erning the adaptation of a sort fun
tion in Pas
al to a sort fun
tion in lisp.A
tually, the �
ase� to be adapted is the reasoning pro
ess itself, using a transformationalapproa
h. The 
omplexity of this plan adaptation approa
h has been studied in [3℄. Planreuse and reasoning pro
ess adaptation have inspired numerous theoreti
al works, as in [19℄,where the authors 
onsider adaptability as the measure of the adaptation e�ort in terms ofthe 
orresponding 
omputation 
omplexity. In [23℄, this theoreti
al work is 
ompleted, and itis demonstrated that the adaptation e�ort 
annot be easily 
ontrolled, and that this approa
hneeds knowledge for solving the problem from s
rat
h. A ni
e survey of 
ase-based planningmay be found in [37℄.2.4 Adaptation 
ategoriesIn 1993, a survey of various adaptation pro
esses, either transformational or derivational, hasbeen reported in the book of Janet Kolodner [25℄:
• Copy of the sour
e solution.
• Modi�
ation of the sour
e solution,� by substitution: 5



∗ with re-instantiation, i.e. abstra
tion and spe
ialization,
∗ with parameter adjustment, i.e. dependen
y with respe
t to a problem item,
∗ with memory sear
h for a set of possible 
lose values:

· using lo
al sear
h, i.e. sele
ting an existing value 
lose to the sour
e value,
· using a spe
ialized sear
h, i.e. a heuristi
 for sele
ting a value beyond
lose ones;� by transformation:

∗ using �
ommon sense� transformations,
∗ using a repair pro
ess guided by a domain model;� by plan derivation replay:
∗ sear
hing methods or explanations in the sour
e 
ase,
∗ applying again 
on
erned methods in the target 
ase.This list makes more pre
ise the proposals of Thomas Hinri
hs from 1989. Parameteradjustment was reported in di�erent arti
les of the darpa 89 Conferen
e, without being
ompletely explained in terms of knowledge units to be reused either for adaptation or forsimilar 
ase retrieval.Another taxonomy of adaptation knowledge units was reported in [20℄, a

ording to therole played in the adaptation pro
ess at the di�erent steps of the 
br 
y
le: operators forthe elaboration of the target problem, operators for role substitution, operators for subgoalsde
omposition, and operators for dependen
e management. This taxonomy was not initiallyaimed at qualifying working knowledge for adaptation, but appeared to be very useful tohighlight it.2.5 Adaptation as 
onstraint solvingCase-based design is one of the major appli
ation domain of 
br [30℄. Several works werepublished on adaptation formalization involving a 
onstraint-solving approa
h: [22℄ intro-du
es the notion of �surfa
e 
ase des
riptors� that does not in
lude 
omplete knowledge forreasoning (thus ex
luding a derivational approa
h). An important improvement of the op-erators of Thomas Hinri
hs is proposed within the julia system [21℄: numeri
al 
onstraintsare expressed on geometri
 patterns instead of on symboli
 terms.Some authors 
onsider adaptation as a set of sour
e 
ase modi�
ations whi
h are 
on-strained by the target problem. There exists a set of integrity 
onstraints represented by aset of equalities or inequalities to be satis�ed for solving the target problem. Based on asour
e 
ase satisfying at best the target 
onstraints, just a few dimensions have to be takeninto a

ount for adaptation. The general adaptation methodology is the following:1. Sele
t a 
ase satisfying mandatory 
onstraints: this step is usually performed by theuser.2. Sele
t an initial set of parameters 
overing the target 
onstraints: this dimension ex-pansion" step is usually performed by the user too.3. Establish whether the system is over-
onstrained (too many 
onstraints and thus nosolution), under-
onstrained (not enough 
onstraints and thus too many solutions), orhas just one solution. This �dimension analysis step� may be automatized.6



4. When the system is over-
onstrained, the sele
tion of an initial set of parameters (step2) may be replayed.5. If the system is under-
onstrained, apply a �dimension redu
tion� pro
ess.6. Solve the residual 
onstraints with a 
lassi
al 
onstraint solver.This approa
h points out the notion of �in�uen
e� in the sele
tion of a sour
e 
ase, byminimizing the set of violated 
onstraints to satisfy the target problem, for minimizing inturn the adaptation 
ost.2.6 CBR �without� adaptation
br is widely used for 
lassi�
ation or interpretation tasks that 
onsist in assigning a targetproblem to a spe
i�
 
lass, with respe
t to its similarity with a well-
lassi�ed sour
e problem[28℄. A sour
e 
ase or �sour
e 
lass� may be seen an abstra
tion of solutions of similarproblems.Here, the interesting step within the 
br pro
ess is the retrieval step and the asso
i-ated retrieval knowledge: the adaptation step is not ne
essary and the problem is solvedas soon as a sour
e 
lass has been found, providing a generi
 solution for the target prob-lem. Knowledge units for similarity may be a
quired a

ording to three approa
hes: (1)the indu
tive approa
h is based on automati
 learning from data [2℄, using the information
ontribution of 
ase des
riptors for sele
ting the sour
e 
lass, (2) �ad ho
� approa
hes build-ing similarity or dissimilarity measures a

ording to more or less general methods [34℄; (3)an �explanation-driven� approa
h using a few well 
hosen sour
e problems for explaining asour
e 
lass [5℄. This last approa
h relies on the expli
it building of dependen
y relation-ships between problem des
riptors and an abstra
t solution 
lass. This approa
h stresses thedi�eren
es between the di�erent 
lasses, and applies quite well to problem-solving sin
e itprovides ne
essary information for adaptation [1, 6, 15, 14℄.3 A general strategy of adaptation3.1 Basi
 notations(** arti
uler **)A 
ase is the asso
iation of a problem and of a solution to this problem: (pb, Sol(pb)). Asour
e 
ase is denoted by (sr
e, Sol(sr
e)), where sr
e is the sour
e problem and Sol(sr
e)is the sour
e solution. A target 
ase is denoted by (tgt, Sol(tgt)), where tgt is the targetproblem and Sol(tgt) is the target solution that has to be built by the adaptation pro
ess.Cases (problems and solutions) are represented by sets of des
riptors. A des
riptor d isde�ned by a pair d = (a, v) where a is an attribute and v is the value asso
iated to thisattribute. The following 
onvention is adopted hereafter: lower 
ases are used for problemdes
riptors �d = (a, v)� and upper 
ases, for solution des
riptors�D = (A,V ). In a

ordan
ewith this vo
abulary, sour
e and target 
ases are de�ned as follows:
• sr
e = {d0

1, . . . d
0
n} = {d0

i }i = 1 . . . n
, where d0

i = (a0
i , v

0
i ) is a des
riptor of the sour
eproblem;

• Sol(sr
e) = {D0
1 , . . . D

0
N} = {D0

j}j = 1 . . . N
where D0

j = (A0
j , V

0
j ) is a des
riptor of thesour
e solution; 7



• tgt = {dq
1
, . . . dq

n} = {dq
i }i = 1 . . . n

where dq
i = (aq

i , v
q
i ) is a des
riptor of the targetproblem;

• Sol(tgt) = {Dq
1
, . . . Dq

N} = {Dq
j}j = 1 . . . N

where Dq
j = (Aq

j , V
q
j ) is a des
riptor of thetarget solution.Let us 
onsider a simple example of the same type as the example introdu
ed in se
tion 1.Let 4 × 4 be the sour
e problem, whose solution is 16, and 3 × 5 be the target problem.Conforming to this formalism, the adaptation spe
i�
ation is des
ribed as follows:sr
e = {d0

1 = (a0
1 = 1st operand, v0

1 = 4),

d0
2 = (a0

2 = 2nd operand, v0
2 = 4)}tgt = {dq

1
= (aq

1
= 1st operand, vq

1
= 3),

dq
2

= (aq
2

= 2nd operand, vq
2

= 5)}Sol(sr
e) = {D0
1 = (A0

1 = result, V 0
1 = 16)}Sol(tgt) = {Dq

1
= (Aq

1
= result, V q

1
= ?)}3.2 From sour
e to targetIn this se
tion, we are interested in the �horizontal view� of �gure 1, i.e., on the relationshipsbetween the sour
e and the target. This horizontal view of adaptation 
an be de
omposedin two main steps:Similarity assessment (or mat
hing pro
ess) is the study of the relationships betweensr
e and tgt. It aims at pointing out what makes sr
e and tgt similar and whatmakes them dissimilar. The similarity assessment provides a mat
hing from sr
e totgt denoted by M(sr
e, tgt). The pro�le of the similarity assessment, whi
h spe
i�esits inputs and output, is

(sr
e, tgt) 7→ M(sr
e, tgt)Solution modi�
ation is the study of the relationships between Sol(sr
e) and (what willbe) Sol(tgt). This study is based on the mat
hing M(sr
e, tgt), thus its pro�le is
(sr
e, Sol(sr
e), tgt,M(sr
e, tgt)) 7→ Sol(tgt)In the following, we are interested in two types of mat
hings (and to the 
orrespondingsolution modi�
ations): the des
riptor mat
hing approa
h and the approa
h based on simi-larity paths. The former approa
h is based on the des
riptors that 
ompose the 
ases. Thelatter approa
h aims at de
omposing the mat
hing and the solution modi�
ation in several�simple� steps.3.2.1 Des
riptor mat
hingThe des
riptor mat
hing approa
h is based on the elements 
omposing problems, i.e., theirdes
riptors: the question �How 
an two problems be mat
hed?� is redu
ed to the question�What des
riptors of two problems 
an be mat
hed, and how?� The des
riptor mat
hing
onsists in mat
hing des
riptors having the same attribute names. This means that thesimilarity assessment asso
iates to sr
e and tgt a set M(sr
e, tgt) of triples (d0

i , d
q
i ,∆di)8



su
h that d0
i = (ai, v

0
i ) ∈ sr
e and dq

i = (ai, v
q
i ) ∈ tgt have the same attribute name

ai = a0
i = aq

i . Therefore, a mat
hing 
an be written
M(sr
e, tgt) = {(d0

i , d
q
i ,∆di)}i

(1)where ∆di en
odes the di�eren
es between the values v0
i and vq

i , i.e., some pie
es of infor-mation about their similarities and dissimilarities. ∆di is 
omputed thanks to a domain-dependent operator denoted by ⊖:
∆di = vq

i ⊖ v0
iThe solution modi�
ation following this similarity assessment is detailed in se
tion 3.4.3.2.2 Mat
hing by similarity pathsWe assume that Problems, the 
olle
tion of any problems, is stru
tured with a �nite set ofrelations between problems denoted by R. The spa
e (Problems,R) is 
alled the problemspa
e. The mat
hing from sr
e to tgt is assumed to be a similarity path, i.e., a path in theproblem spa
e:

M(sr
e, tgt) =
(pb0 r1 pb1 r2 pb2 . . . pbq−1 rq pbq

)with pb0 = sr
e, pbq = tgt and ri ∈ R, i ∈ {1, 2, . . . q}The problems pb1, pb2, ... pbq−1 are 
reated by the mat
hing pro
ess and are 
alled inter-mediate problems.The relations r∈R are assumed to have the following property:if pb r pb′ (pb is related to pb′ by r)then any solution Sol(pb) of pb 
an beadapted into a solution Sol(pb′) of pb′. (2)This adaptation is performed thanks to a spe
i�
 adaptation fun
tion with the followingpro�le:
Ar : (pb, Sol(pb), pb′) 7→ Sol(pb′)for pb, pb′ ∈ Problems, su
h that pb r pb′.The ordered pair (r,Ar) is 
alled a reformulation. The set of the available reformulations
onstitute the available adaptation knowledge.On
e the similarity path is found, the solution modi�
ation 
an be pro
essed simply byfollowing this path in the solution spa
e:(1) The solution Sol(sr
e) = Sol(pb0) of sr
e = pb0 is adapted into a solution Sol(pb1) ofpb1 thanks to A r1 ;(2) The solution Sol(pb1) of pb1 is adapted into a solution Sol(pb2) of pb2 thanks to A r2 ;

· · ·(q) The solution Sol(pbq−1) of pbq−1 is adapted into a solution Sol(pbq) of pbq thanks to
A rq .These solution modi�
ation steps 
an be performed be
ause property (2) holds for ea
h

( ri ,A ri ): as soon as a similarity path is found, the solution modi�
ation pro
ess is ensured.Figure 2 shows su
h a solution modi�
ation. 9



PSfrag repla
ements sr
e tgtpb1 pb2

Sol(sr
e) Sol(tgt)Sol(pb1) Sol(pb2)

Problems
Solutions

r1 r2 r3

A r1 A r2 A r3Figure 2: Solution modi�
ation following a similarity path.Combining des
riptor mat
hing and mat
hing by similarity path. The two previ-ous approa
hes of mat
hing 
an be 
ombined as follows: ea
h of the step of a similarity path,pbk rk pbk+1, 
an be represented by a des
riptor mat
hing M(pbk, pbk+1):
M(pbk, pbk+1) = {(dk

i , dk+1

i ,∆dk
i )}i

(3)where ∆dk
i = vk+1

i ⊖ vk
iTherefore, the similarity path mat
hing between sr
e and tgt is 
omposed of theM(pbk, pbk+1):

M(sr
e, tgt) = {M(pbk, pbk+1)}
k

(4)On the previous simple example, a similarity path from sr
e = 4× 4 to tgt = 3× 5 
anbe de�ned by introdu
ing a single intermediate problem, pb1 = 3 × 4 as shown in �gure 3.In this example, the di�eren
es ∆dk
i are 
omputed by a numeri
al di�eren
e:

∆dk
i = vk+1

i − vk
iThe abstra
t operator ⊖ is instantiated by the numeri
al di�eren
e between real numbers:

⊖ = −. For example, ∆d0
1 = v1

1 − v0
1 = 3 − 4 = −1.sr
e

4 × 4
∆d0

1 = −1
−−−−−−−−−−−−−−→

∆d0
2 = 0

pb1

3 × 4
∆d1

1 = 0
−−−−−−−−−−−−−−→

∆d1
2 = +1

tgt
3 × 5Figure 3: The similarity path linking the sour
e problem 4× 4 and the target problem 3× 5.The problem pb1 = 3 × 4 is an intermediate problem.3.3 From problem to solutionIn this se
tion, we are interested in the �verti
al view� of �gure 1. We assume that thereexists relations between the problem and its solution 
alled dependen
ies indi
ating that some10



problem des
riptors in�uen
e some solution des
riptors. A dependen
y expresses that thevariation of a problem des
riptor has an in�uen
e on the variation of a solution des
riptor.Let pbk be a problem and Sol(pbk) be a solution of pbk (if k = 0, pbk = pb0 = sr
e,if k = q, pbk = pbq = tgt, else pbk is an intermediate problem of a similarity path). Let
dk

i ∈ pbk and Dk
j ∈ Sol(pbk). If the variation of dk

i have an in�uen
e on the variation of Dk
j ,then the dependen
y of dk

i on Dk
j is a triple (dk

i ,D
k
j ,I(Dk

j /dk
i )). dk

i is 
alled the in�uen
ingand Dk
j is 
alled the in�uen
ee of the dependen
y. I(Dk

j /dk
i ) is part of the adaptationknowledge that has to be modelled and 
onsists in an in�uen
e fun
tion indi
ating the impa
tof the in�uen
ing on the in�uen
ee. The in�uen
e fun
tion is at the basis of the adaptationoperators of the adaptation strategy presented in se
tion 3.4.The set of dependen
ies of pbk des
riptors on Sol(pbk) des
riptors is denoted byD(pbk, Sol(pbk)):

D(pbk, Sol(pbk)) = {(dk
i ,Dk

j ,I(Dk
j /dk

i ))}
i, jIn the example, for ea
h k ∈ {0, 1}, there are two dependen
ies between des
riptors ofpbk and the des
riptor of Sol(pbk). For one operand, the in�uen
e fun
tion expresses thatthe e�e
t of the variation of this operand is proportional to the other operand:

D(sr
e, Sol(sr
e)) = D(pb0, Sol(pb0)) = {(d0
1,D

0
1 ,I(D0

1/d
0
1)),

(d0
2,D

0
1 ,I(D0

1/d
0
2))}

I(D0
1/d

0
1) = v0

2 = 4

I(D0
1/d

0
2) = v0

1 = 4

D(pb1, Sol(pb1)) = {(d1
1,D

1
1 ,I(D1

1/d
1
1)),

(d1
2,D

1
1 ,I(D1

1/d
1
2))}

I(D1
1/d

1
1) = v1

2 = 4

I(D1
1/d

1
2) = v1

1 = 3This is summarized in �gure 4.sr
e
4 × 4

∆d0
1 = −1

−−−−−−−−−−−−−−−−−→
∆d0

2 = 0

pb1

3 × 4
∆d1

1 = 0
−−−−−−−−−−−−−−−−−→

∆d1
2 = +1

tgt
3 × 5





y

I(D0
1/d

0
1) = 4

I(D0
1/d

0
2) = 4





y

I(D1
1/d

1
1) = 4

I(D1
1/d

1
2) = 3





ySol(sr
e)
16

−−−−−−−−−−−−−−−−−→ Sol(pb1) −−−−−−−−−−−−−−−−−→ Sol(tgt)Figure 4: The in�uen
e fun
tions between problems and solutions.3.4 Generi
 adaptation operatorsClassi
ally, similarity assessment evaluates a similarity lo
al to a des
riptor and further aglobal similarity 
ombines lo
al similarities. In a similar way, we propose to assess the lo
alin�uen
e of problem des
riptors on solution des
riptors, and then further to assess a globalin�uen
e for ea
h solution des
riptor by 
ombining lo
al in�uen
es. The global in�uen
es are11



�nally mapped to the values of sour
e solution des
riptors in order to obtain the values ofthe target solution des
riptors.A parallel of these prin
iples 
an be established with partial derivatives:
dyj =

∑

i

∂yj

∂xi
× dxiwhere dyj features the variation on a given target solution des
riptor whi
h is obtainedby 
ombining several 
ombinations of in�uen
e fun
tions featured by ∂yj

∂xi
and variations ofproblem des
riptors featured by dxi.3.4.1 Lo
al variationThe adaptation pro
ess 
ombines together several elementary adaptation operations, ea
h ofthem expressing the 
ontribution of a given problem des
riptor to a solution des
riptor. Anelementary adaptation operation denoted by ∆iD

k
j is obtained thanks to a di�eren
e ∆dk

iand an in�uen
e fun
tion I(Dk
j /dk

i ) that are 
ombined using an abstra
t operator ⊗:
∆iD

k
j = I(Dk

j /dk
i ) ⊗ ∆dk

i

∆iD
k
j is the 
ontribution of the variation of a problem des
riptor dk

i to the variation of asolution des
riptor Dk
j and ⊗ is an abstra
t operator expressing how to 
ombine the di�eren
e

∆dk
i between problem des
riptors and the in�uen
e I(Dk

j /dk
i ) of this problem des
riptor onthe solution des
riptor Dk

j .This abstra
t operator ⊗ has to be instantiated in a given appli
ation domain. In thedomain of our example it simply 
onsists in a produ
t between numbers: ⊗ = ×.
{

∆1D
0
1 = I(D0

1/d
0
1) × ∆d0

1 = 4 × (−1) = −4

∆2D
0
1 = I(D0

1/d
0
2) × ∆d0

2 = 4 × 0 = 0
{

∆1D
1
1 = I(D1

1/d
1
1) × ∆d1

1 = 4 × 0 = 0

∆2D
1
1 = I(D1

1/d
1
2) × ∆d1

2 = 3 × (+1) = +33.4.2 Global variationOn
e the individual 
ontributions ∆iD
k
j of ea
h problem des
riptor to a given solution de-s
riptor has been assessed, they are gathered in a global 
ontribution ∆Dk

j expressed usingan abstra
t operator ⊕:
∆Dk

j = (. . . (∆1D
k
j ⊕ ∆2D

k
j ) ⊕ . . . ⊕ ∆nDk

j )It is assumed that ⊕ is asso
iative and 
ommutative. Thus the expression above 
an bewritten:
∆Dk

j =
⊕

i

∆iD
k
j

∆Dk
j is the global variation that has to be applied to Dk

j in order to obtain Dk+1

j by
ombining all the lo
al variations ∆iD
k
j of dk

i on Dk
j .12



In the example, ⊕ = +:
∆D0

1 = ∆1D
0
1 + ∆2D

0
1 = −4 + 0 = −4

∆D1
1 = ∆1D

1
1 + ∆2D

1
1 = 0 + 3 = +33.4.3 Adaptation of target solution des
riptorsFor k ∈ {0, 1, . . . , q − 1}, in order to 
ompute the value of the solution des
riptor Dk+1

j ofSol(pbk+1) from the solution des
riptor Dk
j of Sol(pbk), the value of ∆Dk

j is used in thefollowing way:
V k+1

j = V k
j ⊕ ∆Dk

j (5)Therefore, to 
ompute the des
riptors Dq
j of Sol(tgt) starting from the known des
riptors

D0
j of Sol(sr
e), the equation (5) is used with k = 0, k = 1, . . . , and, �nally k = q − 1.In the example,

V 1
1 = V 0

1 ⊕ ∆D0
1 = 16 + (−4) = 12

V 2
1 = V 1

1 ⊕ ∆D1
1 = 12 + 3 = 15Thus, Sol(3 × 5) = 15.The �gure 5 summarizes the adaptation pro
ess.sr
e

4 × 4
∆d0

1 = −1
−−−−−−−−−−−−−−−−−→

∆d0
2 = 0

pb1

3 × 4
∆d1

1 = 0
−−−−−−−−−−−−−−−−−→

∆d1
2 = +1

tgt
3 × 5





y

I(D0
1/d

0
1) = 4

I(D0
1/d

0
2) = 4





y

I(D1
1/d

1
1) = 4

I(D1
1/d

1
2) = 3





ySol(sr
e)
16

−−−−−−−−−−−−−−−−−→ Sol(pb1)

12

−−−−−−−−−−−−−−−−−→ Sol(tgt)
15Figure 5: The sequen
e of adaptation operations from the sour
e problem 4× 4 to the targetproblem 3 × 5.(** arti
ulation**)4 The Prolabo appli
ation4.1 An overview of the �Prolabo� appli
ationProlabo is a 
ompany manufa
turing and marketing produ
ts and devi
es for 
hemi
al, phar-ma
euti
al, bio
hemi
al and biologi
al laboratories. One of these devi
es is a guided mi-
rowave digester, i.e. a devi
e aimed at preparing produ
t samples for 
hemi
al analysisthanks to various analysis pro
esses. The analysis pro
ess is performed by an analyzer, whosetype depends on the digester type. The analysis pro
ess needs also that the samples are only
onstituted of the 
hemi
al atomi
 elements of the produ
ts to be analyzed. The guidedmi
rowave digester is in 
harge of breaking all mole
ular bonds between atoms using eitherspe
ial 
hemi
al agents, e.g. aggressive 
hemi
al agents, or mi
rowave e�e
ts, e.g. me
hani
aland thermal e�e
ts. The guided mi
rowave digester relies on inje
tion pumps 
ontrolling thespe
ial 
hemi
al agent inje
tion, and on a magnetron 
ontrolling the mi
rowave e�e
ts. This13



Des
riptors Type IdAnalyzer Type Symbol d1Inje
tion Speed Real d3Magnetron power Real d4Tube 
apa
ity Real d5Max power gradient Real d6Analysis 
lass Symbol d7Sample weight Real d8Lipids Quantity Real d9Glu
ide Quantity Real d10Mineral Quantity Real d11Cellulose Quantity Real d12Water Quantity Real d13Table 1: The des
riptors of a problem.devi
e is fully automated: inje
tion pumps are driven a

ording to three main parameters,namely the 
hemi
al agents to be inje
ted, the inje
tion speed, and the inje
tion duration,while the main parameters of the magnetron are the power value and the emission duration.A digestion program is 
omposed of a number of sequential steps (from 5 to 20 steps) whereea
h step is 
ontrolled by the �ve above parameters (a
tually, this list is a simpli�ed one):
hoi
e of the 
hemi
al agent to be inje
ted, inje
tion speed of the 
hemi
al agent, inje
tionduration, magnetron power (per
ent of the magnetron maximum power), and magnetronpowering duration.A 
ase in
ludes the des
ription of a problem with its asso
iated solution. The problemdes
ribes a generi
 digestion program, 
alled hereafter a digestion plan, and the problemdes
riptors are: digestion 
onstraints, analysis pro
ess 
onstraints (see �gures 9 and 10).In this paper, for 
on�dentiality reasons and for the sake of simpli
ity, only a part of thedes
riptors is 
onsidered (see Table 1). The solution is 
omposed of a synthesis of the digestionprogram (see �gures 11 and 12) that 
an be pro
essed further by an automate designing theasso
iated digestion program (see for example �gure 13). For a given target problem and aretrieved sour
e 
ase, adaptation is performed a

ording to dependen
ies existing betweensour
e solution des
riptors and sour
e problem des
riptors.There exists a straightforward 
on
eptual dependen
y between the analyzer type and thedigestion plan type (see �gure 6). The value of D1 (Plan Type) depends on the value of d1(Analyzer Type) of the 
on
erned analyzer. The more the analyzer is sensitive to aggressive
hemi
al agents the more the digestion plan is moderated with respe
t to the energy providedwithin ea
h step.The dependen
ies between the numeri
al des
riptors of the problem and the numeri
aldes
riptors of the solution are expressed by a ratio. For example, the value of Dj3 (TotalEnergy) to be provided within a step of type j depends on d8 (Sample Weight). The higheris the value of �Sample Weight�, the higher is the value of the �Total Energy� to be providedwithin a step of type j.It must be noti
ed that the dependen
y relations are only true for given �di�eren
es�.When the �di�eren
e� between the sour
e and the target problem des
riptors is greater than agiven threshold, the existing dependen
ies for building the 
orresponding solution des
riptors
annot work anymore. Moreover, this kind of knowledge is lo
al (see �gures 7 and 8).Hereafter, a 
on
rete example is detailed, involving problem and solution des
riptors.14



Digestion program des
riptionPlan type Symbol D1Moderation level Integer D2Type by type step des
riptionsType 1Number Integer D11Total duration Real D12Total energy Real D13Inje
ted produ
t Symbol D14Inje
ted quantity Real D15...Type jNumber Integer Dj1Total duration Real Dj2Total energy Real Dj3Inje
ted produ
t Symbol Dj4Inje
ted quantity Real Dj5...Table 2: The solution des
riptors are the �ve digestion plan parameters.

Figure 6: The dependen
ies between the analyzer type and the plan type.4.2 A 
ase study4.2.1 A 
ase des
riptionFor this example, we 
onsider the following problem des
riptors 
orresponding to the followingattributes: 15



Problem attributesIdenti�er A
ronym De�nition
a0

1 AT Analyzer Type
a0

7 AC Analysis Class
a0

8 SW Sample WeightThe solution des
riptors are the followings (there are only three di�erent types of programsteps, namely type 1, type 2 and type 3):Solution attributesIdenti�er A
ronym De�nition
A0

1 PT Plan Type
A0

2 ML Moderation Level
A0

13 TE1 Total Energy for steps of type 1
A0

14 IP1 Inje
ted Produ
t for steps of type 1
A0

15 IV1 Inje
ted Volume for steps of type 1
A0

23 TE2 Total Energy for steps of type 2
A0

24 IP2 Inje
ted Produ
t for steps of type 2
A0

25 IV2 Inje
ted Volume for steps of type 2
A0

33 TE3 Total Energy for steps of type 3
A0

34 IP3 Inje
ted Produ
t for steps of type 3
A0

35 IV3 Inje
ted Volume for steps of type 3The attributes of the target problem are the followings:Target problem des
riptorsIdenti�er Attribute Value De�nition
dq
1

AT AnalyzerType1 Analyzer Type
dq
7

AC AnalysisClass3 Analysis Class
dq
8

SW 0.8 Sample WeightThe attributes of the (retrieved) sour
e 
ase are the followings:Sour
e problem des
riptorsIdenti�er Attribute Value De�nition
d0
1 AT AnalyzerType3 Analyzer Type

d0
7 AC AnalysisClass6 Analysis Class

d0
8 SW 0.6 Sample Weight

16



Sour
e solution des
riptorsIdenti�er Attribute Value De�nition
D0

1 PT PlanType5 Plan Type
D0

2 ML 4 Moderation Level
D0

13 TE1 156 Total Energy for steps of type 1
D0

14 IP1 Produ
t3 Inje
ted Produ
t for steps of type 1
D0

15 IV1 12 Inje
ted Volume for steps of type 1
D0

23 TE2 0 Total Energy for steps of type 2
D0

24 IP2 Null Inje
ted Produ
t for steps of type 2
D0

25 IV2 0 Inje
ted Volume for steps of type 2
D0

33 TE3 120 Total Energy for steps of type 3
D0

34 IP3 Produ
t1 Inje
ted Produ
t for steps of type 3
D0

35 IV3 18 Inje
ted Volume for steps of type 3These 
ases are pro
essed as explained hereafter.4.2.2 The des
ription of in�uen
esThe in�uen
e I(D1/d1) of �Analyzer Type� a
ts on �Plan Type�: the larger is the numeri
allabel of the analyzer type, the more the plan type 
an be �blended�, in taking 
are of not
ombining dangerous produ
ts. This is a 
on
eptual in�uen
e stating that if the value ofthe sour
e analyzer type is larger of one degree than the value of the target analyzer type,then one or more degrees have to be added to the value of the solution plan type (in thesour
e 
ase). Thus, des
riptors su
h as �AnalyzerType� or �PlanType� are ordered a

ordingto dis
rete degrees, represented by an integer, e.g. AnalyzerType3, PlanType5...The in�uen
e of D1 on d1 is 
omputed by a fun
tion f1, whose values are re
orded ina table, returning the number of degrees to add or to subtra
t to the analyzer type. Thisfun
tion is not linear, and depends on the sour
e value of �Analyzer Type� and on themagnitude of the di�eren
e ∆di. The in�uen
e I(D1/d1) reads as follows:
I(D1/d1) = f1(d1,D1,∆d1

) (6)The in�uen
e I(D2/d7) of �Analysis Class� a
ts on �Moderation Level�: the larger is the�Analysis Class�, the more the analysis is 
onstrained by the presen
e of volatile produ
ts,and, hen
e, the more the digestion program has to be �moderated�, i.e. involving weakertemperature gradients in ea
h step (entailing generally more steps in the program). A fun
tion
f2 is used to 
ompute the In�uen
e value I(D2/d7):

I(D2/d7) = f2(d7,D2,∆d7
) (7)The �gure 8 illustrates how 
ould be graphi
ally represented the 
omputation of In�uen
efor symboli
 values.The in�uen
e I(Di5/d8) of �Sample Weight� a
ts on produ
t quantity at ea
h step type i.The larger is �Sample Weight�, the larger is the produ
t volume to be inje
ted. The fun
tion

f3 used to 
ompute this in�uen
e is not linear, and I(Di5/d8) has the following general form:
I(Di5/d8) = f3(d8,Di5,∆d8

) (8)17



The in�uen
e I(Di3/d8) of Sample Weight a
ts also on the �Total Energy� to be providedat ea
h step of type i. The larger is the weight value the larger is the total energy valueprovided. The in�uen
e I(Di3/d8) reads as follows:
I(Di3/d8) = f4(d8,Di3,∆d8

) (9)Figure 7 illustrates the 
omputation of an in�uen
e in the 
ase of numeri
al values.It 
an be noti
ed that fun
tion des
riptions and aba
us for the in�uen
e fun
tion arequite easy to obtain from domain experts, while it is impossible to �nd out the fun
tionformula for dire
tly 
omputing a target solution des
riptor from a sour
e solution des
riptor(no theoreti
al and pra
ti
al knowledge is available).4.2.3 The adaptation of the sour
e solution des
riptors for building a targetsolutionThe mat
hing between sr
e and tgt is de�ned by:
M(sr
e, tgt) = {(d0

i , d
q
i ,∆di = vq

i ⊖ v0
i )}i

⊖ : (x, y) ∈ Z
2 7→ x ⊖ y = x − y ∈ Z, for i ∈ {1, 7}

∆d1 = vq
1
− v0

1 = −2,
∆d2 = vq

7
− v0

7 = −3

⊖ : (x, y) ∈ R
2 7→ x ⊖ y = x − y ∈ R, for i = 8

∆d8 = vq
8
− v0

8 = 0.2,

M(sr
e, tgt) = {(d0
1, d

q
1
,∆d1 = −2), (d0

2, d
q
2
,∆d2 = −3), (d0

8, d
q
8
,∆d8 = 0.2)}Dependen
ies between sr
e and Sol(sr
e) are given by:

D(sr
e, Sol(sr
e)) = {(d0
i ,D

0
j ,I(D0

i /d
0
j ))} with

I(D0
1/d

0
1) = f1(AnalyzerType3, P lanType5,−2) = 0 for all i and j, i 6= j.This means that for ea
h type of analyzer, a type di�eren
e lower than 3 does not entailplan type modi�
ation (i.e. null in�uen
e).

I(D0
7/d

0
2) = f2(AnalysisClass6, 4,−3) = 1 meaning that for this analysis type and thisdi�eren
e, a di�eren
e of one degree on the analysis type entails a di�eren
e of one degreeon �Moderation Level�.

I(D0
8/d

0
15) = f3(0.6, 12, 0.2) = 25

I(D0
8/d

0
25) = f3(0.6, 0, 0.2) = 0

I(D0
8/d

0
35) = f3(0.6, 18, 0.2) = 25

I(D0
8/d

0
13) = f4(0.6, 156, 0.2) = 200

I(D0
8/d

0
23) = f4(0.6, 0, 0.2) = 0

I(D0
8/d

0
13) = f4(0.6, 120, 0.2) = 200A di�eren
e of 1 between problem des
riptor values involves an in�uen
e that may be
omputed from the 
ase base (taking into a

ount non linearity if needed).An elementary variation of a sour
e des
riptor value is 
omputed by:

∆iDj = ∆di ⊗ I(D0
j/d

0
i )18



Figure 7: Numeri
al in�uen
e. In the numeri
al 
ase, the in�uen
e I is the the same for anyvalue in the interval ∆d.

Figure 8: Symboli
 in�uen
e. The di�eren
e between the analyzer type A2 to the analyzertype A3 yields a null in�uen
e on the plan type.The ⊗ operator is de�ned as follows:
⊗ : (x, y) ∈ R

2 7→ x ⊗ y = x × y ∈ RThe elementary variations are the followings:
∆1D1 = ∆d1 ⊗ I(D0

1/d
0
1)

∆1D1 = −2 × 0 = 0

∆7D2 = ∆d7 ⊗ I(D0
2/d

0
7)

∆7D2 = −3 × 1 = −3

∆8Di5 = ∆d8 ⊗ I(D0
i5/d

0
8) for i ∈ {1, 2, 3}

∆8D15 = 0.2 × 25 = 5
∆8D25 = 0.2 × 0 = 0
∆8D35 = 0.2 × 25 = 5

∆8Di3 = ∆d8 ⊗ I(D0
i3/d

0
8) for i ∈ {1, 2, 3}

∆8D13 = 0.2 × 200 = 40
∆8D23 = 0.2 × 0 = 0
∆8D33 = 0.2 × 200 = 40In the equation de�ning an elementary adaptation, i.e. V q

j = V 0
j ⊕ ∆Dj , the ⊕ operatoris de�ned as follows: 19



⊕ : (x, y) ∈ R
2 7→ x ⊕ y = x + y ∈ RRe
all that the target problem is des
ribed by the following des
riptors:

dq
1

= (AT,AnalyzerType1),
dq
7

= (AC,AnalysisClass3),
dq
8

= (SW, 0.8)The value of a target solution des
riptor Dq
i is 
omputed as stated above. For example, thedes
riptor Dq

1
= (PT, V q

1
) = (PT, V 0

1 ⊕ ∆D1) is 
omputed as Dq
1

= (PT,P lanType5 + 0) =
(PT,P lanType5). The des
riptor Dq

15
= (IV 1, V q

15
) = (IV 1, V 0

15 ⊕ ∆D15) is 
omputed as
Dq

15
= (IV 1, 12 + 5) = (IV 1, 17).The full target solution Sol(tgt) reads as:Target solution des
riptors

Dq
1

= (PT,P lanType5 + 0) = (PT,P lanType5)

Dq
2

= (ML, 4 + (−3)) = (ML, 1)

Dq
13

= (TE1, 156 + 40) = (TE1, 196)

Dq
14

= (IP1, P roduct3) = (IP1, P roduct3)

Dq
15

= (IV 1, 12 + 5) = (IV 1, 17)

Dq
23

= (TE2, 0 + 0) = (TE2, 0)

Dq
24

= (IP2, null) = (IP2, null)

Dq
25

= (IV 2, 0 + 0) = (IV 2, 0)

Dq
33

= (TE3, 120 + 40) = (TE3, 160)

Dq
34

= (IP3, P roduct1) = (IP3, P roduct1)

Dq
35

= (TE3, 18 + 5) = (IV 3, 23)The Prolabo appli
ation enlightens two important points on knowledge engineering for
ase-based reasoning:1. Case elaboration needs a rather large amount of knowledge on the way of adapting a
ase. A
tually, the (internal) representation of a 
ase for being manipulated by the
ase-based reasoning pro
ess is probably di�erent from the mental user representation.The Prolabo experien
e (and some other industry appli
ations) shows that the repre-sentation of a 
ase must be well-known by the 
urrent user of the 
ase-based reasoningsystem. A

ordingly, in the Prolabo appli
ation, a graphi
al synthesis of the 
ase beingpro
essed within reasoning is proposed to the user (see �gure 12).2. In�uen
es 
onstitute the main knowledge units for adaptation, and therefore for simi-larity assessment as well. These kinds of in�uen
es do not generally depend on linearglobal fun
tions, but rather on lo
al fun
tions depending on the value of the sour
esolution des
riptor, the value of the sour
e problem des
riptor, and on the magnitudeof the di�eren
e to be adjusted between problem des
riptors. In some appli
ation do-mains, knowledge on in�uen
es may be easily available from domain experts. Probablyknowledge on in�uen
es may be eli
ited and/or mined (using an automati
 learningpro
ess) from a set of 
ases put in 
orresponden
e by an expert.
20



5 Dis
ussion and Related WorkThe state of the art shows that unless adaptation is presented as the most important step inthe 
ase-based reasoning pro
ess taken into a

ount by authors working on problem-solvingappli
ations, there is only a few resear
h works on the formalization of adaptation.In [6℄, there is a proposition of using domain knowledge for explaining the solution of aspe
i�
 problem. A

ording to this approa
h, domain knowledge provides knowledge unitsfor similarity measures as adaptation operations as well. A
tually, the paper highlightsthe key role played by dependen
ies between solution des
riptors and problem des
riptors.In the same way, a generi
 method is presented in [8, 7℄, dealing with generalization andspe
ialization. The 
ase generalization is 
arried out within a learning phase of the system,by organizing 
ases in an abstra
tion tree. The 
ase spe
ialization is 
arried out within aproblem-solving phase, using a planner performing a heuristi
 sear
h in the solution spa
e.This approa
h relies both on a 
ase model but also on a relevant model of the domain asneeded by a planner su
h as strips.In [33℄, there is a proposition of a formalization of the adaptation in the 
ontext ofdesign problems based on a parti
ular 
ase representation allowing 
ase pro
essing with 
sp(
onstraint satisfa
tion problems) methods. Following a similar approa
h as in [8, 7℄, 
asesare split down into sub-
ases, and global 
onsisten
y is guaranteed by the 
onstraint-solvingmethod, that relies on an e�
ient heuristi
: the sour
e 
ases minimizing the 
onstraints tobe solved have to be preferred. �Consisten
y� here and hereafter means that the solution isa
tually a working solution of the target problem. In this 
ontext, dependen
ies are expressedas 
onstraints to be satis�ed, and the solver needs a detailed domain model for delivering ane�
ient pro
essing.The two pre
eding approa
hes are mainly related to generative 
ase adaptation, whilesome resear
h works have addressed transformational and substitution adaptation pro
esses.In [9℄, adaptation knowledge is presented under the form of lo
al fun
tions transforming asour
e 
ase into a target 
ase a

ording to expe
ted quality measures. Adaptation is thenperformed by applying a set of adequate transformation fun
tions allowing an improvement,i.e. a better quality measure, of the target 
ase. Hen
e, there is a need for a global fun
tionallowing the 
omposition of lo
al quality improvements into a global quality improvement.In a 
ertain way, this approa
h is rather 
lose to the approa
h presented in this paper.Moreover, authors make the hypothesis that there exists a kind of �feed-ba
k� asso
iated withthe solution in ea
h stored 
ase used for the measure of quality improvement. By default,ea
h 
ase is 
onsidered as having the best possible quality. Finally, it must be noti
ed thatthis approa
h does not guarantee a 
omplete 
onsisten
y of the adapted solution.In [12℄, a simple lo
al adaptation method uses interpolation fun
tions for adapting asour
e solution des
riptor depending on an observed di�eren
e between the sour
e and targetproblem des
riptors. Several interpolation te
hniques are enumerated a

ording to the typeof the des
riptors: digital values, symboli
 values, fuzzy quanti�ers, ordinals, et
. This kindof interpolation requires a partial order relationship between des
riptor values for working(espe
ially between arbitrary symboli
 values). This approa
h does not guarantee the 
on-sisten
y of the adapted solution, that must be in turn tested by another mean. By 
ontrast,the knowledge units needed for guiding retrieval and adaptation are lo
al, and may be moreeasily a
quired by mining a 
ase base or by eli
iting expert knowledge (a
tually, a similarremark applies to the Prolabo experien
e, see 4).In [4℄, the general idea �the most similar 
ase is the 
ase that is the easiest to adapt�is 
onsidered as the basi
 prin
iple. A

ordingly, the authors introdu
e a �metri
� based onthe relations existing between the problem des
riptors and the solution des
riptors, i.e. an21



adaptation fun
tion for adapting a sour
e solution into a target solution, provided that themat
hing between sour
e and target is satis�ed (a �maintenan
e� fun
tion, external to theadaptation pro
ess, is also available). Moreover, an �adaptation 
ost� guides the 
hoi
e of thebest sour
e 
ase among the 
ases satisfying the mat
hing 
ondition. A kind of �topology� 
anthen be de�ned for sele
ting the most adaptable 
ase during the retrieval step. This formalapproa
h has not been implemented, and has not been extended, as far as we know.In [16℄, the adaptation model is based on substitution as an adaptation operator. A 
ase is
onne
ted to two individuals representing the problem and its solution in the 
onsidered 
ase.Ea
h solution individual is related through �dependen
y relations� to a set of individuals thatare elementary des
riptors of the solution. The substitution algorithm for adaptation propa-gates 
hanges, i.e. substitutions on the des
riptors of sour
e solution, on solution des
riptorsas follows: (i) the list of the sour
e solution elements to be adapted is built from the relations
hara
terizing the observed di�eren
es between sour
e and target problem des
riptors, (ii)ea
h element to be modi�ed is substituted by a new one, taking into a

ount the di�eren
esbetween the sour
e and the target problems, and then the dependen
ies between solutiondes
riptors. The sear
h of substitutions to be performed relies on a spe
ialized and guidedsear
h in an asso
iated knowledge base.6 Con
lusion and perspe
tivesIn this paper, we have presented a general and domain-independent formalization of theadaptation step within the 
br pro
ess. Several new and generi
 ideas have been introdu
edand dis
ussed in the paper.Firstly, adaptation is viewed as a 
entral step in the 
br pro
ess for designing a solutionof the target problem, based on the relations existing between a sour
e 
ase and a targetproblem. These relations are 
onsidered a

ording to two main dimensions: (i) the verti
aldimension refers to the 
ase dimension and is based on the 
orresponden
e between theproblem and its solution, (ii) the horizontal dimension refers to the mat
hing of the sour
eand target problems in the problem spa
e, and to the 
orresponding modi�
ation/adaptationof the sour
e solution for designing the target solution in the solution spa
e. A generalalgorithm rei�es these ideas and is detailed, taking into a

ount these two dimensions forbuilding a solution of the target problem.Another important idea underlying the arti
le is that adaptation is guided by a generalstrategy, relying on the de
omposition of the target problem into sub-problems. A

ordingly,lo
al operators exist and have the ability to solve the sub-problems. Then, global operators
ontrol the lo
al problem-solving pro
esses and are able to merge the lo
al solutions forbuilding a global solution of the target problem.In addition, this arti
le aims at proposing a general framework for the adaptation pro
ess,i.e. a general strategy of adaptation that is operational and that 
an be used both fortheoreti
al and pra
ti
al purposes. This general strategy allows a better understanding of theadaptation pro
ess within the 
br pro
ess, and provides guidelines and general adaptationoperators to be reused in real-world situations. Moreover, a 
omplex real-world appli
ationis detailed and may be used as a referring example for other future pra
ti
al appli
ations.Going further, the 
br pro
ess needs, in several aspe
ts, to be guided by domain knowl-edge, at every step of the pro
ess. Domain knowledge may be used either by the human in
harge of the system or by the system itself for designing a solution. It should be
ome a
tualand important to 
onsider 
br as a powerful inferen
e s
hema, to be used for 
ompletingdedu
tion and indu
tion s
hemes in implemented knowledge-based systems, aimed at solving22



real-world problems. In su
h a 
ontext, a 
omplete system should take advantage of a 
asebase and a knowledge base. Moreover, regarding the present needs, e.g. Semanti
 Web appli-
ations, su
h a 
omplete system should be 
oupled with a kdd system �knowledge-dis
overyin databases� able to feed the 
ase and knowledge bases. The design of a theoreti
al andpra
ti
al framework for 
ombining 
br, knowledge-based system te
hnology, and knowledge-dis
overy te
hnology, is an important next 
hallenge, from the point of view of the authors,to be studied and made fully operational.Referen
es[1℄ Agnar Aamodt. Explanation-driven retrieval, reuse and learning of 
ases. In EWCBR93, Otzenhauzen, Germany, pages 279�284, 1993.[2℄ David Aha. Editorial. Arti�
ial Intelligen
e Review, 11(1-5):1�6, 1997. Spe
ial Issue onLazy Learning.[3℄ Tsz-Chiu Au, Hé
tor Muñoz-Avila, and Dana Nau. On the 
omplexity of plan adaptationby derivational analogy in a universal 
lassi
al planning framework. In 6th EuropeanConferen
e, ECCBR-2002, Aberdeen, S
otland, UK, 2002.[4℄ Paolo Avesani and Enri
o Blanzieri. Adaptation-dependent retrieval problem: A formalde�nition. In Pro
eedings of ICCBR'99, 1999.[5℄ Ray Bareiss, Bru
e Porter, and Creg Wier. Protos- an exemplar based learning appren-ti
e. International Journal of Man-Ma
hines Studies, 29:549�561, 1988.[6℄ Ralph Bergmann, Gerd Pews, and Wolfgang Wilke. Explanation-based similarity: aunifying approa
h for integrating domain knowledge into 
ase-based reasoning for di-agnosis and planning tasks. In Stephan Wess, Klaus-Dieter Altho�, and Mi
hael M.Ri
hter, editors, Workshop on Case-Based Reasoning, Topi
s in Case-Based Reasoning,pages 182�196. Springer, Berlin, 1994.[7℄ Ralph Bergmann and Wolfgang Wilke. Building and re�ning abstra
t planning 
ases by
hange of representation language. Journal of Arti�
ial Intelligen
e Resear
h, 3:53�118,1995.[8℄ Ralph Bergmann and Wolfgang Wilke. Paris : Flexible plan adaptation by abstra
tionand re�nement. In A. Voÿ, R. Bergmann, and B. Barts
h-Spörl, editors, Workshop onAdaptation in Case-Based Reasoning, ECAI-96, Budapest, Hungary, August 1996.[9℄ Ralph Bergmann and Wolfgang Wilke. Towards a new formal model of transformationaladaptation in 
ase-based reasoning. In Henri Prade, editor, ECAI 98, 13th EuropeanConferen
e on Arti�
ial Intelligen
e, pages 53�57. John Wiley and Sons, Ltd, 1998.[10℄ Jaime G. Carbonell. Learning by analogy: Formulating and generalizing plans frompast experien
e. In R.S. Mi
halsky, J.G. Carbonnel, and T.M. Mit
hel, editors, Ma
hineLearning: an Arti�
ial Intelligen
e Approa
h, pages 137�162. Tioga, Palo Alto, 1983.[11℄ J.G. Carbonell. Derivational Analogy: A Theory of Re
onstru
tive Problem Solvingand Expertise A
quisition. In R.S. Mi
halski, J.G. Carbonell, and T.M. Mit
hell, edi-tors, Ma
hine Learning, an Arti�
ial Intelligen
e Approa
h, Volume II, pages 371�392.Morgan Kaufmann Publishers, In
., Los Altos, California, 1986.23



[12℄ N. Chatterjee and J.A. Campbell. Interpolation as a means of fast adaptation in 
ase-based problem solving. In Ralph Bergmann and Wolfgang Wilke, editors, Fifth GermanWorkshop on Case-Based Reasoning, pages 65�74, Kaiserslautern, Germany, 1997.[13℄ Béatri
e Fu
hs, Jean Lieber, Alain Mille, and Amedeo Napoli. An Algorithm for Adap-tation in Case-based Reasoning. In W. Horn, editor, Pro
eedings of the 14th EuropeanConferen
e on Arti�
ial Intelligen
e (ECAI-2000), Berlin, pages 45�49. IOS Press, Am-sterdam, 2000.[14℄ Béatri
e Fu
hs and Alain Mille. Explanation driven adaptation. In pro
eedings of theworkshop on adaptation in CBR, 1996. Workshop on Case Based Reasoning - ECAI96.[15℄ Béatri
e Fu
hs, Alain Mille, and Benoit Chiron. Operator de
ision aiding by adapta-tion of supervision strategies. Le
ture Notes in Arti�
ial Intelligen
e vol 1010, FirstInternational Conferen
e, ICCBR95, Sesimbra, Portugal, pages 23�32, 1995.[16℄ Pedro A. Gonzalez-Galero, Mer
edes Gòmez-Albarràn, and Belén Diaz-Agudo. Asubstitution-based adaptation model. In Pro
eedings of ICCBR'99, 1999.[17℄ Kristian J. Hammond. Case-Based Planning: Viewing Planning as a Memory Task.A
ademi
 Press, Boston, 1989.[18℄ Kristian J. Hammond, editor. Workshop on 
ase-based Reasoning, DARPA 89, Pensa
olaBea
h, Florida, 1989. Morgan-Kaufmann, San Mateo.[19℄ Steve Hanks and Daniel S. Weld. A domain-independent algorithm for plan adaptation.Journal of Arti�
ial Intelligen
e Resear
h, 2:319�360, 1995.[20℄ Kathleen Hanney, Mark T. Keane, Barry Smyth, and Padraig Cunningham. Systems,tasks, and adaptation knowledge. In Manuela Veloso and Agnar Aamodt, editors, Inter-national Conferen
e on Case-Based Reasoning, Le
ture Notes in Arti�
ial Intelligen
e,pages 461�470, Sesimbra, Portugal, 1995. Springer, Verlag.[21℄ Thomas R. Hinri
hs. Strategies for adaptation and re
overy in design problem solver.In Workshop on 
ase-based Reasoning, DARPA 89, pages 115�118. Morgan-Kaufmann,San Mateo, 1989.[22℄ K. Hua, B. Faltings, and I. Smith. Cadre: Case-based geometri
 design. Journal ofArti�
ial Intelligen
e in Engineering, 10:171�183, 1996.[23℄ Jana Koehler. Planning from se
ond prin
iples. Arti�
ial Intelligen
e, 87:145�186, 1996.[24℄ Janet Kolodner. Judging whi
h is the "best" 
ase for a 
ase-based reasoner. In DARPACase-Based Reasoning Workshop, pages 77�81. Morgan Kaufmann, San Mateo, CA,1989.[25℄ Janet Kolodner. Case Based Reasoning. Morgan Kaufman Publishers, 1993.[26℄ Janet Kolodner, R. Simpson, and Katia Sy
ara-Cyranski. A pro
ess model of 
ase-basedreasoning in problem solving. In Pro
eedings of the Ninth International Joint Conferen
eon Arti�
ial Intelligen
e (IJCAI-85), volume 1, pages 284�290, Los Angeles, CA, 18th-23rd August 1985 1985.[27℄ Janet L. Kolodner. Re
onstru
tive memory: A 
omputer model. Cognitive S
ien
e,7:281�328, 1983. 24



[28℄ David B. Leake, editor. Case-Based Reasoning: Experien
es, Lessons and Future Dire
-tions. AAAI Press, 1996.[29℄ Jean Lieber. Reformulations and Adaptation De
omposition. In J. Lieber, E. Melis,A. Mille, and A. Napoli, editors, Formalisation of Adaptation in Case-Based Reason-ing. Third International Conferen
e on Case-Based Reasoning Workshop, ICCBR-99Workshop number 3, S. S
hmitt and I. Vollrath (volume editor), LSA, University ofKaiserslautern, 1999.[30℄ Mary Lou Maher, M. Bala Bala
handran, and Dong Mei Zhang. Case-based reasoningin design. Lawren
e Erlbaum Asso
iates, 1995.[31℄ Eri
a Melis, Jean Lieber, and Amedeo Napoli. Reformulation in Case-Based Reasoning.In B. Smyth and P. Cunningham, editors, Fourth European Workshop on Case-BasedReasoning, EWCBR-98, Le
ture Notes in Arti�
ial Intelligen
e 1488, pages 172�183.Springer, 1998.[32℄ E. Plaza and J.-L. Ar
os. Constru
tive adaptation. In S. Craw and A. Pree
e, editors,Pro
. 6th ECCBR 2002, volume Advan
es in Case-Based Reasoning of Le
ture Notes onArti�
ial Intelligen
e 2416, pages 306�320. Springer-Verlag, Berlin, 2002.[33℄ Pearl Pu and Lisa Purvis. Formalizing the adaptation pro
ess for 
ase-based design. InMary Lou Maher and Pearl Pu, editors, Issues and Appli
ations of Case-Based Reasoningin Design, pages 221�240. Lawren
e Erlbaum Asso
iates, 1997.[34℄ Mi
hael Ri
hter. Classi�
ation and learning of similarity measures. In Clas Opiz andLausen Klar, editors, Pro
eedings der Jahrestangung der Gesells
haft für Klassi�kation,Studies in Classi�
ation, Data Analysis and Knowledge Organisation. Springer Verlag,1992.[35℄ Roger C. S
hank. Dynami
 Memory: A theory of reminding and learning in 
omputersand people. Cambridge University Press, 1982.[36℄ Roger C. S
hank and Christopher K. Riesbe
k. Inside Case Based Reasoning. LEAPublishers, Hillsdale, New Jersey07642, 1989.[37℄ Manuela M. Veloso, Hé
tor Munoz-Avila, and Ralph Bergmann. General-purpose 
ase-based planning: Methods and systems. AI Communi
ations, 9(3):128�137, 1996.7 Annex: The Prolabo appli
ation7.0.4 An illustration of the digestion pro
essThe following �gures 9, 10, 11, 12 and 13, proposes views of the spe
i�
ation of a digestionproblem, and a digestion solution, through the appli
ation interfa
e.
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Figure 9: An example of a des
ription of a digestion spe
i�
ation (part 1 of the problem).

Figure 10: An example of a des
ription of a digestion spe
i�
ation (part 2 of the problem).
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Figure 11: An example of a des
ription of a digestion solution (numeri
al balan
e).

Figure 12: An example of a des
ription of a digestion solution (graphi
al balan
e).
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Figure 13: An example of a des
ription of a digestion solution (the whole program).
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