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Abstract

Digital planarity is defined by digitizing Euclidean planes in the three-dimensional
digital space of voxels; voxels are given either in the grid-point or the grid-cube
model. The paper summarizes results (also including most of the proofs) about dif-
ferent aspects of digital planarity, such as supporting or separating Euclidean planes,
characterizations in arithmetic geometry, periodicity, connectivity, and algorithmic
solutions. The paper provides a uniform presentation, which further extends and
details a recent book chapter in (Klette and Rosenfeld 2004).
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1 Introduction

In this paper we review various concepts and results of digital planarity and
exhibit relations of the subject to other disciplines. Some of the considered
subjects are partially familiar from studies on digital straightness. However,
digital planarity issues appear to be more challenging, due to interesting ap-
plications in three-dimensional (3D) pattern recognition or volume modeling,
and to theoretical difficulties caused by dealing with a discrete two-dimensional
(2D) manifold in a discrete 3D space.

1.1 Preliminaries

We conform to traditional terminology adopted in digital geometry, following
(Klette and Rosenfeld 2004). Various basic notions (such as digital connectiv-
ity, gap or gap-freeness, and so forth) will be introduced along with the digital
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planarity aspects to be considered. 2D digital geometry deals with sets of pix-
els, represented either by grid points (defined by integer coordinates) or unit
grid cells in the plane, also called 2-cells. 3D digital geometry deals with sets
of voxels, represented either in a 3D grid-point or grid-cube model. Although
both models are basically equivalent, they provide frameworks for elucidating
specific aspects of digital planarity. In the grid-point model, a digital 3D ob-
ject (i.e., a finite or infinite set of voxels) is a set of grid points (x, y, z) in the
uniform orthogonal grid (i.e., x, y, and z are integers); in the grid-cube model
it is a set of unit grid cubes, also called 3-cells, where each grid cube has a
grid point as its center point. Note that in both models a voxel is uniquely
identified by one grid point. We also use m-cells, with 0 ≤ m < 3; the frontier
of a 3-cell contains six 2-cells, twelve 1-cells, and eight 0-cells. (Generalizations
of these notions to arbitrary n > 0 dimensions are straightforward.)

A grid-point or grid-cube space is equipped with a symmetric and irreflexive
adjacency relation. Let n = 2 or n = 3. Two n-cells are called m-adjacent
iff their intersection contains an m-cell, for 0 ≤ m < n. Two n-cells c1

and c2 are m-neighbors iff c1 = c2, or they are m-adjacent. The grid-point
model prefers terminology based on cardinalities: two 2D grid points are 4-
adjacent (8-adjacent) iff they are centers of two 2-cells which are 1-adjacent
(0-adjacent); two 3D grid points are 6-adjacent (18- or 26-adjacent) iff they
are centers of two 3-cells which are 2-adjacent (1- or 0-adjacent). In this paper
we prefer to use the grid-cube model rather than the grid-point model.

A set S of pixels or voxels is α-connected iff for any pair c1, c2 ∈ S there is
an α-path p1 = c1, p2, . . . , pn = c2, with pi ∈ S for i = 1, . . . , n, and pi+1 is
α-adjacent to pi for i = 1, . . . , n − 1. An α-component of a set M of pixels or
voxels is a maximal (by inclusion) α-connected subset of M ; it is an α-region
if it is also finite.

Two cells c1 and c2 are incident iff c1 is a subset of c2, or vice versa. Let C
(m)
3

be the class of all m-cells in R3, for m = 0, 1, 2, 3. The incidence grid C3

is defined by these classes and the incidence relation. For example, a single
1-cell c (i.e., a grid edge in C

(1)
3 ) is incident with exactly two 0-cells (i.e., grid

vertices), one 1-cell (the grid edge c itself), four 2-cells (i.e., grid squares), and
four 3-cells (i.e., grid cubes). Using these notations, the grid-cube model (as

defined above) is C
(3)
3 combined with an adjacency relation. Figure 1 illustrates

Fig. 1. Example of a set of voxels represented in the grid-point model (left), the
grid-cube model (middle), and the incidence grid (right).
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the different models.

1.2 Digital planes

We consider a Euclidean plane Γ in R3 defined by an equation

a1x + a2y + a3z = b (1)

where a1, a2, a3, b ∈ R. The symmetry of the space R3 and of the integer grid
allows us to assume without loss of generality (for discussions on theoretical
properties of digital planes) that 0 ≤ a1 ≤ a2 ≤ a3 6= 0. Dividing both sides
of (1) by a3, we obtain that

Γ(α1, α2, β) = {(x, y, z) ∈ R
3 : z = α1x + α2y + β} (2)

where α1, α2, β ∈ R, α1 = −a1/a3, α2 = −a2/a3, and β = b/a3, with

0 ≤ α1 ≤ 1 and 0 ≤ α2 ≤ 1 (3)

Throughout this paper we can also assume that

0 ≤ β < 1 (4)

because planes, whose intercepts β differ by an integer, possess digitizations
with equivalent properties in all categories reviewed in this paper.

We define a digital plane with respect to a model of digitization. Simplifying
but popular models are: (i) 3D grid-line intersection digitization which assigns
all those 3D grid points which are nearest (if two at equal distance, then the
one further away from the origin) to an intersection of the plane to be digitized
with any of the grid lines, (ii) outer 3D Jordan digitization (also known as
supercover digitization) which assigns all those grid cubes having a non-empty
intersection with the given plane, or (iii) digitizations which simply apply
the floor, closest-integer, or ceiling function to the coordinates of the points
in Γ(α1, α2, β). For a detailed description of digitization models the reader is
referred to (Klette and Rosenfeld 2004).

Assume grid-line intersection digitization and the 3D grid-point model. Under
assumptions (3) and (4) for α1, α2, β, it is sufficient to consider only intersec-
tions with grid lines parallel to the z-axis.

Definition 1 Let Γ(α1, α2, β) intersect the vertical grid line, defined by x =
m and y = n, at pm,n, where m, n ≥ 0. Let (m, n, Im,n) be the grid point
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closest to pm,n. Then a digital plane quadrant is a set of grid points which is
defined as follows:

Iα1,α2,β = {(m, n, Im,n) : m, n ≥ 0 ∧ Im,n = bα1m + α2n + β + 0.5c}

If m, n are not required to be nonnegative, we have a digital plane. If α1 or α2 is
irrational, then we speak about an irrational digital plane quadrant (irrational
digital plane); otherwise it is a rational digital plane quadrant (rational digital
plane).

Note that in the above formula adding 0.5 to α1m + α2n + β assures that if
there are two closest grid points, then always the upper one is chosen.

The set Iα1,α2,β uniquely determines both the slopes α1 and α2 and the in-
tercept β if α1 or α2 is irrational. If both α1 and α2 are rational, Iα1,α2,β

uniquely determines α1 and α2, but determines β only up to an interval. This
can be proved by a 3D generalization of the proof of Bruckstein’s theorem
(Bruckstein 1991) as stated in (Rosenfeld and Klette 2001).

For discussing digital planarity exclusively within the grid-cube model, we can
uniquely identify each grid point (in a digital plane as defined above) as being
the centroid of a grid cube. This way, a cellular digital plane is defined by a
digital plane in the grid-point model. (Alternatively, a cellular digital plane
could also be defined by outer Jordan digitization of a plane Γ. However, if
Γ passes through a grid vertex or contains a grid edge, then outer Jordan
digitization would produce “locally thicker” cellular planes).

The grid-cube model also allows to introduce further notions in the context
of digital planarity. Consider the union of all grid cubes contained in a set of
voxels. Its topological frontier (within the Euclidean topology of R

3) consists
of 2-cells called frontier faces. The frontier faces of a cellular digital plane
define an upper and a lower digital frontier plane in the incidence grid C3.
(Note that these are analogous to lower and upper digital lines defined in
(Rosenfeld and Klette 2001) for the study of digital straightness.). Upper and
lower digital frontier planes share in general 0- and 1-cells, but not 2-cells.

Definition 2 A set S ⊂ C
(2)
3 of 2-cells in the incidence grid is called a digital

plane of 2-cells iff it is either an upper or a lower digital frontier plane defined
by a cellular digital plane.

1.3 Digital surface and surface patch

A digital plane is a special case of a digital surface. For a brief survey on digital
surfaces, see (Brimkov and Klette 2004). Below we present an early definition
of a digital surface, and a (historically early) theorem characterizing any digital
plane as a digital surface.
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Let S be a set of voxels. We define slices Sx=i = {(i, y, z) ∈ S : y, z ∈ Z},
Sy=j = {(x, j, z) ∈ S : x, z ∈ Z}, and Sz=k = {(x, y, k) ∈ S : x, y ∈ Z}.

Definition 3 (Kim 1984) A 0-connected set S ⊆ C
(3)
3 is called a digital sur-

face iff each 3-cell p = (i, j, k) ∈ S has at most two 0-adjacent 3-cells in at
least two of the slices Sx=i, Sy=j , or Sz=k; if it has two, then they are not
mutually 0-adjacent; and if p has in one of these sets, say, in Sz=k, more than
two 0-adjacent 3-cells, or two 0-adjacent 3-cells that are mutually 0-adjacent,
then there is no (i, j, k − 1) or (i, j, k + 1) in S.

Theorem 4 (Kim 1984) A (cellular) digital plane is an unbounded digital
surface.

PROOF. Let p = (i, j, k) be a voxel of a digital plane Iα1,α2,β, and consider
Iα1,α2,β∩Sx=i. Let p′ = (i, j−1, k′) and p′′ = (i, j+1, k′′) be the only two voxels
of Iα1,α2,β with centers on the vertical lines x = i and y = j − 1 and x = i
and y = j + 1, respectively. Since α1 ≤ α2, we have 0 ≤ |k − k′|, |k − k′′| ≤ 1.
Thus (i, j − 1, k′) and (i, j + 1, k′′) are the only two voxels defined by p and
x = i, which are 0-adjacent to (i, j, k), but not mutually 0-adjacent. Similarly,
p and y = j define only two 0-adjacent voxels in Iα1,α2,β ∩ Sy=j , which are not
mutually 0-adjacent. In Iα1,α2,β ∩Sz=k, p and z = k may define more than two
0-adjacent voxels. However, (i, j, k− 1) and (i, j, k +1) are not both in Iα1,α2,β

since p = (i, j, k) is the only voxel of Iα1,α2,β with a center on the vertical grid
line x = i and y = j. Thus it follows that Iα1,α2,β is a digital surface. 2

A voxel p = (i, j, k) of a digital surface S is called a border voxel of S iff it
has only one 0-neighbor in at least one of the slices Sx=i, Sy=j, or Sz=k. p is
called an inner voxel of S iff it is not a border voxel. A simple digital surface
is a digital surface that has no border voxels; it can be either unbounded or
bounded. A digital surface patch (Kim 1984) is a finite digital surface whose
border voxels are all (at least) 0-connected (see Figure 2).

Definition 5 Let D ⊂ Z2 be a 1-region. Then ID
α1,α2,β is called a digital plane

segment (DPS). In the 3D incidence grid model, a DPS of 2-cells is given by

Fig. 2. Example of a digital surface patch; border voxels are shown in gray, and
inner voxels in white.
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a finite 1-connected subset of a digital plane of 2-cells.

Corollary 6 A digital plane segment ID
α1,α2,β is a digital surface patch.

In the following sections we review concepts and results related to digital
planarity. The paper is structured as follows. In Section 2, we give some al-
ternative definitions in terms of the chordal triangle property and evenness
of surfaces. In Section 3, we characterize digital planes through supporting
and separating planes, as well as in the framework of arithmetic geometry.
In Section 4, we introduce height and remainder maps that are instrumental
in studying periodicity and connectivity properties of digital planes. In Sec-
tion 5, we review results on digital plane periodicity, while in Section 6 we
address connectivity issues. In Section 7, we summarize a few algorithms for
digital plane recognition, digital surface segmentation, and polyhedral surface
generation. We conclude with some final remarks in Section 8.

2 Alternative Definitions

We use the Minkowski metric L∞. If applied to Z3, it is identical to the grid
point metric d26, i.e., we have d26(p, q) = L∞(p, q) = max{|x1 − x2|, |y1 −
y2|, |z1 − z2|} for any p, q ∈ R3, with p = (x1, y1, z1), and q = (x2, y2, z2).

Definition 7 (Kim and Rosenfeld 1982) S ⊆ Z3 is said to have the chordal
triangle property iff for any p1, p2, p3 ∈ S, every point of the triangle p1p2p3 ⊂
R3 is at L∞-distance < 1 from some point of S.

Obviously, a simple digital surface which satisfies the chordal property cannot
be bounded.

Theorem 8 (Kim 1984) A simple digital surface is a digital plane iff it has
the chordal triangle property.

The original proof is too long to be part of this review, therefore we only
sketch it. First, Kim shows that, given a digital plane, there is a coordinate
plane (the plane z = 0 according to our assumptions (3), (4)) such that the
projection of the digital plane onto its grid points is a one-to-one and onto
mapping (Kim 1984, Lemma 9). This lemma allows to reduce the dimension of
the considered problem and to perform all considerations in such a coordinate
plane rather than in 3D. Then the first implication (a digital plane has the
chordal triangle property) can be easily derived (Kim 1984, Lemma 10). A key
point is the existence of a Euclidean plane Γα1,α2,β defining the given digital
plane.

The proof of the converse proposition (a simple digital surface with the chordal
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triangle property is a digital plane) is more complicated. As a first step, it is
shown that if a simple digital surface has the chordal triangle property, then
there is a one-to-one and onto coordinate projection plane (Kim 1984, Lemma
11). Then the proof is completed by exhaustive analysis of different cases,
conditioned by the distance between the supporting plane of a triangle and
the points of the simple digital surface (Kim 1984, Lemma 12).

For any p = (px, py, pz) ∈ Z3, let pz=0 = (px, py, 0) be the projection of p onto
the xy-plane.

Definition 9 S ⊆ Z3 is called even iff its projection onto the xy-plane Z3
z=0

is one-to-one, and for every quadruple (p, q, r, s) of points in S such that
pz=0 − qz=0 = rz=0 − sz=0, we have |(pz − qz) − (rz − sz)| ≤ 1.

Defining evenness with respect to the xy-plane is consistent with our assump-
tions (3), (4). By requiring a one-to-one mapping onto the xy-plane, we con-
sider only unbounded sets S ⊆ Z3 as being even. The following theorem does
not make use of our general assumption that α1 ≤ α2.

Theorem 10 (Veelaert 1993) A simple digital surface is a digital plane iff it
has the evenness property.

Again we only sketch the original proof. As a first step, digital planarity is
characterized in terms of linear programming: a set S of voxels is a subset of
a digital plane if there exist (α1, α2, β) ∈ [0, 1] × [0, 1[ 1 , such that

0 ≤ α1m + α2n + β − Im,n < 1

for all (m, n, Im,n) ∈ S. Hence, to decide whether S is a subset of a digital
plane, we have to solve a system of linear inequalities with unknowns α1, α2,
and β. Given a voxel (m, n, Im,n), an elementary convex open set associated
with it is defined by two linear inequalities in three unknowns. S is a subset
of a digital plane if the intersection of these elementary convex open sets is
non-empty.

Next, one takes advantage of the following fundamental theorem of Helly:
Let F be a finite family of n + 1 or more convex subsets of Rn. If every
subfamily, consisting of n + 1 sets of F , has a non-empty intersection, then
F has a non-empty intersection. Thus, in dimension 3, the system induced by
the elementary convex sets has a solution if and only if each subsystem with
four inequalities has a solution.

Finally, Veelaert proves that the evenness criterion can be used as a “Helly
subsystem criterion.” Note that the original result is valid for arbitrary dimen-

1 Throughout by ]p, q[, [p, q], and [p, q[ we denote an open, a closed, and a semi-open
interval, respectively.
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sions. Moreover, it is shown that Kim’s chordal triangle property is actually
another Helly criterion.

(Veelaert 1994) also shows that for some special types of finite sets S of voxels
(e.g., such that the projection onto the xy-plane is a rectangle), S is a subset
of a digital plane iff S is even.

3 Supporting and Separating Planes

A supporting plane of a set S ⊆ Z3 is a Euclidean plane that divides R3

into two (open) half-spaces such that S is completely contained in the closure
of one of them. For the next theorem note that any metric in R3 induces a
Hausdorff distance between subsets of R3. We use the Minkowski metric L∞.

Theorem 11 (Kim 1984) S ⊆ Z3 is a digital plane iff it has a supporting
plane Γ such that the L∞-Hausdorff distance between S and Γ is less than 1.

PROOF. Let Γ(α1, α2, β) be a supporting plane for S ⊆ Z3 satisfying the
hypothesis of the theorem to be proved. We assume without loss of generality
that Γ is above S with respect to the z-axis. Let the L∞-Hausdorff distance
between S and Γ be < 1. Then the vertical distance from any point of S
to Γ is < 1, as well. Denote by Γ′ the plane obtained by translating Γ by a
vector (0, 0,− 1

2
)T . Then Γ′ is such that S ⊂ Iα1,α2,β− 1

2

and so, S is a digital
plane. Conversely, suppose that S is a digital plane. Then there exists a plane
Γ(α1, α2, β) such that S ⊂ Iα1,α2,β. By definition of a digital plane, the vertical
distance from any point of S to Γ is less than 1

2
. Let Γ′ be the plane obtained

by translation of Γ by a vector (0, 0, 1
2
)T . Then any point of S is below Γ′ and

the L∞-Hausdorff distance between S and Γ′ is < 1. Hence, Γ′ is a supporting
plane of S. 2

In (Kim 1984) it was claimed that if S ⊆ Z3 is a (finite) DPS, then the points of
S are at L∞-Hausdorff distance < 1 from at least one Euclidean plane incident
with one of the faces of the convex hull of S. Then one of these planes is a sup-
porting plane in the sense of Theorem 11. However, (Debled-Rennesson 1995)
gave a counter-example: for D = [0, 6]× [0, 7], the L∞-Hausdorff distance be-
tween ID

5/29,9/29,1/2 and any plane incident with one of the faces of the convex

hull of ID
5/29,9/29,1/2 is greater than 1.

Let S ⊂ Z
3 and Sz+1 = {(i, j, k + 1) : (i, j, k) ∈ S}. A plane Γ ⊂ R

3 separates
the sets S1, S2 ⊂ Z3 iff S1 and S2 are in opposite open half-spaces defined by
Γ.

8



Theorem 12 (Stojmenović and Tosić 1991) A set S ⊂ Z3 is a subset of a
digital plane iff there exists a plane that separates S from Sz+1.

PROOF. We first suppose that S is a subset of a digital plane. Let Γ(α1, α2, β)
be the plane such that S ⊂ Iα1,α2,β and Γ′ the plane with parameters (α1, α2, β+
1
2
). We consider the points r = (rx, ry, rz) ∈ S, p = (rx, ry, pz) ∈ Γ, p′ =

(rx, ry, p
′
z) ∈ Γ′, and rz+1 = (rx, ry, rz + 1) ∈ Sz+1. From the definition of

3D grid-line intersection digitization and the definition of Γ′, it follows that
p′z−1 < rz ≤ p′z < rz+1. Hence, the number p′z “separates” the numbers r and
rz+1. Since this property is valid for every point of S, it follows that Γ′ separates
S from Sz+1, even if S is not finite. Conversely, let Γ(α1, α2, β) be a separating
plane for S and Sz+1. We consider r ∈ S, rz+1 = (rx, ry, rz + 1) ∈ Sz+1 and
p = (rx, ry, pz) ∈ Γ. We have rz ≤ pz < rz + 1, i.e., rz − 1

2
≤ pz − 1

2
< rz + 1

2
.

Thus we obtain that the digital image of Γ′ with parameters (α1, α2, β − 1
2
) is

such that S ⊂ Iα1,α2,β− 1

2

. This means that S is a subset of a digital plane. 2

Arithmetic geometry, as briefly indicated in (Forchhammer 1989) and devel-
oped in (Reveillès 1991), provides a uniform approach to the study of digi-
tized hyperplanes in n dimensions. Basic definitions follow the general idea
of specifying lower and upper supporting planes. We discuss here the three-
dimensional case. Let a, b, c, µ, and ω ≥ 0 be integers.

Definition 13 Da,b,c,µ,ω = {(i, j, k) ∈ Z
3 : µ ≤ ai+ bj + ck < µ+ω} is called

an arithmetic plane with normal n = (a, b, c)T , intercept µ, and arithmetic
thickness ω.

An arithmetic plane is a generalization of an arithmetic line Da,b,µ,ω = {(i, j) ∈
Z2 : µ ≤ ai + bj < µ + ω}. From Reveillés’ theorem on arithmetic lines
(Reveillès 1991) we know that naive lines (with ω = max{|a|, |b|}) are the
same as digital lines (which are 0-paths), and standard lines (with ω =
|a| + |b|) are the same as upper or lower digital lines (which are 1-paths,
see (Rosenfeld and Klette 2001)). If ω = max{|a|, |b|, |c|}, then the arithmetic
plane Da,b,c,µ,ω is called a naive plane; and if ω = |a|+ |b|+ |c|, it is a standard
plane.

The following theorem was proved in (Andres et al. 1997) by employing results
from (Veelaert 1993).

Theorem 14 (Andres et al. 1997) Every rational digital plane Iα1,α2,β is a
naive plane Da,b,c,µ,ω with relatively prime coefficients a, b, c, and vice versa.

In the rest of this section, we characterize upper or lower frontier planes in
the incidence grid model. Assume in the definition of supporting planes that
S is a set of cells in the incidence grid C3. Each 0-cell of a 3-cell c is incident
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Fig. 3. Example of a tripod associated to a 0-cell.

with three 2-cells of c (see Figure 3). The (outward pointing) normals to these
2-cells form a tripod. There are eight different tripods.

Corollary 15 The normals of all 2-cells of any upper or lower digital frontier
plane belong to the same tripod.

The main diagonal v of a pair of parallel planes in R3 is the diagonal vector in
a grid cube that has the greatest dot (i.e., inner) product with the normal n
of the planes (i.e., v has one of the eight possible directions (±1,±1,±1) and
length ‖v‖ =

√
3; if there is more than one such a direction, we can choose

one of them arbitrarily). The distance between both planes in main diagonal
direction is called their main diagonal distance.

Fig. 4. A DPS of 2-cells; the main diagonal distance between the two parallel planes
is less than

√
3 (Klette and Sun 2001).

Recall that in 2D, a 1-path is a 1-DSS (digital straight segment) iff its cells lie
between or on a pair of supporting lines whose main diagonal distance is less
than

√
2 (see (Rosenfeld and Klette 2001)). Figure 4 shows a DPS of 2-cells;

n is the normal of the shown supporting planes, and v is the vector in the
main diagonal direction. Note that also allowing a main diagonal distance of
“equal to

√
3” in the following corollary is of benefit for algorithms.

Corollary 16 A finite simply 1-connected set of frontier faces of a set of 3-
cells is a DPS iff any of its (outward pointing) face normals belongs to one
tripod, and the faces lie between or on a pair of parallel Euclidean planes whose
main diagonal distance is less than, or equal to

√
3.
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PROOF. Theorem 14 shows that a finite DPS G in the grid-point model is
characterized (besides connectivity) by the property that it is between two
supporting planes

ai + bj + ck = µ and ai + bj + ck = µ + c

The upper supporting plane is a translation of the lower supporting plane (by
translation vector (0, 0, 1)). The main diagonal direction of both (under the
assumption 0 < a ≤ b ≤ c) is (−1,−1, +1), and the main diagonal distance
between both planes is less than, or equal to

√
3.

Now consider a set of 2-cells in the grid-cube model. A translation by (.5, .5, .5)
maps all vertices of these 2-cells into grid point positions. The main diago-
nal distance between two parallel planes is invariant with respect to such a
translation. Due to Corollary 15 we also have that all face normals are on a
tripod.

For the reverse direction we also apply Theorem 14, and obtain that a main
diagonal distance less than

√
3 defines a DPS (or DPS of 2-cells). Now assume

that a given finite set G of frontier faces is on or between two parallel planes
whose main diagonal distance is equal to

√
3. Then we also have (at least) one

3-cell between both parallel planes (with face normals which do not belong
to just one tripod). The additional requests that all face normals belong to
one tripod, and that G is simply 1-connected, imply that all 2-cells in G only
belong to either the upper or the lower digital frontier plane of one cellular
digital plane and are defined on an (even simply-connected) 1-region of 2-cells
in Z3

x=0. Altogether, G is a DPS. 2

4 Height and Remainder Maps

From Theorem 14 we know that for any digital plane Iα1,α2,β with rational α1

and α2, there exist relatively prime integers a, b, c and an integer µ such that
Iα1,α2,β = Da,b,c,µ,max{|a|,|b|,|c|}; and for any Da,b,c,µ,max{|a|,|b|,|c|} there exist ratio-
nal slopes α1, α2 and an intercept β such that Da,b,c,µ,max{|a|,|b|,|c|} = Iα1,α2,β.

A naive plane D = Da,b,c,µ,ω is functional over a coordinate plane, say, xy,
if for any pixel (x, y) from xy there is exactly one voxel belonging to D.
Without loss of generality, we consider naive planes that are digitizations of
Euclidean planes incident with the origin (e.g., by assuming µ = 0). Now
assume 0 < a ≤ b ≤ c. This condition implies that the naive plane Da,b,c,0,ω is
functional over the plane xy, i.e., each voxel (x, y, z) ∈ Da,b,c,0,c projects onto
a pixel (x, y) in the xy-plane, and for every (x, y) ∈ Z2 there is exactly one
voxel (x, y, z) ∈ Da,b,c,0,c.

Definition 17 Let 0 < a ≤ b ≤ c. The height map M
(h)
a,b,c of Da,b,c,0,ω is defined
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Fig. 5. Two height maps, for D6,7,16,0,16 on the left, and D6,9,16,0,16 on the right
(Brimkov and Barneva 2004).

on Z2 by M
(h)
a,b,c(x, y) = {z ∈ Z : (x, y, z) ∈ Da,b,c,0,c}.

Figure 5 illustrates two height maps of naive planes Da,b,c,0,c. Let La,b,c(z0) =
{(x, y) ∈ Z2 : (x, y, z0) ∈ Da,b,c,0,c}, for z0 ∈ Z. It follows that La,b,c(z0) is an
arithmetic line D(a, b, µ, ω) with µ = −cz0 and ω = c; D(a, b, µ, ω) is standard
if c = a+b, “thicker than standard” if c > a+b, and “thinner than standard,”
but “thicker than naive” if c < a + b. The arithmetic lines La,b,c(z0), with
z0 ∈ Z, partition Z2 into equivalence classes determined by the different val-
ues of M

(h)
a,b,c, which are all translation equivalent 2 iff a, b are relatively prime

(Brimkov and Barneva 2004), see also (Brimkov and Barneva 2003). See Fig-
ure 5 on the left for an example with relatively prime integers a, b, and on
the right for an example where a, b are not relatively prime. In the former, all
equivalence classes are translation equivalent, while in the latter the partition
features two different patterns. Any set of gcd(a, b) = 3 consecutive patterns
(that are arithmetic lines with arithmetic thickness c) appear periodically in
the partition.

Furthermore, 0 < a ≤ b ≤ c implies that the projections L
(x)
a,b,c(x0) = {(y, z) ∈

Z2 : (x0, y, z) ∈ Da,b,c,0,c} and L
(y)
a,b,c(y0) = {(x, z) ∈ Z2 : (x, y0, z) ∈ Da,b,c,0,c},

for some x0, y0 ∈ Z, are naive lines with intercept µ = −ax0 or µ = −by0,
respectively. The arithmetic lines L

(x)
a,b,c(x0), for x0 ∈ Z, constitute a cover

of Z2. The same holds for the arithmetic lines L
(y)
a,b,c(y0), for y0 ∈ Z; see

(Debled-Renesson and Reveillès 1994) and (Debled-Rennesson 1995). 3

Naive planes can also be represented by remainders (Debled-Rennesson 1995).
Let (x, y, z) ∈ Da,b,c,0,c. We assign a value ax+ by + cz to the grid point (x, y),
i.e., the remainder modulo c.

Definition 18 Let us consider 0 < a ≤ b ≤ c. The remainder map M
(rem)
a,b,c of

2 A,B ⊂ Z
n are translation equivalent iff there is a translation vector t ∈ Z

n such
that A = t⊕ B.
3 Using the restriction gcd(a, b) = gcd(a, c) = gcd(b, c) = 1; for the general case,
see (Brimkov and Barneva 2004).
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Fig. 6. Two remainder maps for the naive planes shown in Figure 5
(Brimkov and Barneva 2004).

Da,b,c,0,ω is defined on Z2 by M
(h)
a,b,c(x, y) = {ax + by + cz (mod c) : (x, y, z) ∈

Da,b,c,0,c}.

A remainder map is an array that features a partition which has the same
arithmetic line patterns as those in the partition induced by the height map
M

(h)
a,b,c. See Figure 6 for two examples. On the left we have a = 6 and b = 7,

i.e., both integers are relatively prime, which results into remainders in the
whole range of 0, . . . , 15, for c = 16. On the right we have a = 6 and b = 9,
i.e., remainders in one equivalence class of the height map are all identical
modulo gcd(6, 9) = 3. More in general, we have the following proposition
(Brimkov and Barneva 2004).

Proposition 19 Consider the naive plane Da,b,c,0,c : 0 ≤ ax + by + cz < c,

0 ≤ a ≤ b ≤ c, and its remainder map M
(rem)
a,b,c .

1 Let gcd(a, b) = 1. Then all arithmetic line patterns of the partition of

M
(rem)
a,b,c are equivalent. Each of them involves the numbers 0, 1, 2, . . . , c−1.

See Figure 6a.
2 Let gcd(a, b) = d 6= 1. Then the partition of M

(rem)
a,b,c features two different

arithmetic line patterns, as any d consecutive arithmetic lines D0, D1, . . . , Dd−1

appear periodically in the partition. Moreover, for some permutation (i0, i1, . . . , id−1)
of the indexes 0, 1, . . . , d − 1, for any k : 0 ≤ k ≤ d − 1, the line
Dik , 0 ≤ k ≤ d − 1 involves only integers in the range [0, c − 1] equal
to k modulo d. See Figure 6b.

The equivalent arithmetic lines (i.e., those containing the same values) form
an equivalence class. Thus we have gcd(a, b) equivalence classes overall. 4

Proposition 20 (Brimkov and Barneva 2004) M
(rem)
a,b,c , M

(rem)
c−a,b,c, M

(rem)
a,c−b,c, and

M
(rem)
c−a,c−b,c, 0 < a ≤ b ≤ c, are equivalent to each other either up to a reflec-

4 Note that the equivalence relation defined on M
(rem)
a,b,c is different from the one

defined on the height map M
(h)
a,b,c.
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tion in arbitrary row (M
(rem)
a,b,c and M

(rem)
a,c−b,c; M

(rem)
c−a,b,c and M

(rem)
c−a,c−b,c), or up to a

reflection in arbitrary column (M
(rem)
a,b,c and M

(rem)
c−a,b,c; M

(rem)
a,c−b,c and M

(rem)
c−a,c−b,c),

or up to a reflection in arbitrary point, i.e., 180 degree rotation (M
(rem)
a,b,c and

M
(rem)
c−a,c−b,c; M

(rem)
c−a,b,c and M

(rem)
a,c−b,c).

PROOF. The proof is based on the following two technical lemmas.

Lemma 21 Let Da,b,c,0,c : 0 ≤ ax + by + cz < c be a naive plane. Consider its

remainder map M
(rem)
a,b,c . Let (x, y) be a point of M

(rem)
a,b,c with value s, 0 ≤ s ≤

c − 1.

1 Let the points (x, y) and (x′, y′) belong to the same equivalence class (dig-
ital line) of the related partition, where (x′, y′) labels one of the following
points: (x, y + 1), (x, y − 1), (x− 1, y), (x + 1, y), (x + 1, y + 1), (x + 1, y −
1), (x−1, y+1), or (x−1, y−1). Then the value of (x′, y′) is respectively,
s + b, s − b, s − a, s + a, s + b + a, s − b + a, s + b − a, or s − b − a.

2 Let now the points (x, y) and (x′′, y′′) belong to different equivalence classes
(digital lines) of the partition, where (x′′, y′′) labels one of the points:
(x, y + 1), (x, y− 1), (x− 1, y), (x+ 1, y), (x+ 1, y +1), (x + 1, y− 1), (x−
1, y + 1), or (x − 1, y − 1). Then the value of (x′′, y′′) is respectively,
s+b−c, s−b+c, s−a+c, s+a−c, s+b+a−c, s−b+a+c, s+b−a−c,
or s − b − a + c.

The proof follows immediately from the definition of M
(rem)
a,b,c .

Lemma 22 Consider the digital planes Da,b,c,0,c : 0 ≤ ax + by + cz < c and

Da,c−b,c,0,c : 0 ≤ ax + (c − b)y + cz < c and their remainder maps M
(rem)
a,b,c and

M
(rem)
a,c−b,c, respectively. Let (x, y) be a point of M

(rem)
a,b,c with a value v(x, y) = s,

and (x′, y′) a point of M
(rem)
a,c−b,c with the same value v(x′, y′) = s. Then (x, y)

and (x, y ± 1) belong to the same equivalence class of M
(rem)
a,b,c iff (x′, y′) and

(x′, y′ ∓ 1) belong to different equivalence classes of M
(rem)
a,c−b,c.

PROOF. Let (x, y) and (x, y + 1) belong to the same equivalence class of

M
(rem)
a,b,c . By Lemma 21, v(x, y+1) = s+ b < c, which is equivalent to v(x′, y′−

1) = s− (c− b) < 0, i.e., (x′, y′) and (x′, y′∓ 1) belong to different equivalence

classes of M
(rem)
a,c−b,c. Analogously, if (x, y) and (x, y − 1) belong to the same

equivalence class of M
(rem)
a,b,c , then v(x, y − 1) = s − b > 0, which is equivalent

to v(x′, y′ +1) = s+(c− b) > c, i.e., (x′, y′) and (x′, y′± 1) belong to different

equivalence classes of M
(rem)
a,c−b,c. 2

After this preparation, consider M
(rem)
a,b,c and M

(rem)
a,c−b,c. Since Da,b,c,0,c and Da,c−b,c,0,c

14



have the same first and third coefficients, it follows that the corresponding ar-
rays M

(rem)
a,b,c and M

(rem)
a,c−b,c are composed by the same set of rows. We will show

that they are equivalent up to a reflection in arbitrary row of M
(rem)
a,b,c .

Let (x, y) be an arbitrary point of M
(rem)
a,b,c with value v(x, y) = s. Consider the

point (x, y+1). Assume that (x, y) and (x, y+1) belong to the same equivalence

class in M
(rem)
a,b,c (i.e., s + b < c). Then by Lemma 21, v(x, y + 1) = s + b. Let

(x′, y′) be a point of M
(rem)
a,c−b,c with the same value v(x′, y′) = s as (x, y). Then

by Lemma 22, (x′, y′) and (x′, y′ − 1) belong to different equivalent classes of

M
(rem)
a,c−b,c. Then, again by Lemma 21, v(x′, y′− 1) = s− (c− b) + c = s + b, i.e.,

the same as the value v(x, y + 1).

Similarly, consider the point (x, y − 1), and assume that (x, y) and (x, y − 1)

belong to the same equivalence class in M
(rem)
a,b,c (i.e., s − b > 0). We have

v(x, y − 1) = s− b. Then (x′, y′) and (x′, y′ + 1) belong to different equivalent

classes of M
(rem)
a,c−b,c, and v(x′, y′ +1) = s+(c− b)− c = s− b, which is the same

as the value v(x, y − 1).

The case when (x, y) and (x, y + 1) (resp. (x, y) and (x, y − 1)) belong to
different equivalence classes can be handled analogously. Thus we can conclude
that the array M

(rem)
a,c−b,c can be obtained from the array M

(rem)
a,b,c by reflection in

arbitrary row of M
(rem)
a,b,c . See Figure 6.

In an analogous way it follows that M
(rem)
a,b,c and M

(rem)
c−a,b,c are equivalent up

to a reflection in arbitrary column of M
(rem)
a,b,c . The other equivalences can be

obtained in a similar fashion, taking advantage of those already proved. For
instance, we can now apply the last fact above to M

(rem)
a,c−b,c and obtain that

M
(rem)
c−a,c−b,c and M

(rem)
a,c−b,c are equivalent up to a reflection in arbitrary column.

Hence, M
(rem)
c−a,c−b,c can be obtained from M

(rem)
a,b,c by a reflection in arbitrary row

followed by a reflection in arbitrary column, i.e., by a reflection in arbitrary
point of M

(rem)
a,b,c . 2

This is called the Symmetry Lemma in (Brimkov and Barneva 2004), which
defines a special type of symmetry between naive planes Da,b,c,0,c, Dc−a,b,c,0,c,
Da,c−b,c,0,c, and Dc−a,c−b,c,0,c. If one or both parameters a and b are larger than
c/2, then the Symmetry Lemma allows to consider w.l.o.g. symmetric naive
planes Da,c−b,c,0,c or Dc−a,c−b,c,0,c where the two first parameters do not exceed
c/2 (see Figure 6). This may be useful for studying the connectivity number
of a digital plane (see Section 6).
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5 Periodicity

We start by introducing various notions related to the subject of this section.

A position (i, j) in an array X = (X(i, j))0≤i,0≤j is defined by a row i and a
column j; X(i, j) is the element of X at position (i, j). The elements of X are
letters in an alphabet A.

Let S ⊆ Z2 = {(i, j) ∈ Z2 : i, j ≥ 0}. The restriction X[S] of X to positions in
S is called a factor of X on S. If S = Z2 or S = Z2

+, we will write X instead
of X[S], for short.

Definition 23 A nonzero vector v in Z2 is called a symmetry vector for X[S]
iff X(i, j) = X(v + (i, j)) for all (i, j) ∈ S such that v + (i, j) ∈ S. v is called
a periodicity vector or a period for X[S] iff for any integer k the vector kv is
a symmetry vector for X[S].

An infinite array X on Z2
+ is called 2D-periodic iff there are two linearly

independent vectors u and v in Z2 such that w = iu + jv is a period for X
for any (i, j) ∈ Z2 and w ∈ Z2

+. X is called 1D-periodic iff all periods of X
are parallel vectors. If X has no period, it is aperiodic.

Periodicity of a 3D set X[S] where S ⊆ Z3 is defined analogously.

Let X be a 2D-periodic infinite array on Z2
+. The set of symmetry vectors of

X defines (by additive closure) a sub-lattice Λ of Z2. Any basis of Λ is a basis
of X.

In analogy with the chain codes for digital curves (Freeman 1961), and follow-
ing (Brimkov and Barneva 2005), below we define step codes. These appear to
be a convenient technical tool for studying the structure of digital objects (in
particular digital lines and planes) since they are defined on alphabets with a
small number of letters (usually binary or ternary).

Fig. 7. (Brimkov 2002) Left: I 1
2 ,

1
3 ,0

(m,n). Middle: i
(r)
1
2 ,

1
3 ,0

(m,n). Right: i
(c)
1
2 ,

1
3 ,0

(m,n).
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We start with iα1,α2,β(0, 0) = I0,0 ∈ {0, 1}. Then we define:

iα1,α2,β(0, n + 1) = I0,n+1 − I0,n =
{

0 if I0,n+1 = I0,n

1 if I0,n+1 = I0,n + 1
for n ≥ 0

iα1 ,α2,β(m + 1, 0) = Im+1,0 − Im,0 =
{

0 if Im+1,0 = Im,0

1 if Im+1,0 = Im,0 + 1
for m ≥ 0

In addition to these “initial values,” we also define row-wise step codes

i
(c)
α1,α2,β(m, n + 1) = Im,n+1 − Im,n =

{

0 if Im,n+1 = Im,n

1 if Im,n+1 = Im,n + 1
for m ≥ 1

and column-wise step codes

i
(r)
α1,α2,β(m + 1, n) = Im+1,n − Im,n =

{

0 if Im+1,n = Im,n

1 if Im+1,n = Im,n + 1
for n ≥ 1

Values in the 0th row and 0th column are used in both the column-wise and
row-wise step codes; see Figure 7. Assumptions 0 ≤ α1 ≤ 1 and 0 ≤ α2 ≤ 1
guarantee that codes 0 and 1 are sufficient, i.e., the step codes are 2D arrays on
a binary alphabet A = {0, 1}. Since row-wise and column-wise step codes ex-
hibit analogous properties, (as demonstrated in (Brimkov and Barneva 2005),
see also (Brimkov 2002)), we will only use row-wise step codes in the sequel,
and will omit the superscript (r).

Definition 24 (Brimkov and Barneva 2005) iα1,α2,β = {(m, n, iα1,α2,β(m, n)) :
m, n ∈ Z, m, n ≥ 0} is a step code of a digital plane quadrant, or, for short, a
quadrant step code, with slopes α1 and α2 and intercept β.

If we do not require m, n to be nonnegative, we obtain a step code of a digital
plane. For short, we call it a plane step code.

Digital planes and plane quadrants have analogous properties, as plane and
quadrant step codes do. To simplify our notation, we will use Iα1,α2,β to denote
both digital planes and plane quadrants, and iα1,α2,β for plane or quadrant step
codes.

For D ⊆ R2, let

iDα1,α2,β = {(m, n, iα1,α2,β(m, n)) : (m, n) ∈ D ∩ Z
2}
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If α1 or α2 is irrational, then we speak about an irrational plane step code;
otherwise it is a rational plane step code.

(Lunnon and Pleasants 1992) show that rational digital straight lines are trans-
lation equivalent if they have identical slopes. Rational digital planes with
identical slopes are also translation equivalent, see (Brimkov and Barneva 2004).
This implies that translation invariant properties of rational digital planes are
independent of intercepts; the translation equivalence classes of all rational
digital planes can be uniquely identified by Iα1,α2,β or iα1,α2,β. Note however
that the above properties do not apply to the case of irrational digital planes,
as follows, e.g., from considerations in (Brimkov and Barneva 2005).

It is well known that chain codes of rational digital rays/lines (that are digitiza-
tions of rays/lines with rational coefficients, see (Rosenfeld and Klette 2001))
are periodic while those of irrational digital rays/lines are aperiodic (Brons 1974).
Below we study periodicity of quadrant step codes. We consider quadrant step
codes rather than plane step codes for the sake of technical convenience. Since
a plane quadrant is a 2D counterpart of a ray, this way we also parallel the
one-dimensional considerations that are usually in terms of digital rays.

Theorem 25 Any rational quadrant step code is 2D-periodic. Any irrational
quadrant step code is either 1D-periodic or aperiodic.

The formal proof of this statement is too lengthy to be included in the present
survey (see (Brimkov and Barneva 2005)). It particularly relies on the follow-
ing well-known fact: For any rational Euclidean plane P there are (infinitely
many) pairs of linearly independent rational directions (i.e., vectors with ra-
tional coordinates that are collinear with P ). In this case the corresponding
digital plane quadrant and its step code are 2D-periodic. For any irrational
Euclidean plane P one of the following conditions is met. (i) P has no rational
direction, i.e., there is no rational vector that is parallel to P . Note that in
this case P may either contain no integer or rational points, or may contain a
single point of this kind. (ii) P has a rational direction. In this case P either
contains infinitely many equidistant integer points lying on a line, or P is par-
allel to such a line. One can show that in Case (i) the digital plane quadrant
of P is aperiodic, while in Case (ii) it is 1D-periodic. The same applies to the
corresponding quadrant step codes.

Next we obtain another property related to rational digital planes and their
step codes. W.l.o.g., consider a rational plane through the origin P : ax +
by + cz = 0, the corresponding digital plane Da,b,c,0,c, and its plane step code
iα1,α2,β. Let Λ be the integer lattice in P , B a basis for Λ, and Λ′ and B′ the
orthogonal projections of Λ and B over the xy-plane, respectively. Then Λ′ is
a sub-lattice of Z2 and B′ a basis for Λ′. With this denotations we can state
the following theorem.

Theorem 26 (Brimkov and Barneva 2005) Given a rational plane P : ax +
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by + cz = 0, let Λ be the integer lattice in P and Λ′ its orthogonal projection
over the xy-plane. Then for any basis for Λ′, the lattice cells of Λ′ have constant
area max{|a|, |b|, |c|}.

PROOF. W.l.o.g., let 0 ≤ a ≤ b ≤ c, i.e., c = max{a, b, c}. It is well-
known that, given two simple polygons 5 in P with equal area, their orthogonal
projections over the coordinate xy-plane have the same area, as well. It is also
a well-known fact that all bases of the integer lattice Λ in P generate cells
with equal area. Hence, it is enough to estimate the area of a parallelogram
that is the orthogonal projection of a cell determined by an arbitrary basis
of Λ. As a first basis vector one can chose u = (0, c/gcd(b, c),−b/gcd(b, c)).
Then as a second basis vector one can chose v = (gcd(b, c), y∗, z∗), where
y∗, z∗ form a solution of the linear Diophantine equation a · gcd(b, c) + by +
cz = 0, and y∗ is the minimal positive integer with this property. The special
construction of u and v (and, especially, the minimality of y∗) assures that
these two vectors indeed form a basis for Λ. Then the orthogonal projections
of u and v over the xy-plane are respectively the vectors u′ = (0, c/gcd(b, c))
and v′ = (gcd(b, c), y∗), which form a basis for the lattice Λ′ related to the
plane step code. Then the area of the corresponding cell generated by u′ and
v′ equals |det(u′|v′)| = c = max{a, b, c}. 2

We say that an infinite array X on Z2
+ is tiled by a (finite) rectangular factor

W if X is a pairwise disjoint repetition of W . Rectangular tilings are of interest
because of their simple special shape. It can be shown that any 2D-periodic
array on Z2

+ can be tiled by a rectangular tile (see, e.g., (Brimkov 2000)). This
implies that any rational quadrant step code can be tiled by a rectangular tile
of a certain size.

Let X be an array on Z2
+. An m×n rectangle S ⊂ Z2

+ defines an m×n-factor
of X. Given two integers k, l ≥ 0, we call a (k, l)-suffix of X the sub-array
of X determined by its rows and columns with indexes greater than or equal
to k and l, respectively. Digital 2D ray X is called ultimately periodic if there
are integers k, l ≥ 0 such that the (k, l)-suffix of X has a period vector. X is
uniformly recurrent if for every integer n > 0 there is an integer N > 0 such
that every square factor of size N × N contains every square factor of size
n × n.

Let PX(m, n) be the number of m×n-factors of X. For example, PX(0, 0) = 1
for any X and PX(1, 1) is the number of distinct letters in X. We consider bi-
nary words on the alphabet A = {0, 1}. PX generalizes the complexity function
P (w, n) defined (e.g.) in (Allouche and Shallit) for 1D words w. Recall that the
complexity function Pw(n) of such a word w is defined as the number of differ-
ent n-factors of w. A binary word w with Pw(n) ≤ n for some n, is (ultimately)

5 A polygon is simple iff it is homeomorphic to a disc.
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periodic. Sturmian words are the words that have lowest complexity among the
non-ultimately periodic words, i.e., of complexity Pw(n) = n+1 for any n ≥ 0.
It is also well-known that any Sturmian word is a chain code of an irrational
straight line and is uniformly recurrent. In higher dimensions the situation is
more complicated. For instance, it is still unknown whether a notion of mini-
mal complexity can be reasonably defined (see (Berthé and Vuillon 2000a) and
the discussion therein). To a certain extend the same applies to the notion of
2D Sturmian word. Initially it has been expected that 2D words of minimal
complexity are step codes 6 of irrational planes with no rational direction.
Such words were believed to have complexity mn + 1. However, it has been
recently shown that a 2D word of complexity mn + 1 cannot be uniformly re-
current and does not appear to be a step code of any plane (Cassaigne 1999).
Therefore, it makes sense to call 2D Sturmian words the ones that appear
to be step codes of irrational planes which do not have a rational direc-
tion. Such kind of words obtained within a number of diverse digitization
schemes have been investigated by S. Ito, M. Ohtsuki, L. Vuillon, V. Berthé,
R. Tijdeman among others. See, e.g. (Vuillon 1998), (Arnoux et al. 2001),
(Berthé and Vuillon 2000a), (Berthé and Vuillon 2000b), (Cassaigne 1999),
(Ito and Ohtsuki 1994), (Berthé and Vuillon 2001) for recent contributions.
Here we present some results in the context of the plane step codes.

An aperiodic irrational plane step code X still possesses certain “quasiperi-
odicity” (uniform recurrence). Thus every rectangular block appearing in X,
appears in it infinitely many times and with bounded gaps. Moreover, all step
codes of irrational planes with the same coefficients contain the same set of
rectangular factors, and any rectangular factor of an irrational plane step code
is also a factor of a rational plane step code. We also have that if X is an irra-
tional plane step code, then PX(m, n) is unbounded. For the above and other
results see (Brimkov 2002) and (Brimkov and Barneva 2005).

An important array characteristic is its balance. Let h(U) denote the number
of 1’s in a binary array U . Given two binary arrays U and V of the same
size m × n, δ(U, V ) = |h(U) − h(V )| is their balance. A set X of arrays is
said to be α-balanced for a certain constant α > 0, if δ(U, V ) ≤ α for all
pairs of (m × n)-arrays U, V ∈ X, where m and n are arbitrary positive
integers. An infinite array A is said to be α-balanced if its set of factors is
α-balanced. Array balances are familiar from studies in number theory, er-
godic theory, and theoretical computer science. For a recent study on balance
properties of multidimensional words on two or three letter alphabets see,
e.g., (Berthé and Tijdeman 2002). One can show that if X is a row-wise plane
step code, then δ(U, V ) ≤ m for any pair of (m × n)-factors of X, m, n ≥ 0
(Brimkov and Barneva 2005). This bound is reachable, hence the step codes
of digital planes are, overall, non-balanced (Brimkov and Barneva 2005).

6 Step-codes of digital planes have been defined in certain ways, not necessarily the
same as the one used in this paper, but, as a matter of fact, equivalent to it in terms
of basic properties. See, for instance, (Berthé and Vuillon 2000a).
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Before presenting some other results, we provide a brief discussion on the
structure of a digital plane quadrant. Recall that an (m, n)-window at a point
(p, q) ∈ Z2 is a set of points (i, j) ∈ Z2 with p ≤ i < p + m and q ≤ j < q + n.
An (m, n)-cube at a point (i, j) ∈ Z2 of a digital plane P is the set {(x, y, z) ∈
P : i ≤ x ≤ i + m − 1 and j ≤ y ≤ j + n − 1}. Two (m, n)-cubes at two
different points (i, j) and (i′, j ′) of a digital plane are geometrically equivalent
if each of them can be obtained from the other by an appropriate translation.
By CX(m, n) we denote the number of different (m, n)-cubes over the points
of a digital plane X. CX(m, n) is an important parameter characterizing a
digital plane structure (see, e.g., (Reveillès 1995)) and is closely related to the
complexity function of a plane step code. The following properties have been
proved in (Brimkov and Barneva 2005). It follows that CX(m, n) ≤ mn. If X
is rational, then CX(m, n) ≤ lcm(q1, q2), where q1 and q2 are the denominators
of the coefficients of x1 and x2 in the analytical plane representation. We
always have PX(m, n) ≥ CX(m, n). If X is irrational and aperiodic, then
PX(m, n) ≥ mn.

We conclude this section by listing some results related to a conjecture by M.
Nivat about periodicity of infinite binary 2D words. He conjectured that if
for some integers m, n ≥ 0 an infinite bi-dimensional 0/1 array A has com-
plexity PA(m, n) ≤ mn, then A has at least one period vector (Nivat 1997).
Note that the converse is not true, in general: an array may be 1D-periodic
but its complexity may be higher than mn (see (Berthé and Vuillon 2000a)).
Only partial results for small values of m and n have been proved regarding
this conjecture. In (Epifanio et al. 2003) a weaker statement is proved un-
der the condition PA(m, n) ≤ 1

100
mn. This result was recently improved by

reducing the constant factor 1
100

to 1
12

(Quas and Zamboni 2004). For the spe-
cial case of arrays that are plane step codes, we have the following results
(Brimkov and Barneva 2005).

Theorem 27 Let iX be a quadrant step code of a digital plane X. iX has a
period vector if and only if for some integers m, n ≥ 0, PiX (m, n) < mn.

If for some m, n ≥ 0 an equality PiX (m, n) = mn holds, it seems to imply
the condition PiX (m, n + 1) < m(n + 1), under which Theorem 27 applies. To
prove this remains as a further task.

Next we present an asymptotic result in terms of CR(m, n). As already men-
tioned, Definition 23 straightforwardly extends to one for periodicity of a 3D
set X[S] where S ⊆ Z3. We have the following theorem.

Theorem 28 Let R be a Euclidean plane quadrant and IR the corresponding
digital plane quadrant. Then IR has at least a 1D-period if and only if

lim
m,n→∞

CR(m, n)

mn
= 0
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Fig. 8. Illustration to the proof of Theorem 28.

PROOF. Let first assume that limm,n→∞
CR(m,n)

mn
= 0. Then there exist posi-

tive integers m0, n0 such that for any pair of integers m, n with m ≥ m0 and
n ≥ n0, we have CR(m,n)

mn
< 1

2
, i.e.,

CR(m, n) <
1

2
mn (5)

Obviously, CR(m, n) ≤ PR(m, n). It is not hard to realize that we also have
PR(m, n) ≤ 2CR(m, n). To see this, let iR be the step code of R and let
us define an (m, n)-window of iR at a point (i, j) to be the m × n binary
array {iR(x, y) : i ≤ x ≤ i + m − 1, j ≤ y ≤ j + n − 1} ⊂ iR. Now, let
Q and Q′ be two geometrically equivalent (m, n)-cubes and H and H ′ the
corresponding (m, n)-windows of iR at points (i, j) and (i′, j ′), respectively.
Since Q and Q′ are geometrically equivalent, if iR(i, j) = iR(i′, j ′) then H
and H ′ are equivalent 0/1 arrays, otherwise they are different. Moreover, the
value iR(i, j) (resp. iR(i′, j ′)), that is either 0 or 1, completely and uniquely
determines H (resp. H ′). Thus we have that there may be at most two different
(m, n)-windows of iR that correspond to geometrically equivalent (m, n)-cubes.
Hence, PR(m, n) ≤ 2CR(m, n). Then (5) implies that for enough large m and
n we have CR(m, n) < 2 · (1

2
mn) = mn. Then, by Theorem 27 we obtain that

the quadrant step code iR corresponding to R has a period vector. Clearly, IR

will have a period vector as well.

Now let v = (p, q, r), p ≥ q, be a period vector for IR, where p, q and r are fixed
integers. Let v′ = (p, q) be its projection on the coordinate xy-plane. Because
of the symmetry of the discrete space, we can assume without loss of generality
that R makes with the xy-plane an angle θ with 0 ≤ θ ≤ arctan

√
2. Then

there is a one-to-one correspondence between the voxels of IR and the points
of Z2

+. So to obtain quantitative estimations, one can work with projections of
(m, n)-cubes over the xy-plane rather than with the (m, n)-cubes themselves.
Consider the set of nonnegative integer points of the form u(i) = i ·v′ = (ip, iq)
for i = 0,±1,±2, . . .. They are projections on the xy-plane of points of IR,
generated by the period v. The points u(i) belong to a line determined by v′

and induce a partition of Z2
+ into a set S of vertical strips delimited by the

vertical rays x = ip, y ≥ 0, for i = 0,±1,±2, . . . (Figure 8 (Left)). Since v is
a symmetry vector of IR, any two strips from S correspond to regions of iR
that are equivalent up to translation by vector v.
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Now consider an (m, n)-window W = A1A2A3A4 of Z2
+ with m = jp and

n = jq (see Figure 8 (Right)). It corresponds to an (m, n)-cube C of IR. Par-
tition W into j rectangles Wt (t = 1, 2, . . . , j) of width p and height jq and
consider their pre-images Ct (t = 1, 2, . . . , j) from IR under the orthogonal
projection onto the xy-plane. We notice with the help of Figure 8 (Right)
that the set of voxels from C1 corresponding to W1 completely determines
(through translation by the vector v) all the other Ct’s portions that corre-
spond to Wt’s portions over the diagonal A1A3. Similarly, the set of voxels
from Cj corresponding to Wj completely determines (through translation by
vector (−v)) all the other Ct’s portions that correspond to Wt’s portions below
the diagonal A1A3. Thus the sets of voxels from C1 and Cj are sufficient to
completely recover the whole (m, n)-cube C. Because of the one-to-one corre-
spondence between voxels from IR and elements of Z

2
+, the number of voxels

in a set Ct equals the number of integer points in a strip Wt, so C1 and Cj

contain overall 2(p · jq) voxels. From this last fact and taking advantage of
the above-mentioned inequality CR(m, n) ≤ mn, one can easily obtain that
vertical perturbations of the plane R through the window W can induce no
more than 2(p · jq) different (m, n)-cubes. Then for the ratio of CR(m, n) and
mn we have the upper bound

CR(m, n)

mn
≤ 2pjq

j2pq
=

2

j
=

2p

n

which approaches 0 as n approaches infinity. 2

6 Connectivity

We defined α-connected sets in Section 1. In the rest of this section, for the
sake of certain technical convenience, we adopt the terminology within the
grid-cell model. All definitions and results can immediately be translated into
grid-point model terms by substituting 0/1 by 8/4 (in 2D) and 0/1/2 by
26/18/6 (in 3D). We investigate digital plane connectivity in terms of the
analytical Definition 13.

Definition 29 An arithmetic line/plane D (D = Da,b,µ,ω if D is an arithmetic
line and D = Da,b,c,µ,ω if D is an arithmetic plane) is called α-separating in
Zn (n = 2, 3) iff Zn \ D is not α-connected (0 ≤ α ≤ n − 1).
If Zn \ D is (n − 1)-connected, then D is said to have (n − 1)-gaps.
If D is α-separating (1 ≤ α ≤ n− 1) but not β-separating (0 ≤ β ≤ α− 1) in
Zn, then D has β-gaps.

It is well-known that an arithmetic line Da,b,µ,ω becomes 0-disconnected iff
ω < max{|a|, |b|}. Similarly, an arithmetic plane Da,b,c,µ,ω no longer has grid
points on all the vertical grid lines iff ω < max{|a|, |b|, |c|} (Reveillès 1991).
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Fig. 9. Left: From top to bottom: portions of arithmetic lines defined by
0 ≤ 3x − 5y < 3, 0 ≤ 3x − 5y < 5 (naive line), and 0 ≤ 3x − 5y < 8 (stan-
dard line). The first one has 1-gaps (and, therefore, also 0-gaps; a 1-gap is pointed
out by an arrow), the second one has 0-gaps (one of them pointed out by an arrow)
but no 1-gaps, and the third one is gap-free. Middle: Portion of an arithmetic plane
defined by 0 ≤ 2x+5y+9z < 7. It has 2-gaps (and, therefore, also 1- and 0-gaps). A
2-gap and a 1-gap are pointed out by arrows. Right: Configuration of voxels (in two
different orientations) that features a 0-gap (pointed out by an arrow). According to
Theorem 30, an arithmetic plane with coefficients 2, 5, and 9 has 0-gaps but no 1-
or 2-gaps if and only if its thickness ω satisfies a2 +a3 = 14 ≤ ω < a1 +a2 +a3 = 16.

Figure 9 illustrates gaps. An arithmetic line is gapfree (which is equivalent to
0-gapfree) iff it is 1-connected; and it is 1-gapfree iff it is 0-connected. A naive
line is 0-connected and 1-separating in Z2, and a standard line is 1-connected
and 0-separating in Z2. Consider arithmetic lines Da,b,µ,ω = {(i, j) ∈ Z2 : µ ≤
ai+ bj < µ+ω}, for relatively prime integers a, b with 0 ≤ a ≤ b, and integers
ω ≥ 0, µ. We have

(i) D is 0-disconnected iff ω < b (i.e., D has 1-gaps, see Definition 29).
(ii) D is 0-connected and has 0-gaps iff b ≤ ω < a + b.
(iii) D is 1-connected and gapfree iff a + b ≤ ω.

The above properties have been studied, for example., in (Reveillès 1991),
(Andres et al. 1997), (Debled-Rennesson 1995).

A standard arithmetic plane is 0-separating and gapfree; it has no 2-, 1-, or
0-gaps. A naive arithmetic plane is 2-separating but not necessarily 1- or 0-
separating; it can have 1- or 0-gaps.

Theorem 30 (Andres et al. 1997) Let Da1,a2,a3,µ,ω be an arithmetic plane,
where a1, a2, a3 are relatively prime integers with 0 ≤ a1 ≤ a2 ≤ a3 and
ω ≥ 0. Then if ω < a3, the plane has 2-gaps; if a3 ≤ ω < a2 +a3, it has 1-gaps
and is 2-separating in Z3; if a2 + a3 ≤ ω < a1 + a2 + a3, it has 0-gaps and is
1-separating in Z

3; and if a1 + a2 + a3 ≤ ω , it is 0-gapfree.

PROOF. For a given digital plane Da1,a2,a3,µ,ω, we define its control value at
the integer point x = (x1, x2, x3) as Π(x, Da1,a2,a3,µ,ω) = µ+a1x1 +a2x2 +a3x3.
The following is a well-known fact:
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Fact 31 (Reveillès 1991) An arithmetic plane Da1,a2,a3,µ,ω has k gaps iff there
are two k-adjacent voxels p = (p1, p2, p3) and q = (q1, q2, q3) for which
Π(p, Da1,a2,a3,µ,ω) < 0 and Π(q, Da1,a2,a3,µ,ω) ≥ 0.

Since all rational digital planes are translation equivalent, w.l.o.g. we may
assume that µ = 0. We want to show that ω =

∑n
i=k+1 ai, where n = 3 and k =

2 or 3, is the least value for which Da1,a2,a3,µ,ω has no k-gaps. First we show that
there is at least one k-gap for ω =

∑n
i=k+1 ai−1. Since gcd(a1, a2, a3) = 1, there

is y = (y1, y2, y3) ∈ Z3, such that a1y1 +a2y2 +a3y3 = −1. Consider the integer
point p = (p1, p2, p3) with pi = yi, i = 1, 2, 3. We have Π(p, Da1,a2,a3,µ,ω) = −1.
Now consider the integer point q = (q1, q2, q3) with qi = pi for 1 ≤ i ≤ k and
qi = pi + 1 for k + 1 ≤ i ≤ n. By construction, p and q are k-neighbors. We
have Π(q, Da1,a2,a3,µ,ω) =

∑n
i=1 aiqi =

∑n
i=1 aipi +

∑n
i=k+1 ai = −1+

∑n
i=k+1 ai =

ω ≥ 0. Hence, by Fact 31, a plane with thickness ω =
∑n

i=k+1 ai−1 has k-gaps.

Now we show that if ω =
∑n

i=k+1 ai, then Da1,a2,a3,µ,ω has no k-gap. Con-
sider two integer points p = (p1, p2, p3) and q = (q1, q2, q3) such that
Π(p, Da1,a2,a3,µ,ω) = −1 and q is a k-neighbor of p. The latter means that
qi = pi + ei, where |ei| ≤ 1 and

∑n
i=1 |ei| ≤ n − k. Then Π(q, Da1,a2,a3,µ,ω) =

∑n
i=1 aipi +

∑n
i=1 ei ≤ −1 +

∑n
i=k+1 ai, i.e., Π(q, Da1,a2,a3,µ,ω) ≤ ω − 1. Hence q

cannot be on the same side of Da1,a2,a3,µ,ω as p and, therefore, Da1,a2,a3,µ,ω has
no k-gap. 2

Clearly, the above proof applies also to arbitrary dimensions n.

(Reveillès 1991) stated for arithmetic lines equivalences between 0-gapfreeness
and 1-connectedness, and 1-gapfreeness and 0-connectedness. This cannot be
repeated for arithmetic planes. For rational digital planes connectivity is a
translation-invariant property. W.l.o.g. we consider grid-line intersection digi-
tizations of rational planes ax+by+cz = 0 which are incident with the origin,
and Da,b,c,0,ω is the corresponding arithmetic plane with thickness ω ∈ Z+ and
a, b, c ∈ Z+ with gcd(a, b, c) = 1.

Definition 32 For α = 2, 1, 0 and a, b, c ∈ Z+, let

Ωα(a, b, c) = max{ω : Da,b,c,0,ω is α − disconnected}

be the α-connectivity number of the class of all arithmetic planes Da,b,c,ω, with
ω ∈ Z+.

In other words, ω = Ωα(a, b, c)+ 1 is the smallest integer such that Da,b,c,0,ω is
α-connected. Evidently, Ωα(a, b, c) ≤ Ωβ(a, b, c) if α ≥ β, with α, β ∈ {2, 1, 0}.
Naive planes are always 0-connected, i.e., Ω0(a, b, c) ≤ max{a, b, c}, and stan-
dard planes are always 2-connected, i.e., Ω2(a, b, c) ≤ a + b + c. Connectivity
numbers remain constant when permuting a, b, c, e.g., Ωα(a, b, c) = Ωα(b, c, a).

A pair of voxels p = (i, j, k) and q = (i + 1, j + 1, k + 2) (see Figure 10
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(Left)) defines a jump. A naive plane Da,b,c,µ,c (with c = max{a, b, c}) contains
a jump iff c < a + b (Brimkov and Barneva 2002). This last result has been
used in the design of an efficient algorithm for obtaining 2-gap-free digitiza-
tions of polyhedral surfaces. Existence of jumps in a digital plane may lead
to a situation as the one illustrated in Figure 10 (Right). It shows a naive
plane where 0-connected sets of pixels in the height map may be projections
of 0-disconnected sets of voxels in the naive plane. The Symmetry Lemma
(Proposition 20) allows to transform such naive planes into symmetric (in the
sense of the Symmetry Lemma) naive planes where c < a + b is not true
anymore. This also allows to conclude:

Proposition 33 Ω0(a, b, c) = Ω0(c − a, b, c) = Ω0(a, c − b, c) = Ω0(c − a, c −
b, c), for integers a, b, c with 0 < a ≤ b ≤ c.

The rest of this section reviews some results from
(Brimkov and Barneva 2004). The following theorem provides reachable
upper and lower bounds for the connectivity number.

Theorem 34 a − 1 ≤ Ω0(a, b, c) ≤ b − 1, if a + b < c < a + 2b.

(Brimkov and Barneva 2004) also provides an algorithm computing Ω0(a, b, c)
with O(a log b) arithmetic operations, where 0 ≤ a ≤ b ≤ c. Within a model
with a unit cost floor operation, the algorithm complexity is O(a).

The following theorem provides an explicit solution under certain conditions.

Theorem 35 (Brimkov and Barneva 2004) Let a, b, c be relatively prime in-
tegers with c ≥ a + 2b and 0 < a ≤ b ≤ c. Then Ω0(a, b, c) = c − a − b +
gcd(a, b) − 1.

PROOF. Let A be a 2D array (finite or infinite) and p = (x0, y0), q =
(xm, ym) two points of A. Let, for definiteness, x0 ≤ xm and y0 ≤ ym. The
sequence of points P = 〈(x0, y0) = p, (x1, y1), (x2, y2), . . . , (xm, ym) = q〉 is a

Fig. 10. Left: A jump; Right: Height map of the naive plane D5,7,11,0,11: the 0-con-
nected set of pixels (shown in gray) is a projection of a 0-disconnected set of voxels
of this naive plane (Brimkov and Barneva 2004).
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stairwise path between p and q if the coordinates of two consecutive points
(xi, yi) and (xi+1, yi+1), 0 ≤ i ≤ m − 1, satisfy either xi+1 = xi, yi+1 = yi + 1,
or xi+1 = xi + 1, yi+1 = yi. The number m is the length of the path. For all
other possible mutual locations of p and q, a stairwise path is defined similarly
(see Figure 11 (Left)).

Consider now the remainder map M
(rem)
a,b,c together with its equivalence classes

described above. The points of M
(rem)
a,b,c which contain the value Ω0(a, b, c) are

called the plugs of M
(rem)
a,b,c . The points containing the maximal possible value

c−1 are the maximal points of M
(rem)
a,b,c . Assume for a moment that c is “enough

large” compared to a and b. More precisely, suppose that c ≥ a+2b. Then the
digital lines corresponding to the equivalence classes are thicker than standard.
In particular, if c = a + 2b = (a + b) + b, then a particular equivalence class
C is a disjoint union of one standard and one naive line. Note that in this
case there are two different possible partitions of this kind: one can consider
the standard line to be above the naive, and vice versa. In the first case we
call the standard line upper standard line for the class C. We will use it in
the rest of the proof. Similarly, if c > a + 2b, then C can be partitioned in
two different fashions into disjoint union of one standard line and another line
which is thicker than naive. Consider then a class C which contains maximal
points of M

(rem)
a,b,c , where c ≥ a+2b. We have C = S ∪L, S ∩L = ∅, where S is

the standard line containing maximal points of M
(rem)
a,b,c , and L is a digital line

that is naive or thicker than naive. It is composed by the pixels that belong
to the complement of S to C and are “below” S (see Figure 11 (Right)). A
point P ∈ S with a minimal value is called a core of the class C (Figure 11

(Right)). Keeping in mind the properties of M
(rem)
a,b,c , we can state the following

lemma.

P3

P2

P1

25 5 12 19 26 6 13 20 0 7 14 21 1 8
15 22 2 9 16 23 3 10 17 24 4 11 18 25
5 12 19 26 6 13 20 0 7 14 21 1 8 15
22 2 9 16 23 3 10 17 24 4 11 18 25 5
12 19 26 6 13 20 0 7 14 21 1 8 15 22
2 9 16 23 3 10 17 24 4 11 18 25 5 12
19 26 6 13 20 0 7 14 21 1 8 15 22 2
9 16 23 3 10 17 24 4 11 18 25 5 12 19
26 6 13 20 0 7 14 21 1 8 15 22 2 9
16 23 3 10 17 24 4 11 18 25 5 12 19 26
6 13 20 0 7 14 21 1 8 15 22 2 9 16
23 3 10 17 24 4 11 18 25 5 12 19 26 6
13 20 0 7 14 21 1 8 15 22 2 9 16 23
3 10 17 24 4 11 18 25 5 12 19 26 6 13

Fig. 11. Left: Two stairwise paths marked by shadowed × sign: one between the
points P1 and P2, and another between the points P1 and P3; Right: A stairwise

path between two maximal points of value 26 in array M
(rem)
7,10,27. The path (in dark

gray) is a part of an upper standard line (in gray) through the two maximal points.

The core of the class has value 10. It coincides with a plug of M
(rem)
7,10,27. A core is

marked by © and a plug by 3.
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Lemma 36 Let P1 and P2 be two consecutive (by position) maximal points
belonging to an equivalence class C. Let S ⊆ C be the standard line containing
P1 and P2, and S̄(P1, P2) ⊂ S the stairwise path between P1 and P2. Then:

(1) All points of S have different values;

(2) S̄ contains a+b
gcd(a,b)

points with values c − 1, c − 1 − gcd(a, b), c − 1 −
2 gcd(a, b), . . . , f , where the last value f is equal to

f = c − 1 −
(

a + b

gcd(a, b)
− 1

)

gcd(a, b) = c − a − b + gcd(a, b) − 1

See Figure 11 (Right). To complete the proof of the theorem, let the points
P1, P2 ∈ C, the standard line S, and the stairwise path S̄(P1, P2) be as in
Lemma 36. This last lemma implies that S̄ contains a unique core of C. Clearly,
when ω decreases starting from c − 1 and going downwards, first the points
from the standard line S will vanish from M

(rem)
a,b,c . Consider first what happens

when c = a + 2b. As already discussed above, the complement of S to C is a
naive line L which is “below” S. Moreover, the mutual location of S and L
within the class C implies the following property: The 1-neighbors of any pixel
from S are points which belong either to S or to L. See Figure 11 (Right).
Therefore, if the points of S are removed from C, all points of the naive line
L will be disconnected from the points of the next equivalence class “above”
C. Obviously, this will also hold when c > a + 2b. All equivalence classes are
digital lines and therefore are periodic. The period length of a class is equal to
a + b which is the length of the path between two consecutive maximal points
of C. Therefore, the disconnectedness considered above propagates along all
the class C. On the other hand, the array of remainders M

(rem)
a,b,c is periodic,

as the class C appears periodically in a way that if we start counting from it,
every gcd(a, b)th class is equivalent to C. Thus we obtain that if c ≥ a + 2b,

the array M
(rem)
a,b,c becomes disconnected when the points of the standard line

S are removed from it.

What remains to show is that Ω0(a, b, c) = c − a − b + gcd(a, b) − 1. Clearly,
the value of Ω0(a, b, c) is equal to the value of a core of a class C that con-

tains maximal values. In other words, we have that the set of plugs of M
(rem)
a,b,c

coincides with the set of the cores of all classes containing maximal elements.
If gcd(a, b) = 1, then Ω0(a, b, c) = c − a − b = c − a − b + gcd(a, b) − 1, since

M
(rem)
a,b,c becomes disconnected when points with values c−1, c−2, . . . , c−a−b

are removed from it. Now let gcd(a, b) = d 6= 1. Consider again the points
in a stairwise path S̄(P1, P2) between two consecutive maximal points in
a class C. Then part 2 of Lemma 36 implies that if c ≥ a + 2b, then
Ω0(a, b, c) = c − a − b + gcd(a, b) − 1. 2

This theorem combined with Proposition 33 allows to derive further explicit
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solutions, such as

Ω0(a, b, c) = b − a + gcd(a, c − b) − 1 , if c < 2b − a

Ω0(a, b, c) = b + a − c + gcd(c − b, c − a) − 1 , if c < a + b/2

and the lower bound

Ω0(a, b, c) ≥ c − a − b + gcd(a, b) − 1 for any a, b, c

7 Algorithms

Theoretical research on digital planarity is naturally driven by important prac-
tical applications in image analysis, pattern recognition and volume modeling.
In this section we review some basic algorithms for digital plane recognition,
digital surface segmentation, and digital polyhedra generation.

7.1 DPS Preimage Analysis

Let S be a digital plane segment defined by an Euclidean plane Γ(α1, α2, β)
with 0 ≤ α1 ≤ 1, 0 ≤ α2 ≤ 1 and 0 ≤ β < 1.

Definition 37 (Vittone and Chassery 2000) The preimage of a DPS S is the
set of points (α1, α2, β) ∈ [0, 1]2 × [0, 1[, such that S ⊂ Iα1,α2,β.

In other words, the preimage is the set of Euclidean planes whose digitizations
contain S. According to this definition and the discussion related to Theo-
rem 10, the preimage is the solution of a system of linear inequalities with
unknowns α1, α2, and β. Thus it is a convex polyhedron (possibly empty).
To compute the preimage, we use the linear dual transform that maps an
Euclidean plane Γ(α1, α2, β) in R3 to the point (α1, α2, β) in the parameter
space, also called dual space. Conversely, the dual transform of plane in the
dual space is a point in R3 (also called primal space). The dual transform is a
classical tool in computational geometry to solve linear programming problems
(Preparata and Shamos 1985).

In dimension 2, the analysis of the preimage structure allowed to
design efficient recognition algorithms. Indeed, the preimage associ-
ated to a given 0-arc has a robust arithmetic structure (describ-
able by means of Farey cells). Moreover, the number of vertices of
this domain is bounded by 4 (Dorst and Smeulders 1984) (McIlroy 1985)
(Lindenbaum and Bruckstein 1993). Beside the arithmetic properties of the
preimage, the bound on the number of vertices induces a linear-time (i.e., the
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processing time for each new vertex is a constant) on-line algorithm to com-
pute and update the 2D preimage, and thus to decide whether a 0−arc is a
digital straight segment or not.

Arithmetic properties of preimages and their geometry in 3D are not yet stud-
ied extensively. Consider the digital plane segment S ⊂ Da,b,c,µ,c (again, with-
out loss of generality, we suppose that 0 ≤ a ≤ b < c). From the remainder
map associated to S (see Section 4), we can define the lower (resp. upper)
supporting points whose remainder r = ax + by + cz is µ (resp. µ + c− 1). For
the sake of clarity, we suppose that S contains at least three upper and three
lower supporting points. The analysis from (Coeurjolly et al. 2005) is based
on the following proposition.

Proposition 38 (Coeurjolly et al. 2005) Let S ⊂ Da,b,c,µ,c be a DPS. Then,
the preimage of S, denoted P(S), containing all the Euclidean planes in the
parameter space, has the following properties:

• Points vl = (a
c
, b

c
, µ

c
) and vu = (a

c
, b

c
, µ+1

c
) are vertices of P(S); vl (resp. vu) is

the dual transform of the lower (resp. upper) supporting planes ax+by+cz =
µ (resp. ax + by + cz = µ + c) in the primal space (i.e., the one to which
Da,b,c,µ,c belongs);

• The planes in the dual space supporting faces of the preimage adjacent to vl

(resp. vu) are the dual transforms of the vertices of the 2D convex hull of
the lower (resp. upper) supporting points in S.

An illustration to the 2D convex hulls is given in Figure 12. As a conse-
quence of this proposition, the number of preimage faces is at least the num-
ber of vertices of the convex hull of the upper 2D supporting points plus
the number of vertices of the convex hull of the lower 2D supporting points.
(Coeurjolly et al. 2005) also proves that for a given class of digital plane seg-
ments, the preimage does not have other faces than those induced by support-
ing points. However, a general result with a specific recognition algorithm is
still a challenging task.

7.2 DPS Recognition and Digital Surface Segmentation

DPS recognition and digital surface segmentation are fundamental problems
in image analysis. Table 1 lists different algorithms and their computational
costs. All complexity bounds are given with respect to the number n of grid
points in S. The fourth column indicates whether the algorithm performs (just)
a coplanarity test (T ) with respect to a digital plane (note that coplanar voxels
are not necessarily connected), or may even lead to a complete recognition (R)
(connectivity of the voxels is required). Note that any T algorithm (that also
takes connectivity into account) is an R algorithm as well.
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Fig. 12. Illustration of a subset of a digital plane D7,17,57,0,57 with its lower and
upper convex hulls on the supporting planes.

Theorem 12 has been used in (Stojmenović and Tosić 1991) to sup-
port a DPS recognition algorithm based on convex hull separa-
bility. The recognition of DPSs in grid adjacency models is dis-
cussed in (Veelaert 1994) (applying the characterization by evenness
as discussed in Section 2), (Klette et al. 1996) (recognition by least-
square optimization), and (Megiddo 1984), (Preparata and Shamos 1985),
(Vittone and Chassery 2000), (Buzer 2002) (linear programming when the di-
mension is fixed). (Debled-Renesson and Reveillès 1994) proposes an approach
based on tests for existence of lower and upper supporting planes for the given
set of points.

(Françon et al. 1996) suggests a recognition method for DPSs by converting
the problem into a system of n2 linear inequalities, where n is the cardinality
of the given set of points. The system is solved by the Fourier elimination
algorithm. One can also apply the CDD algorithm 7 for solving systems of lin-
ear inequalities by successive intersection of half-spaces defined by inequalities
(Fukuda and Prodon 1996). A very efficient incremental algorithm based on a
similar approach is proposed in (Klette and Sun 2001). Typical timing results
for these three versions are shown in Figure 13, using a polyhedrized digital
ellipsoid at grid resolutions ranging from 10 to 100. In what follows we present
more in detail the algorithm from (Klette and Sun 2001), which appears to be
superior to the others.

Algorithm KS2001

Following Section 3, an Euclidean plane Π is a supporting plane of a finite set
of faces, if all the faces are in one of the closed halfspaces defined by Π, and
the main diagonal distance of any vertex of these faces to Π is less than

√
3.

7
C implementation of the Double Description (CDD) Method of Motzkin et al.,

see http://www.ifor.math.ethz.ch/~fukuda/cdd_home/cdd.html
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Main reference Description Complexity T or R Comments

(Kim 1984) Detection of a
supporting plane

O(n4) T Based on an in-
correct theorem

(Megiddo 1984) Linear program-
ming

O(n) T

(Preparata and
Shamos 1985)

Linear program-
ming

O(n log n) T Provides the
complete preim-
age

(Kim 1991) Detection of a
supporting plane

O(n2 log n) T Optimization of
(Kim 1984), also
based on an in-
correct theorem

(Stojmenović and
Tosić 1991)

Convex hull sep-
arability

O(n log n) T

(Veelaert 1994) Evenness prop-
erty

O(n2) R Rectangular DPS

(Debled-Renesson
and Reveillès
1994)

Arithmetic
structure

n.a. R Rectangular DPS

(Reveillès 1995) Arithmetic geo-
metry

O(n) R Rectangular DPS

(Vittone and
Chassery 2000)

Linear program-
ming and Farey
series

O(n3 log n) T Preimage compu-
tation with arith-
metic solutions

(Klette and Sun
2001)

Combinatorial
procedure

n.a. R

(Buzer 2002) Linear program-
ming for DPS
recognition

O(n) T On-line algo-
rithm

(Gérard et al.
2005)

Convex hull
analysis

O(n7) T fast algorithm in
practice

Table 1
Algorithms for DPS recognition.

It can be shown that if the set of faces has n ≥ 4 vertices, then a supporting
plane exists iff there is a supporting plane Π which is incident with three non-
collinear vertices of the given set of faces. A set of faces can have more than
one supporting plane of this kind.

A DPS in the incidence grid is (without loss of generality) a 1-connected set of
2-cells in the frontier of a 2-region of voxels. A simply-connected DPS consists
of faces whose union is homeomorphic to the unit disk, i.e., it is a 1-simply-
connected set of 2-cells.
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Fig. 13. Running times of three DPS recognition algorithms on a PIII 450 running
Linux (Klette and Sun 2001). (L. Papier provided the Fourier elimination program.)

If we are given the frontier of the projection of the DPS onto a supporting
plane, it is possible to reconstruct the DPS in the 3D space (up to a translation
in the normal direction to the planes). A supporting plane and a parallel plane
in main diagonal distance less than, or equal to

√
3 define a pair of parallel

planes.

Let v be the vector of length
√

3 in the main diagonal direction and let n be
an outward pointing normal to the pair of parallel planes. Furthermore, for a
vertex p incident with the DPS of 2-cells, let v · p = dp be the equation of a
plane with normal v and incident with p. The vertices p of the grid faces of
a DPS must satisfy

0 ≤ n · p − dp < n · v (6)

Let n = (a, b, c). The scalars a, b, c may have different signs, but since n and
v must point into the same direction “modulo a directed diagonal,” without
loss of generality we can assume that a, b, c > 0. Condition (6) then becomes

0 ≤ ax + by + cz − dp < a + b + c (7)

Hence, a DPS in the grid-cell model is equivalent (by mapping vertices into
grid points) to a finite 2-connected set of grid cells in a standard digital plane
(see Definition 13), with ν = dp and ω = a + b + c.

In addition to checking the tripod condition (which is easy), the task of DPS
recognition (in the grid-cell model) can be solved by answering the following
question: Given n vertices {p1, p2, . . . , pn}, does each pi with di = v · pi satisfy
Condition (6), i.e., do we have

0 ≤ n · pi − di < n · v for i = 1, . . . , n ? (8)

The incremental algorithm repeatedly updates a list of supporting planes; if
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the list is empty, the set of points is not a DPS. The updating step is as
follows: If we have n ≥ 0 points, we add an (n + 1)st point iff the list of
supporting planes remains non-empty. To test this, we first check the new
point against each of the listed supporting planes to see if it is on the same
side of the plane as the other points and within the allowed diagonal distance.
If these conditions are not satisfied, we delete the plane from the list. We then
construct new supporting planes by combining the new point with selected
pairs (see below) of existing points. A new supporting plane is added to the
list if all n + 1 points satisfy the conditions. The set of points is accepted as a
DPS iff the final list of planes is non-empty. The updating step is time-efficient
because we can restrict the tests to points that have extreme positions in any
of the eight diagonal directions.

A given frontier S of a 2-component of voxels consists of 1-connected 2-cells.
These faces can be represented by a face graph whose nodes are the faces and
where each node has uniformly four pointers to its four 1-adjacent faces. The
face graph can be constructed using (e.g.) the Artzy-Herman surface tracing
algorithm (Artzy et al. 1981), which only requires two visits of each face.

We can perform a breadth-first search of the face graph to agglomerate the
faces into DPSs. The second process is implemented using two queues. The
first is called a seeds queue; it contains all the faces found by the search which
do not belong to any yet recognized DPS.

A face is inserted into the seeds queue if it cannot be added to the current
DPS. The next DPS starts from a face chosen from the seeds queue; the choice
of this face determines how the DPS “grows.” The second queue is used to
maintain the breadth-first search. “Growing a DPS” looks like propagating a
“circular wave” on S from a center at the original seed face.

We try to add an adjacent face to the current DPS by testing each vertex of
the face that is not yet on the DPS. If all four vertices pass the test, the face is
added to the DPS and deleted from the seeds queue (if it was on that queue).

Fig. 14. Agglomeration into DPSs of the faces of a sphere and an ellipsoid (grid
resolution h = 40) (Klette and Sun 2001).
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Fig. 15. A polyhedrized sphere and ellipsoid (Klette and Sun 2001).

Otherwise, we insert the face into the seeds queue and test another adjacent
face. If no more adjacent faces can be added, we start a new DPS from a face
on the seeds queue.

A list of the frontier vertices of each DPS is maintained during the agglom-
eration process, not only to simplify the tests of whether a new vertex can
be added, but also to maintain the homeomorphism of the DPS to a unit
disk. This ensures that the frontier always remains a simple polygon, so that
the algorithm constructs only simply-connected DPSs. (This condition can be
removed, if desired.)

Figure 14 illustrates results of the agglomeration process for a digitized sphere
and for an ellipsoid with semi-axes 20, 16, and 12. Faces that have the same
gray level belong to the same DPS. The respective numbers of faces of the
digital surfaces of the sphere and ellipsoid are 7,584 and 4,744, respectively.
The numbers of DPSs are 285 and 197; the average sizes of these DPSs are 27
and 24 faces.

To complete the polyhedrization process, we set all the face vertices that

Fig. 16. The polyhedrized sphere and ellipsoid where the breadth-first search depth
is restricted to 7 (Klette and Sun 2001).
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are incident with at least three of the DPSs to be vertices of the polyhe-
dron. Figure 15 shows the final polyhedral surfaces generated for the sphere
and ellipsoid. Note that these polyhedral surfaces are not simple (they are
not homeomorphic to the surface of a unit sphere; they have holes; see, e.g.,
(Klette and Rosenfeld 2004) for more on simple surfaces and holes).

Restricting the depth of the breadth-first search changes the polyhedrization
from global to local and results in “more uniform” polyhedra. Figure 16 shows
results when the depth is restricted to 7. The number of small DPSs is reduced
and the sizes of the DPSs are more evenly distributed. The respective numbers
of DPSs are 282 and 180 and their average sizes are 27 and 26; note that these
are nearly the same as in the unrestricted case.

As mentioned above, the output of Algorithm KS2001 is in general not a
valid polyhedron but like a patchwork of planar segments. It is desirable to
obtain a polyhedron with the following reversibility property: the polyhedron
digitization coincides with the originally given set of grid points. Below we
sketch an algorithm from (Coeurjolly et al. 2004) that addresses the problem
of such a reversible polyhedrization.

Algorithm CGS2004

The main idea is to simplify the polyhedron obtained by a Marching-Cubes
(MC) algorithm (Lorensen and Cline 1987), using information about the dig-
ital surface segmentation. The MC algorithm is a widely used isosurface gen-
eration algorithm in 3D volume data. This method considers local grid point
configurations to replace them by small triangles composing the global isosur-
face. With a reference to (Lachaud and Montanvert 2000), the triangulated
surface obtained by the MC algorithm is a combinatorial 2-manifold. In other
words, the surface is closed, hole-free and without self-crossing. Furthermore,
the object boundary quantization (OBQ) of this polyhedron is exactly the
input binary object.

Fig. 17. A {0, 1}-binary object and a Marching-Cubes surface obtained with an
iso-level in ]0, 1[.

Let us consider a voxel p from the object boundary and a voxel q from the
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background, such that the L1 distance between p and q is 1. Both voxels
define a segment ]pq[ (see Figure 18-left). Note that every MC vertex be-
longs to a distinct ]pq[ segment. More precisely, a MC vertex can be attached
to each boundary surface element. In (Lachaud and Montanvert 2000) it is
proved that the MC surface is a combinatorial 2-manifold, independently of
the position of the vertices in the ]pq[ segments. Furthermore, a vertex dis-
placement along the ]pq[ does not change the reversibility property.

To link all these properties to the polyhedrization problem, we consider a
set S of voxels from the object boundary such that S is a DPS, and π is a
Euclidean plane from the DPS preimage (we also suppose that π does not
belong to the preimage boundary). It can be proved that π intersects each
segment ]pq[ for each p in S. Let P be the polyhedron given by projecting
the MC vertices associated to S onto π along the ]pq[ segments. Then it can
be proved that P is a combinatorial 2-manifold that still has the reversibility
property. Moreover, all the triangles associated to the set S are coplanar. The
last step of the algorithm consists of merging the coplanar triangles associated
to S while preserving the topology of the surface. The projection operation
and the merging steps are repeated for every recognized digital plane.

The output of the algorithm is a digital polyhedron such that a large facet is
associated to each recognized DPS. The facets of the polyhedron are stitched
together by strips of triangles. These triangles are called non-homogeneous
in (Coeurjolly et al. 2004) because their three vertices do not belong to the
same digital plane. The obtained polyhedron is a combinatorial 2-manifold
and possesses the reversibility property.

Fig. 18. From left to right: links between MC vertices and ]pq[ segments, final result
on the object of Figure 17, and result on a sphere of radius 25.

7.3 Digital Polyhedra Generation

In this section we briefly consider certain problems that are in a sense re-
verse to those of the previous section. One of these is DPS generation. Usually
straightforward methods for its solution directly follow from the particular
definition of a digital plane. See, e.g., (Debled-Renesson and Reveillès 1994)
for an algorithm based on Reveillès definition of arithmetic planes. A related
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problem is the digitization (scan-conversion) of a given space polygon. An ef-
ficient practical algorithm has been proposed in (Kaufman 1987). Algorithms
involving “supercovers” (i.e., “thick” digitizations including all voxels inter-
sected by the given polygon) have been proposed in (Andres et al. 1997a).
Discrete linear manifolds within a “standard model” (i.e., based on standard
planes) have been defined in (Andres 2003).

For various applications in surface modeling it is reasonable to work with
an appropriate polyhedral approximation of a given surface rather than with
the surface itself. Often this is the only possibility since the surface may not
be available in an explicit form. Thus having suitable algorithms for digi-
tizing a polyhedral surface is of significant practical importance. The above-
mentioned supercover approach has been applied to polyhedra digitization
(Andres et al. 1997b). The faces of the obtained digital polyhedra admit an-
alytical description. They are portions of planes’ supercovers that are thicker
than the (naive) digital planes. As discussed in the literature, the optimal
ground for polyhedra digitization is naturally provided by the naive digital
planes. However, it has been unclear for a long time how to define a “naive”
digital polygon and especially its edges, so that the overall digitization to ad-
mit no gaps along the edges of the resulting digital polyhedron. These theoreti-
cal obstacles have been recently overcome by employing relevant mathematical
approaches. Specifically, three different algorithms have been proposed. The
first one (Barneva et al. 2000) is based on reducing the 3D problem to a 2D
one by projecting the surface polygons on suitable coordinate planes, next dig-
itizing the obtained 2D polygons, and then restoring the 3D digital polygons.
The generated digital polygons are portions of the naive planes associated with
the facets of the surface. Another algorithm (Brimkov and Barneva 2002) is
based on introducing new classes of 3D lines and planes (called graceful) which
are used to approximate the surface polygons and their edges, respectively.
The algorithm from (Brimkov et al. 2000b) approximates directly every space
polygon by a digital one, which is again the thinnest possible, while the poly-
gons’ edges are approximated by the thinnest possible naive 3D straight lines
defined algorithmically in (Kaufman and Shimony 1986) and analytically in
(Figueiredo and Reveillès 1995) and (Brimkov et al. 2000b). All these algo-
rithms assure 2-gapfree discretizations. They run in time that is linear in the
number of the generated voxels, which are stored in a 2D array. Moreover, the
generated 3D digital polygons admit analytical description.

In the remainder of this section we briefly describe the algorithm from
(Brimkov et al. 2000b). Our choice is dictated by the fact that this algorithm
provides an “optimal solution” while being optimally fast and using memory
space of optimal order. In fact, the obtained discretization appears to be mini-
mally thin, in a sense that removing an arbitrary voxel from the digital surface
leads to occurrence of a 2-gap in it.
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Fig. 19. Left: A regular naive 3D line between the points A = (0, 0, 0) and
B = (11, 13, 18); Middle: Projection of digital triangle T (ABC) on the functional
plane. The white pixels belong to I2D4A′B′C ′ but do not correspond to sides of
T (ABC). Dark gray pixels correspond to sides of T (ABC) but do not belong to
I2D4(A′B′C ′). Light gray pixels are in I2D4A′B′C ′ and correspond to sides of
T (ABC); Right: Mesh of two 3D digital triangles T (ABC) and T (ABD), obtained
by the described algorithm. The mesh vertices are A = (1, 8, 6), B = (−8,−2, 0),
C(7,−8,−4), and D(14,−4,−5).

Algorithm BBN2000

For the sake of simplicity, consider a polyhedral surface which is a mesh of
triangles. As mentioned, the triangles’ sides are modeled by naive 3D lines
and their interiors by naive planes. Naive 3D lines have been first defined
algorithmically in (Kaufman and Shimony 1986). Given a Euclidean straight
line L determined by a vector (a, b, c) with 0 ≤ a ≤ b ≤ c, the digitization of
L by truncation is the set of voxels (x, y, z) with coordinates x = b ai

c
c, y =

b bi
c
c, z = i, i ∈ Z. This digital line is 0-connected and “minimal” in a sense

that the removal of any element splits the set into two separate 0-connected
components. It can analytically be defined by 0 ≤ −cx + az + b c

2
c < c, 0 ≤

−cy+ bz +b c
2
c < c. Such a digital 3D line is called regular and denoted by LR.

It is centered about the continuous line L and every voxel of LR is intersected
by L. A regular naive line through two points A and B is denoted LR(AB)
(see Figure 19 on the left).

The construction of the triangle interior is somewhat more sophisticated. Re-
call that an arithmetic plane P = Pa,b,c,µ,ω is functional over a coordinate
plane, say, xy, if for any pixel (x, y) from xy there is exactly one voxel belong-
ing to P . The coordinate plane xy is called functional plane for P and denoted
by πP . Consider first a 2D Euclidean triangle 4A′B′C ′ in the xy-plane. We
define the integer set I2D4A′B′C ′ of 4A′B′C ′ as the set of all integer points
which belong to the interior or the sides of 4A′B′C ′ . Thus, in particular, the
vertices A′, B′, and C ′ belong to I2D4A′B′C ′ (see Figure 19, middle). The
3D triangle is a portion of a special kind of naive plane Pa,b,c,µ+[ c

2
],c), centered

about the Euclidean plane and called regular. A regular plane through the
points A, B, C is denoted P ABC

R . Then an integer set of a 3D triangle 4ABC
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is defined as follows. Let A′, B′, and C ′ be the projections of A, B and C
onto πP ABC

R

and I2D4A′B′C ′ the integer set of 4A′B′C ′. Then the integer

set I3D4ABC of 4ABC is the set of voxels belonging to P ABC
R and whose

projections on πP ABC

R

constitute exactly the set I2D4A′B′C ′. Note that the
centers of the voxels of the integer set of 4ABC do not necessarily belong
to 4ABC. With this preparation, a 3D digital triangle T (ABC) is defined
as the union of its sides LR(AB), LR(AC), and LR(BC) and the integer set
I3D4ABC. Note that the discrete sides of T (ABC) and the integer set of
4ABC may contain common voxels (see Figure 19, middle).

The above constructive definition infers an algorithm for digitization of trian-
gles and meshes of triangles. Let a mesh of a finite number of 3D triangles be
given. Each triangle is specified by its three vertices that are supposed to be
integer points. A triangle 4ABC in the 3D space is then digitized as follows.

(i) Approximate the sides AB, AC, and BC by the corresponding regular 3D
lines LR(AB), LR(AC), and LR(BC);

(ii) Determine the regular plane P ABC
R ;

(iii) Find the functional plane πP ABC

R

of P ABC
R ;

(iv) Find the respective projections A′, B′, and C ′ of A, B, and C on πP ABC

R

;

(v) Determine the integer set I2D4A′B′C ′ of 4A′B′C ′;
(vi) Generate the integer set I3D4ABC of 4ABC from I2D4A′B′C ′.

The union of the sides and the integer set constitutes the digital triangle
T (ABC). Then the triangular mesh voxelization is obtained by digitizing every
triangle of the mesh. It is proved that a digital triangle generated by the above
algorithm is 2-gapfree and that the obtained triangular mesh voxelization is
2-gapfree, as well. Moreover, removal of an arbitrary voxel from the obtained
digital polyhedral surface causes occurrence of a 2-gap. The algorithm has
linear time and space complexity in the number of the generated voxels. An
example of a mesh of two digital triangles obtained through the proposed
algorithm, is outlined in Figure 19 on the right.

8 Conclusions

Digital planarity is expected to be an even more challenging subject than
digital straightness. It seems to be far from fully explored, and the authors
expect further valuable contributions to this subject in near future. This article
may help to focus research on important open issues such as number-theoretic
characterizations or a wider collection of recognition algorithms with a more
detailed comparative evaluation. Segmentations of 3D surfaces into DPSs will
become increasingly important. Characterizations of such segmentations (e.g.,
“balanced in size,” or “approximating convex faces”), as well as algorithms
that optimize such kind of properties, are of significant interest.
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[Kim 1991] C. E. Kim and I. Stojmenović. On the recognition of digital planes
in three-dimensional space. Pattern Recognition Letters, 12:665–669, 1991.
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et algorithmique. Thèse d’état, Univ. Louis Pasteur, Strasbourg, 1991.
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[Françon et al. 1996] J. Françon, J. M. Schramm, and M. Tajine. Recogniz-
ing arithmetic straight lines and planes. In Proc. Discrete Geometry for
Computer Imagery, LNCS 1176, pages 141–150, Springer, Berlin, 1996.

[Klette et al. 1996] R. Klette, I. Stojmenović, and J. Žunić. A parametrization
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