
An Immune System-Inspired Approach for
Composite Web Services Reuse

Rosanna Bova 1, Salima Hassas 1, Salima Benbernou 1

Abstract. Recently, a growing number of Web Services have
emerged at a fast rate. However, there are many situations where
individual web services, alone, cannot satisfy user requirements.
This has raised the need for service providers and application
developers to develop value added services by combining existing
web services into composite web services.

Web services composition is now a very active research field,
and several solutions have been proposed. However, few existing
solutions address the issue of service composition reuse and spe-
cialization, i.e, how applications can be built upon existing simple
or composite web services by reuse, restriction, or extension.

In this paper, we introduce the concept of abstract composite
web service, that can be specialized to particular concrete composi-
tions, and that can be reused in the construction of larger or ex-
tended compositions. We propose an approach based on immune
system, in which we combine structural and usage information in
order to promote and create stable composite web services, in an
affinity maturation process.

1 INTRODUCTION
A web service is a software system designed to support interoper-
able machine-to-machine interaction over a network, based on
standard web protocols and XML encoding.

There has been a great deal of research in the area of web ser-
vices in the past few years. A large part of these studies has been
dedicated to web services composition. The original idea of “ser-
vice composition” is not really new in software design. It can be
traced back to the simple concept of an executable library in many
programming languages, the so-called “code reuse.” Applying this
idea to software engineering, people have developed new applica-
tions using previously written software components. This is called
“software composition” or “software reuse.” Now the efforts are
mainly dedicated to some parts of the problem, which, generally
speaking, are the discovery of useful partner web services, their
composition and execution.

In this paper, we are interested in studying how web services
can be composed to provide more complicated features, by reusing
abstract web service composites that can be specialized to particu-
lar concrete composites, or reused in the construction of larger or
extended composites. The former type of reuse can be viewed as a
descendent approach, while the latter is rather an ascendant ap-
proach, where small composites are used as building blocks in
possibly larger composites.

This paper aims at defining a composition framework, and a
composer system, to achieve these goals. Using our framework,
some tasks are to be achieved by software engineers, and some
may be automated by a web service composer system. Section 2
gives our problem formulation, illustrated by an example scenario
in section 3. Section 4 presents and discusses our approach and the
processes involved, along with the immune system metaphor.
Section 5 situates it with related works, and section 6 concludes
and presents the main perspectives of this work.

2 PROBLEM FORMULATION
Our goal is to define a web service composer system and frame-
work. This web service composer system will both be able to pro-
vide (reuse) and execute a composite web service requested by a
user or another system. As such, we assume that the composer
system is able to obtain success feedback about the execution of
each concrete composite web service. If the composite service is to
be executed by an external system, then a feedback mechanism is
needed to provide this feedback loop.

We consider that a composite service is a web service involving
the calling of other web services (composite or elementary) during
its execution. These referenced web services are typically struc-
tured in a sort of script or program using alternatives (conditions),
loops, parallel and sequence operators. For example, a BPEL script
defines such a composite web service. From the outside, a compos-
ite web service is like a normal executable web service, published
and accessed using the same protocols.

In the context of our approach, however, we see a composite
web service as a grey box, rather than a black box, in the sense that
part of its internal structure is accessible to our system.

To be able to reason about the similarity or compatibility of
functionalities across several web services, we assume that there
exists a higher level ontology and description language to describe
these functionalities, which goes beyond the mere interface (opera-
tions, inputs, outputs) of the web service. Defining such ontology is
in itself a difficult problem, but is out of scope of this paper.

We also suppose that this ontology is associated with a reposi-
tory or matching engine, taking in charge the matching of a selec-
tion of web services (composite or not) compatible with a given
semantic description. Thus, as a simplification, we will consider
that a user request for a web service is a web service semantic
description (without considering possible additional constraints or
user preferences). Our work is rather focused on how composite
web services are specialized or reused, than on the matching proc-
ess with a given semantic description.

We will also assume that our system does not create new com-
positions from scratch, but that compositions already exist, created
externally by software designers or architects. Our goal is then to
reuse these existing composite web services, and possibly adapt
them, by substituting some web services that they reference by
other compatible ones.

In order to do that, we introduce the concept of abstract com-
posite web service, based on Melloul and Fox’s web service high
level patterns, in [1]. In an abstract composite, some concrete web
services are replaced by web service semantic descriptions, i.e.
high level descriptions of the functionalities fulfilled by this web
service, using the above mentioned service ontology. The structure
of the initial composite service is conserved. Only one web service
may be described by an abstract description (in other words, se-
mantic descriptions may not span over several web services “slots”
in their hosting abstract web service).

The motivations behind this concept are two fold:

• First, it allows us to reuse composites by generalization and
specialization, by adapting composite services to other contexts,
and relieving some context specific constraints;

• Second, abstract composites will serve us as a link between
structural information and usage information.

Figure 1. Abstract and concrete composite web service example

Figure 1 shows an abstract composite web service; without detail-
ing structural information, constructed by substituting two web
services in a concrete specialization, WS2 and WS3, by two ab-
stract descriptions D2 and D3.

However, care must be taken when defining such abstract com-
positions, as stated by Melloul and Fow in [1]: a too abstract com-
posite may be unusable and useless, as it would contain too little
concrete information, and would be very difficult to specialize to a
given context. On the contrary, a very specific abstract composite
is difficult to reuse in different situations, obviously. There is a
compromise between the two, allowing a sufficient but useful
reuse, as in any component reusing problematic.

Another hypothesis in our work is that concrete composites con-
tain only fixed (resolved at composition time) web service refer-
ences: they may not for example include in their execution the
process of searching web services, and calling them afterward.

Finally, our problem is to find the proper and most usable com-
posite web service, that we will define as “stable” composite web
services, with respect to a given user request, and evaluation crite-
ria such as validity, pertinence, availability, and robustness, by
utilizing the information about the structure and usage of compos-
ite web services and their components. The composite web service
proposed by the composer system will either be existing concrete
composites, or automatic specializations of abstract composites.

3 TRAVEL AGENCY EXAMPLE
We use the classical travel agency example, since it involves sev-
eral kinds of web services and composite tasks using these web
services, in an overall service: planning a journey. Let us define the
following web services available, grouped by semantic categories:

• Travel ticket booking: plane1 (cover flight from and to Lon-
don), plane2 (cover flights from and to Paris), plane3 (covers
flight from and to Milan and Trento), and eurostar;

• Hotel booking: paradise hotel (in London and Paris), coconut
hotel (in Milan and Trento);

• Car rental: car1 (Milan, Trento), car2 (all cited cities);

We assume that we already have a concrete composite web service
named TravelToLondonFromParis, as shown in figure 2, which
consists in requesting a reservation web service for the eurostar
train from Paris to London, followed by the parallel booking of a
ParadiseHotel chain in London, and the renting of a car with car2.

The main rounded box represents the composite with its global
inputs (period) and outputs (train ticket, hotel booking and car
rental). Now let us suppose that there exists an abstract composite
web service named TravelToLondon, generalization of our previ-
ous concrete composite service, where the eurostar service is
replaced by the semantic description TravelTicket, with an input
parameter, destination, fixed to the value London (see figure 3),
and the paradise hotel by the semantic description HotelBooking.

WS1

WS2 WS4

WS3 WS1

D2 WS4

D3

Concrete composite web service Abstract composite web service

generalization

We introduce another abstract composite, named DirectTravel,
which is an abstraction of TravelToLondon and also transitively an
abstraction of TravelToLondonFromParis, is presented on figure 4.
Here all involved web services are replaced by the abstract seman-
tic descriptions TravelTicket, HotelBooking and CarRental, with
the global inputs origin, destination, period, and the same outputs
as the two previous composite web services.

eurostar
paradise

hotel

car2

period

Inputs Outputs

train ticket
hotel book.
car rental Paris -

London

Figure 2. UML activity diagram of TravelToLondonFromParis

Travel-
Ticket

car2

period

Inputs Outputs

train ticket
hotel book.
car rental origin

to London

Hotel-
Booking

Figure 3. UML activity diagram of TravelToLondon

Hotel-
Booking

Car-
Rental

origin

Inputs Outputs

train ticket
hotel book.
car rental

period

dest.

Travel-
Ticket

Figure 4. UML activity diagram of DirectTravel

Hotel-
Booking

Direct-
Travel

origin

Inputs Outputs

train ticket
hotel book.
car rental

period

dest.

Travel-
Ticket ∞

Figure 5. UML activity diagram of IndirectTravel

Finally, we consider that there exists a last abstract composite web
service named IndirectTravel, which includes a reference to the
former abstract composite DirectTravel, as shown on figure 5. A
hotel booking may be necessary if the travel spans one night in the
intermediate city, represented by the alternative. The ∞ sign on
DirectTravel indicates that it refers to another abstract composite
definition.

4 IMMUNE SYSTEM INSPIRED APPROACH
4.1 A simplified view of immune systems

Figure 6. Pattern recognition of an antigen by B-cells

One of the roles of an immune system [2] is to protect our body
from attacks of invasive foreign substances. Such a foreign sub-
stance is called a pathogen, and is recognized by the immune sys-
tem as an antigen. The mechanisms used by the immune system for
this purpose are:

• The Pattern Recognition of foreign antigen in the immune
system, that is carried out by receptors on the surface of anti-
bodies released from the immune cells (lymphocytes: B-cells
and T-cells). The binding of an antigen to the different antibod-
ies requires that portions of the two structures have complemen-
tary shapes that can closely approach each other. The area on an
antigen where it has contact with an antibody is called an epi-
tope. The corresponding area on an antibody is called a para-
tope. The strength of the binding between an antigen and the
different antibodies is dependent on the affinity between them.
The higher the affinity, the stronger the binding.

• The Immune Response, constituted by two kinds of response. A
primary response is provoked when the immune system en-
counters an antigen for the first time. A number of antibodies
will be produced by the immune system in response to the in-
fection, which will help to eliminate the antigen from the body.
However, after a period of days the level of antibody begins to
degrade, until the time when the antigen is encountered again.
The secondary immune response is said to be specific to the an-
tigen that first initiated the immune response, and involves the
process of affinity maturation (see below).

• The Clonal Selection. When antibodies of a B-cell bind with an
antigen, the B-cell becomes activated and begins to proliferate.
New B-cell clones are produced that are an exact copy of the
parent B-cell, but then undergo somatic hypermutation and pro-
duce antibodies that are specific to the invading antigen.

• The Affinity Maturation process that guarantees that the im-
mune system becomes increasingly better at the task of recog-
nising patterns. After the primary immune response, when the
immune system first encounters a foreign substance and the
substance has been removed, a certain quantity of B-cells re-
mains and acts as an immunological memory. This is to allow
the immune system to launch a faster and stronger attack
against the infecting agent, called the secondary immune re-
sponse. This second, faster response is attributed to memory
cells remaining in the immune system, so that when the antigen,
or similar antigen, is encountered, a new immunity does not
need to be built up, it is already there. This means that the body
is ready to better combat any re-infection.

4.2 Immune system metaphor for our web service
composition reuse problem
Although immune systems have greatly inspired our approach, our
ambition is not to define an exact correspondence between the
concepts, processes and mechanisms of our model, and those of the
immune system. We try to use this metaphor as much as possible,
especially when it helps understanding the rational of the model,
however some specificities of our problem and solution still don’t
have a counterpart in immune systems, and vice versa.

In our model, different composite web services are proposed to
the user in order to answer to a composition request, which repre-
sent the antigen aggression.

In an immune system, when neutralizing antigens, the immune
cells specialize in attacks of this or similar antigens, and become
memory cells through a process of affinity maturation. Thus mem-
ory cells are specialized cells for one category of antigens.

We imagine, in the same manner that an existing selection of
concrete composite web services exists, specialized to answer to a
category of request. However, as detailed in section 4.5.2, the sole
semantic compatibility with the request, managed by the semantic
matching mechanism, is not enough to ensure that a given concrete
composite will be successful and stable. We claim that there need
to be some sort of affinity value, derived from usage feedback
information.

In the immune system, the process of affinity maturation [3]
strongly depends on the processes of specialization and clonal
selection of the immune cells, which are based on the affinity value
between immune cells and antigens. The higher the affinity value
is, the more adequate the immune cells answer is. The affinity
value is based on the degree of complementarity between immune
cells and antigens.

In our model, we define some usage information representing
how and how many times web services or concrete composites are
used with respect to a given context, represented in turn by a chain
of ancestor abstract composites. Then, we define the process of
maturation as a process of electing composite web services as
stable composite web services.

Table 1. Correspondence with immune system

Immune System WS Composer System
Antigen User request
Pattern recognition Semantic matching with existing WS

+ user choice
Affinity Semantic compatibility +

Relative and global affinity values
Affinity maturation Stable composite WS election
Memory cells Stable composite WS
B cells Concrete or virtual composite WS

Table 1 summarizes these correspondences. Some of the terms
used here are detailed in section 4.5 .

4.3 Model and motivations
For achieving our goal, our idea is that structural information
should be combined with usage information extracted from the
composite web services, in order to promote and possibly publish

stable and relevant composite web services. Stable composite web
ble in new
n the same

manner that the memory cells in an immune system react to a
certain category of antigens.

In particular, the structural information comprises: the compos-
ite definition itself, i.e. the structural constructs linking the refer-
enced internal web services together (that we will refer to as the
children of this composite), organizing them in a well defined
process; plus the generalization relations between composites. The
exact structural information available depends on the workflow or
process description language used to describe composite web
services, however we can always extract the composition depend-

The usage information is represented by a metric in our model:

adiseHotel and TravelToLondon, ParadiseHotel

ma
Fo
ws

we
the
dep
aff

Fig

clar
in
com

•

•

Th

•
• th the instantiates

and generalization directed associations.

o a concrete composite), are not of
cy links. Composition

 uses another composite
or sim he peciali-

lative affinity lin as a potential composi-
specialized form composite, augmented

.
With respect to section 3 ed two new composites,

e us later France and
T ondonFromGerm

 represents our sy ce,

owever, some parts of this process are distributed among several

e relative affinity update, and
the affinity maturation steps.

 s a user request is equiva-
to that there exist a matching

services will represent potential building blocks reusa
compositions corresponding to a category of requests, i

encies between a composite and its children.

the relative affinity value, associated to a relation between each
child component of a composite web service and its various ab-
stractions. In the example of section 3, we have a relative affinity
relation between: eurostar and TravelToLondon, eurostar and
DirectTravel; Par
and DirectTravel; car2 and DirectTravel.

We assume that we have a local repository that contains infor-
tion for a set of existing composite or simple web services.
rmally a web services, composite or simple, is defined as
 = {I, O}, where I is its set of inputs, O its set of outputs.
Along with this information stored for each composite or simple
b service, we add in the repository some meta-information about
 structure – the generalization relationships and the composition
endency relationships – and about the usage – the relative

inity (valued) relationships.

ure 7. Composite Web Services meta-information model

Figure 7 shows a UML class diagram describing our model. For
ity reasons the relative affinity relation is not represented. Also,

theory abstract composites may also contain (use) other abstracts
posites (not visible here). It includes notably:

Concrete web service, which is both a composite and a real web
service. It uses web services, its children, that may in turn be
other concrete composites or elementary web services as well;
Abstract composite, which is a composite but also contains
semantic descriptions.

e important relations (UML associations) are:

The composition dependency relation, here the uses association;
The generalization relation, represented by bo

4.4 Application to the Travel Agency example

Figure 8. Travel agency example: usage and structure meta information

Figure 8 represents in a same diagram the composition dependency
relations, the generalization relations, and the relative affinity
valued relations. For sake of clarity, only the first level of relative
affinity relations are shown on here; however these relations are by
construction repeated from any abstract composite to its direct
ancestor, following the generalization link, plus other ones. Thus,
very abstract composites like DirectTravel will have a lot of poten-
tial children with which they have a relative affinity.

It is important to note on this diagram that relations of different
nature are represented, which should not be confused: generaliza-
tion links, which in the opposite direction represent specialization
(or instantiation when leading t
the same nature as composition dependen
dependency means that a given composite

ple web service: this is neit r an instantiation nor a s
zation. Re
tion in a

ks can be seen
of the abstract

with an affinity value
, we have add

which will serv
ravelToL

on, TravelToLondonFrom
any.

4.5 Process
Figure 9 stem as a global process. In practi
h
agents, the cells of our immune system. The distributed part in-
cludes the automatic specialization, th

As tated in section 2, we consider that
lent a semantic description, and
mechanism selecting compatible candidates among the composites
and simple web services indexed in our repository.

DirectTravel

TravelToLondon

TravelToLondon-
FromParis

IndirectTravel

TravelToLondon-
FromGermany

TravelToLondon
-FromFrance

Coconut
Hotel

Airplane2

Eurostar

Car2

Airplane3

Paradise
Hotel

Composition dependency
Usage (relative affinity)
Generalization

Relations :

Composite Web Service

Elementary
Web Service

Concrete
Composite

Abstract
Composite

Semantic
description

0..*0..*

1

1 described by

needs
matchesmatches

described by

uses

instantiates

g
za

enerali-
tion

After that, the composer system performs automatic specialization,
which consists of specializing compatible (candidate) abstract
composites, using relative affinity as guidance, into potential new
concrete composites. This task does not create composites from
scratch, but explores new instantiation possibilities.

e best composites. Then, the com-

is abstract’s
:

Figure 9. Global process from user request to composite execution

Then, the system reorders all composition propositions, including
other candidate concrete composites obtained in the semantic
matching step, using a global affinity value for each composite,
and presents them to the user. The latter chooses one proposition:
this choice in itself brings some exploration in the system, since a
user is not forced to pick up th
posite is executed by the system, and the relative affinity values are
updated. The affinity maturation will possibly elect the new con-
crete composites, if used, as stable (i.e. memory cell), and associate
it with a semantic description, so that it becomes selectable by the
semantic matching engine. It is then usable in subsequent auto-
matic specializations.

4.5.1 Relative affinity

Definition 1 Relative affinity. A value of relative affinity is
always associated to a relation between a concrete web service
(composite or not), in execution, and the abstract composite of the
composite that calls it. This value is updated every time that this
concrete web service is executed as a child of one of th
specialization. The relative affinity function is equal to

usage

succ
r freq

freqacaff =),((1)

where freqsucc is the function measuring the number of times that
s concrete web service (c) has been used with success and
q

thi
fre

he relative affinity
2, WS3, WS4 and

WS ncrete WS1 has been

t tract
composite of X) and WS1 is updated, or generated if it did not exist,
with an associated relative affinity value equal to the fraction be-
tween the number of successes and the total number of utilizations
of WS1 as a child of any specialization of AX. The same happens
between the abstract composite AX and the concrete WS2.

Figure 10. Relative affinity update example

Since execution of the composite Y includes the execution of WS3
and WS4, a relation between AY and the two concrete web services
WS3 and WS4 are generated or their relative affinity value updated.
Then, when the execution of the composite Y terminates, a relation

r-

usage is the total number of time that this concrete web service
has been used.

Figure 10 illustrates the updating mechanism of t
values between concrete web services (WS1, WS
Y) and the generalization of the parent composite that calls them.
The execution of composite X includes the ordered execution of

1, WS2 and the composite Y. Once the co

execu ed, the relative affinity relation between AX (the abs

between the abstract composite AX and the composite Y is gene
ated with a numeric value of relative affinity.

4.5.2 Affinity maturation

During the automatic specialization step, new virtual concrete
composite may be created by specializing abstract composites
compatible with a user request, with different children than those
present in existing concrete composites. As long as such a virtual
composite is not considered stable by the system, it does not has a
proper existence outside the current user session, and is not identi-
fied nor associated to a semantic description in the web service
repository of the composer system.

The only trace of its existence is represented by the global affin-
ity value calculated by the system, also used to order the proposi-
tions before presenting them to the user. This global affinity value
only depends on the relative affinity values of the various children,
and possibly grandchildren, etc., involved in the virtual composite.

Definition 2 Global Affinity. The global affinity value repre-
sents a weighted average of the various relative affinity values,
with respect to the whole ancestor chain of the concrete composite.
Its value is given by the following function:

n

Caff i j
g = 1 1)((2)

where C is the considered concrete composite, viewed here as a set
of n children concrete web services (c

acaff
n m

j
iirij∑ ∑

= =

),(α

j

 and affr(ci, aij)
is the relative affinity of ci with respect to ai

j.

1… ci … cn); m represents the
number of ancestor abstract composites of C; ai are the semantic
descriptions of the children concrete web services to instantiate on
the jst ancestor, and corresponding to the concrete child ci; αij are
weight values, so that the sum of these weight values referring to
the same concrete child web service is equal to one;

X

AX

WS1

WS2 Y

AY

WS3

semantic
matching

User Web Service Composer System

request (semantic
description)

ordering and WS4
presentation

automatic
specialization

choose a
concrete CWS

execute CWS

update relative
affinity values

get results…

affinity
maturation

Definition 3 Virtual composite. A virtual composite is a com-
posite created by the composer system as a result of the automatic
specialization step, in response to a user request. This composite is
temporary to the session, and does not have an actual existence in
the composer system web service repository.

Definition 4 Stable composite. A stable composite is a former
virtual composite which has been used successfully at least one
time with a global affinity value exceeding a predefined threshold
(parameter of the composer system), that we refer to as the affinity
maturation threshold.

concrete composite, it can be matched di-
rectly to user requests without needing the specialization step, and

hild concrete web service, inside other

alls
low the affinity maturation threshold for some period.

4.5.3 Example

We assume that the user request is compatible with TravelTo-

e global
affinity is greater than the affinity maturation threshold, a new
stable concrete composite is created and referenced in the reposi-
tory, and can now be used directly.

4.6 Exploration / exploitation ratio
Apart from the obvious exploration due to the fact that the user
chooses among different composite propositions from the system,
there is another interesting form of exploration in this process,
related to the automatic specialization step.

During this phase, the composer system tries to instantiate new
concrete composite from existing abstract ones, by substituting

loration is guided by two
factors: (i) the existence of abstract composites and (ii) the relative

y the cross-usage of
various composites related to these abstract composites, and in-

 web services in different contexts.
ic usage of the concrete

cription will probably
add some constraints related to the parameters fixed in the concrete
composite, and also related to the newly associated children web

rvices.
Another issue is the relative importance of the children of a

given composite. We currently consider them evenly, with the

Figure 11. Example of global affinity value calculation

In the example of figure 11, the global affinity value is:

 affg (C) = (α11affr(c1, a1
1) + α12affr(c1, a1

2) + α21affr(c2, a2
1) +

α22affr(c2, a2
2) + α31affr(c3, a3

1) + α32affr(c3, a3
2)) / n

where α12 = α21+α22= α31+α32 = 1.
Once a concrete composite is considered stable, it is stored and

indexed in the web service repository, and associated to a semantic
description. As a real

also becomes eligible as a c
composite web services.

This stable composite election process is inspired by the im-
mune system’s affinity maturation process. Affinity is stimulated
by cross-usage, and different existing composites may contribute to
the maturation of the same new stable concrete composite.

One of its goals is to ensure some sort of long term memory to
the system, since stable composites may be kept for an arbitrary
long time in the system, even if their global affinity value f
be

To illustrate specialization and affinity maturation, let us suppose
that a user wishes to travel in London from France, in the context
of the scenario presented in section 3, and augmented in section
4.4, figure 8.

LondonFromFrance. However, we also assume that TravelTo-
LondonFromParis and TravelToLondonFromGermany have been
used largely with success, so that the relative affinity of Paradise-
Hotel with respect to the abstract composite TravelToLondon is
higher than that of CoconutHotel. Although the context is slightly

different, ParadiseHotel is still applicable to the semantic descrip-
tion HotelBooking included in TravelToLondon. Thus, the com-
poser system will propose a virtual composite with ParadiseHotel
instead of CoconutHotel to the user, with a higher rank.

Now, let us suppose that the user chooses this virtual composite
web service, and that the execution is successful. If th

some children web services. This exp

affinity values of potential children web services, with respect to
these abstract composites. Abstract composites are supposed to be
designed by system administrators or programmers, and influences
the way the system will reacts.

However the creation and enforcement of new composites, for a
given user request, is also highly influenced b

volving other potential children
This influence is not limited to the specif
candidate composites directly compatible with the user request.

As a consequence, the ratio between exploration and (usage)
exploitation is mainly determined by the density and structure of
the generalization and composition graphs formed by abstract
composites, by the initial distribution of the concrete composites
and the elementary web services in the system, and above all by the
variability of the requests and choices of users.

4.7 Discussion
The semantic level and matching mechanism are not covered in
this paper. However the language and ontology used for the seman-
tic descriptions is indeed very important for our approach to work
properly: the language used should allow designers to define ab-
stract descriptions, for abstract composites, that remain compatible
with more specific descriptions. Additionally, it should allow our
system to specialize an abstract description, when an automatic
specialization occurs. This specialized des

se

same weight, in the calculation of the global affinity value. Assum-
ing that if any of them fails, the whole composite fails (note that it
is not always the case, especially if the composite includes some
form of redundancy to increase its robustness), one might consider
that the weakest affinity score should be considered. Alternatively,
a more complex affinity value calculation, partly based on the
workflow structure of the composite, could be investigated.

c1 c2 c3

c1

2
3a 2

1a 2
2a relative affinity

1
2a 1

3a

generalization

semantic descr.

A1

A2

C

The affinity functions used in our approach does not define any
absolute confidence value associated to each web service or com-
posite web service, independently of any context. Even the global
affinity function is always relative to a context, represented by the
chain of ancestor abstract composites and the user request. This
design choice might be considered somehow restrictive, and one

ingle parameter change can condition the
success or failure of a request.

5 RELATED WORKS
This approach is inspired by the work by Melloul and Fox in [1]. In
particular, the abstract composite concept in our model is close to
their high level composition patterns. Our contribution mainly adds
the automatic specialization process, the affinity relations, and the
affinity maturation process.

Although we do not use class inheritance explicitly, our gener-
alization/specialization relations suggest an object-oriented inheri-
tance model. In this direction different works can be found in the
area of workflow class inheritance. For example, in [4] Bussler
presents a framework to analyze the requirements for supporting

age is
lass speci-
ubclasses

a

that im ms
flow classes can then be de-

ition plan.
Rather, we start with existing (high-level) plans, and focus on their

t y exploiting the combination of cross-

ION AND FUTURE WORKS

emergence
of

tive affinity calculation, is of
course guided by the definition of meaningful abstract composites,

ators a degree of
otential automatic

[1] L. Melloul and A. Fox ‘Reusable Functional Composition Patterns for
Web Se the IEEE International Conference

n S), San Diego, CA, USA, 498-506 (2004).

may consider that the relative affinity values should be combined
with an absolute confidence value for each web service, so that
usage feedback may be shared more widely across usage contexts.
Our motivation is that the success of a web service is often very
context sensitive: a s

such workflow class inheritance. Different perspectives of inheri-
tance are discussed and a workflow class definition langu
proposed. In [5], Kappel and Lang present a workflow c
fication, consisting in a set of object classes and rules. S
nd inheritance are supported, at least partially.

In [6], Papazoglou and Yang describe a system called TOWE
plements a set of classes providing the basic mechanis

for workflow execution. Other work
veloped by inheriting the functionality of basic workflow classes.

Our generalization relation, however, is defined by the substitu-
tion, in the composite definition, of one or more children concrete
web services by semantic descriptions. This relation is derived
from the composites structure: it is not a purely additional, higher
level classification of existing web service, which would rather
correspond to the semantic description level in our case.

Our approach differs from other related works about web ser-
vices composition in that it focuses on reusing existing abstract
composites that can be specialized into particular concrete compos-
ites, or reused in the construction of larger or extended composites.

Finally, we distinguish our work from automatic Web service
composition such as in the work by McIlraith et al. [7] on semantic
web service composition, and the work by Petrie et al. [8] on web
service planning, where the goal is to produce a compos

differen possible reuse, b
usage, the affinity relations, and structural meta-information, the
composition and generalization relations.

6 CONCLUS
In this paper we have proposed an approach to deal with composite
web service reuse and automatic specialization by children compo-
nent substitution, inspired by the human body immune system. The
shape correspondence between the antigen epitopes and the anti-
body paratopes is represented in our system by a relative affinity

function, measuring the degree of success of the use of a concrete
child web service, within the context of a concrete composite, with
respect to a more general abstract composite web service.

The associated affinity maturation process allows the
 new stable concrete composites, resulting from automatic spe-

cializations and the accumulated cross-usage information. These
stable concrete composites are then identified and semantically
described, as any existing web service in our system.

This process, as well as the rela

which gives to the composer system administr
control on the affinity propagation and on the p
specializations proposed by the system.

We are currently defining a prototype in order to validate the
feasibility of this approach on simple scenarios (work in progress).
A perspective is to extend the model to better account for the inter-
nal structure of web service composite in the relative affinity func-
tion (for example, differentiate redundant and mandatory children).

A second perspective is to consider the specificity of the request
in our global affinity evaluation: if a request is very specific, it is
reasonable to think that the relative affinity values related to the
most specific abstract composites are more important than the
relative affinity values related to the most abstract ones. On the
contrary, a very vague request will not care too much about the
former ones, but more about the latter.

A long term perspective is to leverage the distributed nature of
the immune system model, and its natural tolerance to heterogene-
ity. Instead of having one global composer system, this approach
can scale to a network of interconnected web service composition
domains managed by local composer systems. Such composer
systems may publish stable or abstract composites to each other,
with respect to some diffusion policy. This diffusion would corre-
spond to the spreading and cloning of memory cells into our blood.

REFERENCES

rvices’, in proceedings of
o Web Services (ICW

[2] L. N. de Castro and F. J. Von Zuben, ‘Artificial Immune Systems:
Part I, Basic Theory and Applications’, RT DCA Technical Report 1-
98. (1999).

[3] Berek, C. and M. Ziegner, ‘The Maturation of the Immune Response’,
Immunology Today, 14 (8), 400-402, (1993).

[4] C. Bussler, Workflow class inheritance and dynamic workflow class
binding, In Proceedings of the Workshop of Software Architectures for
Business Process Management at the 11th Conference on Advanced
Information System engineering, Heidelberg, Germany, 1999.

[5] G. Kappel, P. Lang, S. Rausch-Schott, and W. Retschitzegger, ‘Work-
flow Management Based on Objects, Rules and Roles’, IEEE Data
Engineering Bulletin, 18(1), 11 – 18, (1995).

[6] M. P. Papazoglou and J.Yang, ‘Design Methodology for Web Ser-
vices and Business Processes’, in Proceedings of the 3rd VLDB-TES
Workshop, Hong Kong, 2002. Also in LNCS, 2444, Springer, (2002).

[7] S. A. McIlraith, T. C. Son, and H. Zeng, ‘Semantic Web Services’,
IEEE Intelligent Systems, Special Issue on the Semantic Web, 16 (2),
46-53, (2001).

[8] C. Petrie, M. Genesereth, H. Bjornsson, R. Chirkova, M. Ekstrom, H.
Gomi, T. Hinrichs, R. Hoskins, M. Kassoff, D. Kato, K. Kawazoe, J.
U. Min, and W. Mohsin, ‘Adding AI to Web Services’, Agent
Mediated Knowledge Management, LNAI, 2926, Springer, 322- 338,
(2004).

	1 INTRODUCTION
	2 PROBLEM FORMULATION
	3 TRAVEL AGENCY EXAMPLE
	4 IMMUNE SYSTEM INSPIRED APPROACH
	4.1 A simplified view of immune systems
	4.2 Immune system metaphor for our web service composition reuse problem
	4.3 Model and motivations
	4.4 Application to the Travel Agency example
	4.5 Process
	4.5.1 Relative affinity
	4.5.2 Affinity maturation
	4.5.3 Example

	4.6 Exploration / exploitation ratio
	4.7 Discussion

	5 RELATED WORKS
	6 CONCLUSION AND FUTURE WORKS
	REFERENCES

