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Abstract: The study of plasmas is a rising research topic in the field of physics. It implies the need for specific
algorithms allowing physicists to easily visualize and thus correctly interpret related complex datasets. This
paper describes an innovative and highly efficient volume rendering method designed for gyrokinetic simula-
tions. Based on a Raymarching approach that benefits from the latest functionalities offered by current graphics
programmable hardware, we exploit the geometrical properties of the tokamak (a physical device used to create
plasmas) in order to achieve a rendering at interactive framerates. We therefore introduce a novel and general
method for Raymarching volumes with an adaptive step. A good approximation of the rays’ continuous integra-
tion is obtained by introducing a Multi-Sampled Pre-integrated table. A comparison with a recent gyrokinetic
simulations visualization technique demonstrates the improved efficiency of our approach in terms of framerate
and quality.

Key-words: graphics hardware, plasma physics, texture-based methods, volume visualization, raymarching,
pre-integration

∗ XLIM, UMR CNRS-UNILIM 6172, Limoges, France
† LIRIS, UMR CNRS-UCBL 5205, Lyon, France
‡ LSIIT-IGG, UMR CNRS-ULP 7005, Strasbourg, France
§ CEA-DSM-DRFC, Association Euratom-CEA, Cadarache, France



Implantation d’un raymarching adaptatif pour la visualisation de
données volumiques issues de simulations gyrocinétiques

Résumé : Ce rapport décrit la mise en oeuvre d’une méthode de rendu volumique efficace adaptée aux données
volumiques issues d’une simulation gyrocinétique. Cette méthode est basée sur un lancer de rayon adaptatif
implanté en utilisant la programmation des cartes graphiques. La géométrie spécifique d’un tokamak (dispositif
physique dédié aux plasmas) est exploitée dans le but d’obtenir un rendu interactif. Une bonne approximation
de l’intégration du rayon continu est obtenue en introduisant une table de pré-intégration échantillonnée. Une
comparaison avec une implantation récente de visualisation de simulations gyrocinétiques est également faite et
démontre l’efficacité de notre approche en terme de qualité et de fréquence d’affichage.

Mots-clés : Matériel graphique, physique des plasmas, visualisation volumique, raymarching, pré-intégration
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1 Introduction
Due to the continuous technological advances of 3-D imaging devices (scanner and sensors) and to the need
for higher precision as well as accuracy in computational science (numerical simulations), designing real-time
visualization applications is currently a real challenge for the scientific visualization and computer graphics
communities. Exploring large volumetric scalar fields has been made possible with “Direct Volume Rendering”
methods, most of them exploiting graphics hardware capabilities to reach interactive frame rates. We can
mainly classify such methods as either forward projective (shear-warp factorisation, cell projection, splatting,
. . .) or backward projective (raycasting).

The formers have been quite popular due to their performance achievements and to their tighter correlation
with graphics hardware functionalities. Consequently, much research has been driven on improving the approx-
imation of the ray integration throughout the volume as well as on improving visual quality [7, 16, 5, 17, 15, 13].

Although the latter have existed for quite some time in software, Raycasting-like approaches applied to
Direct Volume Rendering have suffered from their conceptual incompatibility with the graphics hardware range
of functionalities, thus making interactivity out of reach on standard PCs. It is just recently that some papers
transposed backward projective methods to the GPU [18, 11].

This paper discusses the visualization of volumetric data resulting from a gyrokinetic simulation. Visual-
izing such simulations is a new active research topic for which the need for adapted tools is urging, and for
which common visualization algorithms do not perform to their fullest due to the spatial arrangement of the
data. Recently, Crawford et al. introduced the problematic by proposing an approach designed for visualizing
gyrokinetic simulations [3] (we describe these simulations in section 2). But due to an expensive geometrical
transformation executed per fragment (even for irrelevant ones) interactivity is hardly achieved. Consequently,
neither pre-integration nor any shading model has been integrated in their approach, thus leading to residual
visual artefacts.

By inspiring ourselves of their resampling scheme, we present in this paper a novel hybrid rendering technique
that we define as a combination of forward projective and backward projective methods, where the tokamak’s
torus-like geometry is taken into account. By resampling in a 3-D texture the unwrapped toroidal data and
building a mesh representing the tokamak’s crust (see section 4), rendering the volume is achieved in three
passes independently of the data’s size. The tokamak’s crust allows us to do smart empty space skipping by
Raymarching only the voxels contributing to the fragments of interest, textures’ coordinates being computed
in the fragment shader by a world space (wrapped) to texture space (unwrapped) transform operation (see
section 4). To allow us the use of adaptive Raymarching steps, while benefiting from pre-integration [5, 15, 13],
we introduce a novel Multi-Sampled Pre-integration technique. The latter consists in precomputing multiple
pre-integrated tables, each table corresponding to a given slab’s thickness. Stacking these tables hierarchically
up in a 3-D texture sorted by thickness, allows our fragment shader to dynamically determine and use the
appropriate level of detail depending on the ray’s length. Note that since each ray is rendered with its own step
size, the latter being independent of the others, we preferred calling our algorithm Raymarching instead of the
usual term Raycasting.

A complete lighting model (ambiant, diffuse and specular component) further increases the quality of the
rendered images.

The remaining parts of the paper are organised as follows: section 2 describes the gyrokinetic simulations
process used to generate our data. Section 3 briefly overviews some related works. The next section 4 details
how the data have been pre-processed. Section 5 explains how our pre-integrated tables are computed and
exploited. Section 6 reviews the three rendering passes of our Raymarching technique applied for visualizing
the tokamak. Finally, before concluding, we present in section 7 some results and discuss some implemented
optimisations. We also propose in this section a comparative study with previous works, especially [3].
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2 Gyrokinetic Simulations
Before describing our method, let us first introduce the physical context of this application, since this is what
has driven our main motivations and subsequent choices. The present work deals with the visualization of a
simulation computing the ion turbulence in tokamak plasmas [8].

Plasma (the fourth state of the matter) which is found in the stars and the interstellar environment, makes
up most of our universe (99%). On Earth, it does not exist in a natural form, apart from lightning and
the Aurora Borealis, but it is produced artificially by applying magnetic fields powerful enough to separate
the kernel from its electrons in gases. The torus-shaped tokamak configuration is ideal to obtain controlled
thermonuclear fusion based on magnetic confinement. The thermal confinement of a magnetized fusion plasma
is essentially determined by turbulent heat conduction across the equilibrium magnetic field. Understanding
the turbulent transport in a tokamak configuration is therefore a key issue for controlled fusion. In practice,
the study of plasma turbulence requires to solve Maxwell’s equations coupled to the calculation of the plasma
response to the perturbed electromagnetic field (Vlasov equation). This response can be computed by using a
kinetic description of the plasma. In principle, one has to solve a 6-D kinetic equation (3-D in space and 3-D
in velocity) to determine a distribution function, which yields current and charge densities once integrated over
the velocity space. Nowadays computing facilities are not get able to handle this 6-D kinetic problem.
Using the fact that turbulence frequencies are lower than the cyclotron frequency, scientists in the fusion
community have developed a new kinetic equation, called gyrokinetic, describing the distribution function in
the 4-D phase space, parameterized by the adiabatic invariant, µ = mv2

⊥
2B the action variable associated to the

gyrophase. This 5-D gyrokinetic problem is still very demanding in terms of numerics.
Two methods have been used up to now to investigate turbulence in the gyrokinetic regime. The first

method is based on a Lagrangian approach. Particle In Cell (PIC) codes, which are the most widely used in
this category, consists in describing the plasma with a finite number of macro-particles. The trajectories of
these particles are the characteristic curves of the Vlasov equation, whereas self-consistent fields are computed
by gathering the charge and current densities of the particles on a mesh of the physical space. Some recent
work has been proposed to visualize the large amount of generated time-space particles [14, 2].

The second method is Eulerian. It consists in discretizing the Vlasov equation on a mesh of the phase space
that remains fixed in time. The Flux Balance Method (FBM) uses a finite volume method for computing the
average of the Vlasov equation on each cell on a fixed grid.

The simulation that we use is based on an intermediate Semi-Lagrangian method [6]. The purpose of the
SL method is to take advantage of both the Lagrangian and Eulerian approaches, to have a good description
of the phase space, in particular in regions where the density is low, as well as an enhanced numerical stability.
In this approach, the grid is kept fixed in time in the phase space (Eulerian method) and the Vlasov-equation
is integrated along the trajectories (Lagrangian method) using the invariance of the distribution function along
the trajectories. Cubic spline interpolations are performed to evaluate the new value of the distribution function
on the grid points.

Here the full distribution function f is calculated in contrast with δf PIC codes, used in gyrokinetic simu-
lations, that only calculate the perturbed distribution function. The simulation used for this paper is applied
to a cylinder geometry with a reduction of the phase space to 4-D. Such simulations have been performed to
prove the interests of the SL method in [8]. The goal in the future is to investigate turbulent transport in 5-D
in a realistic tokamak geometry together with a relevant physics of low frequency turbulent activity. But even
in 4-D, the amount of data remains very large. Regular grids of resolution 64 already require 128MB in double
floating point precision for each time step.

In the 4-D version, a periodic cylindrical plasma of radius a and length 2πR is considered as a limit case of
a stretched torus. The plasma is confined by a strong magnetic field which is uniform ~B = B ~ez where ~ez stands
for the unit vector in the toroidal direction z. Concerning the ions, finite Larmor radius effects are neglected so
that the trajectories are governed by the guiding-center (GC) trajectories. Let us introduce some notations:

dr

dt
= vGCr

; r
dθ

dt
= vGCθ

;
dz

dt
= v‖ ;

dv‖

dt
=

q

mi

~Ez, (1)
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where vGCr and vGCθ
are the radial and poloidal components of the E ×B drift velocity ~vGC = ~E× ~B

B2 , ~E being
the electric field, q = Ze the ion charge and mi the ion mass and v‖ corresponds to the velocity along the
magnetic field lines. This simplified cylinder configuration does not take into account the toroidal effects but
allows one to study ion temperature gradients driven modes.

Given these assumptions, the distribution function f is a 4-D phase space function that depends on the
three cylindrical coordinates (r, θ, z) and on the parallel velocity v‖. The evolution of this distribution function
f(r, θ, z, v‖, t) is then described by the drift-kinetic Vlasov equation:

∂ ~f

∂t
+ ~vGC . ~5⊥f + v‖

∂f

∂z
+

q

mi
Ez

∂f

∂v‖
= 0, (2)

where ~5⊥ = ( ∂.
∂r , 1

r
∂.
∂θ ). This equation couples the ~E × ~B motion across the magnetic field to the motion

parallel to the magnetic field. Self-consistency is ensured by the quasineutrality equation that relates the
electric potential Φ to the first moment of the distribution function, namely :

−∇⊥ ·
[
n0(r)
BΩ0

∇⊥Φ
]

+
e n0(r)
Te(r)

(Φ− 〈Φ〉) = ni − n0 (3)

where Ω0 = qiB0
mi

is the ion cyclotron frequency, and Te and n0 are respectively the electron temperature and
density profiles. The ion density profile is given by ni(r, θ, z, t) =

∫
dv‖ f(r, θ, z, v‖, t) and 〈·〉 represents the

average on the magnetic field lines.
This paper presents the visualization of this gyrokynetic simulation i.e a volume rendering technique designed

to visualize for a given t and a fixed v‖, the distribution function fv‖(r, θ, z) discretized on a cylinder of resolution
64× 128× 64.

3 Previous Work
Since Lacroute and Levoy [12] introduced the notion of texture based approaches for volume rendering, many
extensions have been developed on the shear warp factorisation scheme. Conceptually, trilinear interpolation
of the volume’s scalar set is substituted by rendering object aligned slices in an ordered way. Cabral et al. [1]
exploit 3-D hardware acceleration based on the same principle, followed by others [20, 4, 19].

Much work has been done on improving the integration of the rays through the volume [5, 15, 13] and on
adding realism by integrating lighting models [7, 16, 9, 10].

In comparison, raycasting approaches have been less explored as their implementations don’t trivially trans-
pose onto the graphics hardware. However, some papers addressed this matter with original concepts as well as
interesting results [18, 11].

By taking into account the scheme used for sampling the scalars during a gyrokinetic simulation, Crawford
et al. [3] introduced a novel method for resampling the data to meet the memory limitations of current graphics
hardware. Furthermore, they describe a hardware based volume rendering technique designed to visualize
plasmas whereas before, gyrokinetic simulations were mainly analyzed using isosurfaces.

However, applying the shear warp factorisation to the bounding box of the tokamak lacks of performance
in terms of frame rate as the world space to texture space expensive transformation is done per fragment, even
for the pixels that will not contribute to the final image. Given the nature of the physical device where samples
are collected (the center being hollow), more slicing planes must be used to achieve a correct rendering, coming
at the expense of more computations and thus a lower framerate.

4 Preprocessing the Data
We place ourselves in a right handed coordinate system for the rest of the paper.

RR no 5974
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4.1 Data caracteristics
The tokamak’s center is placed at the origin of our coordinate system, bringing symmetry relatively to the xy,
yz and xz planes. Samples issue from the simulation are arrayed evenly along the y axis, slicing the volume in
poloidal planes with a constant angular step ∆γ , each describing an angle γ relatively the xy plane.

The poloidal planes are futhermore decomposed into rings of linearly decreasing radii r.∆r. Along this rings
the samples are distributed with a constant angular step ∆θ (see Figure 1). Note that our numerical simulation’s
sampling scheme is different from the one established by the Princeton Plasma Physics Laboratory[3], since the
meshes along a ring are distributed with respect to the current ring’s radius.

Figure 1: Samples of a typical poloidal plane. Constant radial progression of the meshes for all the rings can
be observed, implying oversampling for the rings of low radius.

4.2 Building the crust and normalisation
For each poloidal plane, we consider only the rings of maximum radius rmax. We then loop through the
concerned samples for building correctly oriented faces (in the case of our implementation, we chose the counter
clockwise orientation). Since we can omit the r coordinate (the rings of lowest radii are ignored during this
phase), vertices can be parameterised by their major angle γ (determining the current poloidal plane) and their
minor angle θ (determining the samples located on the ring of radius rmax). With v(rmax, θ, γ) being the vertex
actually processed, we triangulate two faces of the crust (see Figure 2):{

v(rmax, θ, γ) v(rmax, θ + ∆θ, γ) v(rmax, θ + ∆θ, γ + ∆γ)
v(rmax, θ, γ) v(rmax, θ + ∆θ, γ + ∆γ) v(rmax, θ, γ + ∆γ)

Figure 2: Visualizing in wireframe the tokamak’s crust builded with the furthest rings’ samples.

Building the crust of the tokamak can be achieved in linear complexity. We only store the vertices world
space coordinates which we index in our list of faces.

For further optimisation, we apply some geometrical transformations to the mesh previously built:

INRIA
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• We scale our object by a factor of 1
2.rmax

, so that the revelant surface of the poloidal planes is the surface
of the unit circle, π.

• A positive shift of 1
2 along the y axis is then applied to the whole mesh.

In this way, the y components of our meshes are bounded to [0, 1], which will allow us later to reduce
computations with regard to the world space coordinate to texture space coordinate transformation, as explained
in the next subsection 4.3.

4.3 Unwrapping the data
Considering the spatial distribution of the samples collected by the gyrokinetic simulation, a standard 3D texture
resampling approach would imply a waste of memory storage, as well as a loss of information due to memory
limitations on graphic hardware. This is due to the fact that the center of the tokamak and the corners of
its bounding box are free from samples. Crawford et al. [3] use a smart coordinate system change to map the
toroidal data to a basic rectangular 3-D texture.

Basically, we take advantage of the poloidal planes being sampled linearly by δγ to create a 3-D texture where
γ is directly mapped to the u texture coordinate. That is, each slab of our texture along the height represents
the samples contained in one poloidal plane. Resampling occurs internally of these slabs by re-interpolating
bilinearly along the r and θ component, so that consistent values are affected to the voxels’ centers (see Figure 3).

Figure 3: The data of the Gyrokinetic Simulation after being re-sampled and unwrapped, resulting in a 3D
texture. This capture has been done using our Raymarching together with some shading, as described in this
paper.

During rendering, texture coordinates can be easily recovered by applying the inverse transformation to the
world space coordinate of the fragment. Indeed, considering the torus parametric equation (which we apply to
the crust we previously built), with rmax and R being respectively the minor and the major radii, and α and β
being respectively the minor and major angles, we have: x(α, β) = (R + rmax.cos(β)).cos(α),

y(α, β) = rmax.sin(β),
z(α, β) = (R + rmax.cos(β)).sin(α).

Recovering texture coordinates from a vertex world space coordinates (x, y, z) is now given by the formula:
s =

√
x2 + z2 − (R− rmax),

t = y,

u = atan(z,x)
2π .

(4)

RR no 5974
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In order to be able to incorporate a lighting model, zero scalars are added to the borders of the textures’s
width and height all along the depth. These are used to enable the computation of a gradient necessary for
lighting, also on these border samples.

5 Multisampled Pre-Integration Table

5.1 Motivations
Pre-integrated Volume Rendering [5, 15, 13] is a technique that has the advantage of capturing much more
features inside a volume with less samples. However, it is necessary that the step along the casted rays be
constant in order to have a correct approximation. Recently, Shaders Model 3.0 made loops core part of the
GPU, allowing us to do Hardware Raycasting. When using such an approach, care must be taken with the
length of the Shaders’ programs as well as their complexity for the sake of interactivity, leading us to the next
problem:

As the length of a ray may vary significantly depending on the region we are in and on the view vector’s
direction, a compromise must be done:

• By choosing a large step, we can satisfy the integration of the longest rays. But, when raycasting smaller
regions, the volume integration will be done with very few samples, which may lead to some more or less
important visual artefacts.

• On the opposite, by choosing a small step, the rendering will be improved for narrow regions, but we will
not be able to fully integrate the longest rays due to the hardware limitations. This may have serious
consequences when the traversed part of the ray is translucent and the rest of it contains very opaque
data, thus giving the impression of a Z-far clipping plane, especially when moving the viewpoint.

In order to benefit from Pre-integration as well as from a hardware Raycasting approach, we propose a
method where we march along the rays with an adaptive step and where color and opacity information is
fetched in what we call a Multi-Sampled Pre-integrated Transfer Function Set (MSPITFS).

5.2 Precomputing the Multi-Sampled Pre-integrated Transfer Function Set
We consider the case of one-dimensional and univariate transfer functions. Since such a transfer function can
be stored as a one-dimensional texture, its related pre-integrated table is stored as a two-dimensional texture
[5, 15, 13]. Subsequently, our Multi-Sampled Pre-integrated Transfer Function Set will be represented as a three-
dimensional texture; that is, a stacked set of two-dimensional tables, each table representing a given integration
step. Conceptually, one may consider this set of tables as a sort of LOD (Level Of Detail) representation:

• The lowest level value corresponds to the pre-integrated transfer function that has been computed using
the maximum number of samples we allow along one ray (this corresponds to the maximal size of the
integration step).

• The highest level value represents the transfer function itself, that is an integration step of size zero.

As is common for LOD, we apply powers of two for the different integration steps in the MSPITFS.
We also impose that the maximum number of samples along a ray be a power of two, 2lodmax . Furthermore,

the value of lodmax (which is consequently a positive integer) determines the number of pre-integrated transfer
function tables in our 3-D table stack, which is nblod = (lodmax + 1). Figure 4 illustrates a stack example of
eight pre-integration tables, stored on the GPU as a 3-D texture of height eight. The integration step grows
as a power of two. The left bottom image corresponds to an integration step of size zero, thus matching the
transfer function. Note that the tables become more and more similar as the integration step increases.

INRIA
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Figure 4: Eight consecutive tables of the Multi-Sampled Pre-Integrated Transfer Function Set are shown,
increasing in terms of step size from bottom to top and from left to right. Note that the bottom left image
corresponds to the transfer function and represents the highest LOD level.

5.3 Using the Multi-Sampled Pre-Integrated Transfer Function Set
The purpose of the MSPITFS is to fetch well approximated color and opacity values according to the current
integration step size related to the currently processed pixel. Before determining the depth component (Level
Of Detail) u in the table stack, we need to precompute the length of the longest ray we may encounter for a
specific volume, let it be lengthmax.

In the case of the tokamak, we have lengthmax = 4
√

r.R, with r and R being the minor and major angles
from the torus parameteric formula (see Figure 5).

r

R

O

R-r
R+r

Figure 5: Viewing a torus from top. We show how the longest ray’s length (in yellow) can be easily computed
from the tokamak’s parameteric equation. r is the minor radius and R the major radius of the torus.

During rendering, the correct table in the stack is accessed as follows: for a given ray, knowing the spatial
localisation of its starting and ending vertices, we compute the length of its directionnal vector : lengthray.

Determining the table coordinate u within the 3-D stack is done by applying the following equation u =
log lengthmax

lengthray

nblod
, log being the logarithmic function in base 2. We notice that :{

if lengthray = lengthmax, u = 0
lim lengthray → 0, u = +∞

RR no 5974



10 El Hajjar & Zara & Dischler & Grandgirard

By enabling clamping, we make sure that we always have u ∈ [0, 1]. In the case of rays with very small length
lengthray, this allows us to force the lowest level of detail in our MSPITFS, to be 1 (that is the table on the
bottom left of Figure 4). The value 0, on the contrary, represents the highest level of detail (that is the table
on the top right of Figure 4).

Futhermore, by enabling 3-D texture linear interpolation in hardware, the Pre-integrated tables for each ray
will result from averaging its two nearest neighbours. This provides in many cases (depending on the transfer
function and the current depth) smooth transitions between neighboring pixels. Figure 6 illustrate a comparison
between different level of details.

Figure 6: Visualizing the same scene with three different data space to color space transformations, from top
to bottom and from left to right : Using a transfer function without pre-integration, stantard pre-integration,
the multi-sampled pre-integrated transfer function set (12 levels of details). The last image (lower right) shows
the level of details that has been determined in the shader by assigning darker colors to higher level of details.
The number of steps per ray has been fixed to 32.

6 Rendering Passes

6.1 Hardware
We take advantage in our algorithm of the GL_EXT_framebuffer_object openGL 1.5 extension for the purpose
of drawing to rendering destinations other than the buffers provided by the window-system. We though use for
offscreen rendering a virtual framebuffer having two auxiliaries buffers of the size of our viewport, each fragment
being defined by three components (commonly named R, G and B) in the standard IEEE 32bit floating-point
format. We also make use of a zbuffer for depth sorting.

Recently, Programmable Hardware made a significant advance with the Shader Model 3.0, bringing new
features of interests without whom our implementation would not have been possible :

• Vertex and Fragment shaders can have up to 65535 instructions.

• Shaders benefit internally from 32bit floating point precision.

• Dynamic flow control allows efficient branching in both Vertex and Fragment Shader.

INRIA
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• Dynamic loops for the Vertex Shader as well as static loops in the Fragment Shader are made possible.

• Early-outs and fast fragment discarding allows several optimisations.

We now detail each of the passes.

6.2 Rendering the tokamak
6.2.1 First Pass

We clear the first auxiliary buffer with values that will allow us to determine if the fragment shader has written
or not to a pixel. As world space coordinates of the tokamak’s faces will be written in the framebuffer, we take
advantage of the normalisation that occurred when building the crust. Knowing that all the y components are
bounded to [0, 1], a good choice for our clearing triplet would be (0, discard_value, 0) with discard_value 6∈
[0, 1]. As a matter of fact, we chose for our implementation (0, 2, 0). We then render offscreen the back faces
of the tokamak’s crust in the first auxiliary buffer, the ztest being enabled to keep the nearest fragments. The
vertex shader computes the view space coordinate induced by our current “ModelView” matrix so that the
correct fragments are enabled (correct in the sens of localisation in the framebuffer). Furthermore, we take
advantage of the vertex shader capabilities in terms of linear interpolation to interpolate the current world
space coordinate which is later on passed to the fragment shader by the mean of a varying variable. The vectors
(xback, yback, zback) are written in the current framebuffer.

6.2.2 Second Pass

We now render the front faces of the tokamak’s crust in the second auxiliary buffer. Before doing so, a special
pass is carried out for handling the case of inner volume exploration. Indeed, the crust being hollow, further
computations are required so that the near clipping plane world space coordinates are determined per fragments.
This is achieved by completely projecting the front clipping plane into our current buffer:

By knowing, in the world space coordinate system, our camera location camera_position, its normalised
vectors xview_direction, yview_direction, zview_direction defining our viewing coordinate system and the value of
the znear clipping plane, we render a quad intersecting our view frustum in the second auxiliary buffer with
depth testing being disabled. Let fovx, respectively fovy, be the field of view in degrees in the x direction,
respectively in the y direction. The quad is defined by four vertices as follows:

vertex_1 = camera_position + znear.atan( fovx

2 ).xview_direction

−znear.atan( fovy

2 ).yview_direction + znear.zview_direction

vertex_2 = camera_position− znear.atan( fovx

2 ).xview_direction

−znear.atan( fovy

2 ).yview_direction + znear.zview_direction

vertex_3 = camera_position− znear.atan( fovx

2 ).xview_direction

+znear.atan( fovy

2 ).yview_direction + znear.zview_direction

vertex_4 = camera_position + znear.atan( fovx

2 ).xview_direction

+znear.atan( fovy

2 ).yview_direction + znear.zview_direction

(5)

We chose a field of view of 90 degrees for both x and y, which is a common perspective tranform in 3D
applications. We now re-enable the depth test and render the front faces of the tokamak’s crust, writing the
world space coordinate of our fragments as done in the first pass.

6.2.3 Third Pass

We now use an orthogonal viewing transformation and render a quad face of the size of the viewport, passing
to each of its vertices adapted texture coordinates. The two previous auxiliary buffers from our offscreen
framebuffer are binded as two distinct textures units in which we are going to read the previous interpolated
values.
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12 El Hajjar & Zara & Dischler & Grandgirard

For every processed fragment, the interpolated texture coordinates are used to fetch the correct texels in our
textures representing the back faces and front faces. A first texture look up is done with the back face texture.
By reading the y component of our texel, we discard the current fragment if y 6∈ [0, 1] meaning no fragment has
been written, otherwise we launch the raymarching algorithm.

We compute the ray direction knowing the location in world space of the front and back fragments, ray =
frontposition−backposition The number of raymarching steps nbstep being predetermined in our fragment shader,
we divide all three components of the vector ray by n to obtain the ray’s vector in world space coordinate,
raystep = ray

nbstep
.

Once the spatial information for the current samples has been collected, we use the previously described
procedure to determine the correct index u into the MSPITFS. Once this operation has been done for a given
fragment, we know what pre-integrated table has to be used for completely integrating the pixel, since once
computed, the steps’s length is kept constant along the ray. Figure 7 illustrates an example of raymarching.

Figure 7: This figure illustrates how rays from a fixed point of view are marched adaptively depending on their
length and on the number of samples that has been predefined (for illustration purpose, we chose 5 samples per
ray). Notice the ray traversing two times the tokamak, only the nearest integration is taken into account, the
yellow sub part being ignored.

Before entering our main loop, a last operation is required. Since we want to benefit from the pre-integration
(which uses the scalar data of two consecutive slices), we need to fetch for our front (first) sample its related
data in the 3D texture and store it temporarily. We know begin the integration:

Starting from the second sample along the ray, we raymarch nbstep times along our vector, the current world
space coordinate allowing us to recover the normalised texture coordinate of our unwrapped toroid and thus
fetching the correct voxel (which scalar value has been interpolated by the hardware).

By keeping track at each iteration of the previously collected sample’s scalar value s1, we retrieve the correct
color and opacities information in the MSPITFS for the current scalar s2 by indexing the 3D texture containing
our pre-integrated tables with (s1, s2, u), u being held constant along the ray.

Futhermore, blending the collected color intensities is done in the shader, allowing us not to use the fixed
pipeline functionality and thus avoiding multiple read and write access to the framebuffer. The front to back
rendering is done with respect to the traditional back to front formula, that is:

C =
n∑

i=0

α(i) C(i)
i−1∏
j=0

(1− α(j)). (6)

Notice that in our case no duplicates of the first and last poloidal planes have to be stored at the textures
opposite borders, as opposed to Crawford et al.’s approach [3].

Figure 8 summarizes the three passes.
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Figure 8: The Tokamak seen half inside and half outside. On the top line, we visualize the two offscreen passes.
The left one shows the rendering of the back faces and the right one shows the front faces. The green color on
the left image represents our ydiscard value which is used to clear the buffer. On the right, most of the colors
are pink due to the znear plane being projected and its localisation. On the bottom, the same scene is rendered
with our Raymarching approach without (left image) and with a lighting model (right image). 32 samples are
used per ray.

7 Results
We have implemented our method on a AthlonXP1800 with a GeForce6800 Ultra graphic card using the OpenGL
API as well as the OpenGL Shading Language. Note that Shader Model 3.0 has only been made accessible by
the use of beta drivers (Nvidia’s Forceware 76.50) as GLSL shaders are compiled by the graphic card itself.

For a viewport of 512×512 pixels and a plasma dataset resampled into a 5123 8bit precision 3-D texture, we
observe the following results:

Ray-TF Ray-PI Ray-MSPITFS SW-TF
Unshaded 29 23 22 14
Shaded 22 16 11 4

With Ray standing for Raymarching, SW for shear warp, TF for transfer function, PI for pre-integration
and MSPITFS for multi-sampled pre-integrated transfer function set. We used in the case of the Raymarching
approach 12 levels of details for the MSPITFS and 32 steps per ray. For the slicing approach[3], 200 object
aligned planes have been used on the bounding box of the tokamak.

Notice that the atan instruction wich is used once per sample comes at the cost of 29 cycles, using a
precalculted table stored in a 2D texture would certainly lead to speed improvements as there is currently no
hardware support for it.

One interesting point of our method can be observed in Figure 9, where blending is only done for the first
continuous rays traversing the tokamak, and thus respecting in terms of visualization the informations driven
by the physical device. Figure 10 illustrates an external view of the tokamak.
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Figure 9: We visualize a scene inside the Tokamak. On the left, a standard slicing has been done as on the right
we use our Gyrokinetic specific Raymarching approach. We notice on the left capture that the furthest part of
the tokamak is rendered due to translucency. However, such results may lead physicans to misanalyse the data.
Our approach allows the blending of the revealing volume by discarding the theorically hidden samples.

Figure 10: Outside view of the tokamak using raymarching along with multi-sampled pre-integrated transfer
function set, 32 steps of raymarching.
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8 Discussion and Conclusions
We have presented in this paper a novel method for Direct Volume Rendering using a Raymarching approach
where color space attributes are determined in an adaptive way using a Multi-Sampled Pre-integrated Transfer
Function Set. Although such a technique can be applied for standard Volume Rendering (i. e. using a
projected bounding box for instance), it has been developed for the purpose of visualizing efficiently Gyrokinetic
simulations.

The study of plasmas by computer scientists being at its early beginning, huge data sets are to be analyzed
requiring appropriate visualization tools for the physics science community. Ideally, such applications should
provide high tuning capabilities with the generated visual information being displayed immediately. In addition,
for better data understanding, the overall quality of the rendering is primordial, which usually further increases
the complexity of the scientific visualization.

Previous Gyrokinetic simulations visualization techniques (isosurface extraction, shear warp factorization)
could not handle the constraint of interactivity along with high quality rendering. By Raymarching the volume
using the tokamak’s crust, we have been able to visualize Gyrokinetic data sets using adaptive pre-integration,
thus leading to improved results from a qualitative point of view. However, since we used a texture-based
approach, data re-sampling implies a loss of precision, while current hardware memory specifications limit the
size of the numerical simulations to be visualized. Due to the nature of plasmas, data evolves in time-space as
well as in phase-space, making the challenge for visualizing interactively time-varying samples even greater. Our
future research includes the survey of different compression techniques as well as researching new time-varying
Volume Rendering approaches.

RR no 5974



16 El Hajjar & Zara & Dischler & Grandgirard

References
[1] B. Cabral, N. Cam, and J. Foran. Accelerated volume rendering and tomographic reconstruction using

texture mapping hardware. In VVS ’94: Proceedings of the 1994 symposium on Volume visualization, pages
91–98, New York, NY, USA, 1994. ACM Press.

[2] C.S. Co, A. Friedman, D.P. Grote, JL. Vay, and E. Wes Bethel. Interactive methods for exploring particle
simulation data. IEEE Visualization, 2, 2004.

[3] D. Crawford, K-L. Ma, M-Y. Huang, S. Klasky, and S. Ethier. Visualizing gyrokinetic simulations. In
Proceedings of the IEEE Visualization 2004 Conference, 2004.

[4] F. Dachille, K. Kreeger, B. Chen, I. Bitter, and A. Kaufman. High-quality volume rendering using texture
mapping hardware. In HWWS ’98: Proceedings of the ACM Siggraph/Eurographics workshop on Graphics
hardware, pages 69–ff., New York, NY, USA, 1998. ACM Press.

[5] K. Engel, M. Kraus, and T. Ertl. High-quality pre-integrated volume rendering using hardware-accelerated
pixel shading. In HWWS ’01: Proceedings of the ACM Siggraph/Eurographics workshop on Graphics
hardware, pages 9–16, New York, NY, USA, 2001. ACM Press.

[6] F. Filbet, E. Sonnendrücker, and P. Bertrand. Conservative numerical schemes for the Vlasov equation. J.
Comput. Phys., 172(1):166–187, 2001.

[7] A. Van Gelder and K. Kim. Direct volume rendering with shading via three-dimensional textures. In VVS
’96: Proceedings of the 1996 symposium on Volume visualization, pages 23–ff. IEEE Press, 1996.

[8] V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Ghendrih, G. Manfredi, Y. Sarazin,
O. Sauter, E. Sonnendrücker, J. Vaclavik, and L. Villard. A drift-kinetic Semi-Lagrangian 4d code for ion
turbulence simulation. submitted to Journal of Computational Physics.

[9] J. Kniss, S. Premoze, C. Hansen, and D. Ebert. Interactive translucent volume rendering and procedural
modeling, 2002.

[10] J. Kniss, S. Premoze, C. Hansen, P. Shirley, and A. McPherson. A model for volume lighting and modeling.
IEEE Transactions on Visualization and Computer Graphics, 9(2):150–162, 2003.

[11] J. Krueger and R. Westermann. Acceleration techniques for gpu-based volume rendering. In Proceedings
IEEE Visualization 2003, 2003.

[12] P. Lacroute and M. Levoy. Fast volume rendering using a shear-warp factorization of the viewing trans-
formation. In SIGGRAPH ’94: Proceedings of the 21st annual conference on Computer graphics and
interactive techniques, pages 451–458, New York, NY, USA, 1994. ACM Press.

[13] E. B. Lum, B. Wilson, and K-L. Ma. High-quality lighting for pre-integrated volume rendering. In VisSym,
pages 25–34, 2004.

[14] K.-L. Ma, G. Schussman, B. Wilson, K. Ko, J. Qiang, and R. Ryne. Advanced visualization technol-
ogy for terascale particle accelerator simulations. In Proceedings of the 2002 ACM/IEEE conference on
Supercomputing, pages 1–11. IEEE Computer Society Press, 2002.

[15] M. Meissner and S. Guthe. Interactive lighting models and pre-integration for volume rendering on pc
graphics accelerators. In Graphics Interface. Canadian Information Processing Society, 2002. to appear.

[16] M. Meißner, U. Hoffmann, and W. Straßer. Enabling classification and shading for 3d texture mapping
based volume rendering using opengl and extensions. In VIS ’99: Proceedings of the conference on Visu-
alization ’99, pages 207–214, Los Alamitos, CA, USA, 1999. IEEE Computer Society Press.

INRIA



Adaptative Raymarching and Multi-Sampled Pre-integration on Graphics Hardware 17

[17] M. Meißner, S. Guthe, and W. Straßer. Higher quality volume rendering on pc graphics hardware. In
Graphics Interface, 2002.

[18] S. Roettger, S. Guthe, D. Weiskopf, T. Ertl, and W. Strasser. Smart hardware-accelerated volume rendering.
In VISSYM ’03: Proceedings of the symposium on Data visualisation 2003, pages 231–238, Aire-la-Ville,
Switzerland, Switzerland, 2003. Eurographics Association.

[19] R. Westermann and T. Ertl. Efficiently using graphics hardware in volume rendering applications. In SIG-
GRAPH ’98: Proceedings of the 25th annual conference on Computer graphics and interactive techniques,
pages 169–177, New York, NY, USA, 1998. ACM Press.

[20] O. Wilson, A. VanGelder, and J. Wilhelms. Direct Volume Rendering Via 3D Textures. Technical Report
UCSC-CRL-94-19, 1994.

RR no 5974
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