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Abstract: Several techniques have been proposed to explore hypervolumetric datasets but most of them fail
to be efficient when very large fields are to be processed. This report describes an interactive visualization
technique designed to explore at real-time framerates very large hypervolumetric 4-D+t scalarfields (with up to
16GB raw data per time step). We introduce a new out-of-core scheme aiming at generalizing to hypervolumes,
brick-based techniques, already standartly used for large volumetric (e. g. 3D) datasets. For a given time
step, we visualize the entire 4-D space by displaying directly 2-D arrays of height fields, each height field
representing a 2-D hyperslice of the 4-D space. The contribution of this work consists in introducing an efficient
partitionning scheme, that we called hyper-bricks, in such a way that it overcomes all hardware bottlenecks,
namely the progressive load from disk, the decompression time (CPU) and the display time (GPU). We show
that our technique, further using a cache system and a level of detail representation allows users to explore the
full hypervolume at real-time framerates even on low-end PCs with basic graphics cards. We mainly apply our
technique to the interactive exploration of plasma behaviors resulting from large numerical semi-Lagrangian
simulations.
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Visualisation de données hyper-volumétiques de plasmas
Résumé : De nombreuses techniques ont été proposées permettant d’explorer des données hyper-volumétriques.
Mais la plus part d’entre-elles se révèlent inefficaces quand le volume de données est important. Ce rapport de
recherche présente une nouvelle technique interactive de visualisation dédiée à l’exploitation en temps réel de
larges volumes de données 4-D+t (avec plus de 16 Go de données par pas de temps). Nous introduisons une
nouvelle méthode out-of-core visant à généraliser aux hyper-volumes, les briques techniques de base, actuellement
usuelles pour des grandes masses de données volumétriques (e. g. 3D). Pour un pas de temps donné, un
espace 4-D est visualisé en entier par tranches 2-D, chaque tranche représentant une coupe de l’espace 4-D.
La contribution de ce travail réside dans l’introduction d’un schéma efficace de partitionnement, appelé hyper-
brique, de manière à couvrir tous les goulets d’étranglements du matériel (chargement des données depuis le
disque, temps de décompression du CPU, temps d’affichage de la GPU). Nous montrons que notre technique,
utilisant un cache système et une représentation par niveaux de détails, permet d’explorer un large volume de
données en temps réel. Notre technique est notamment utilisée pour étudier des données issues d’une simulation
semi-lagrangienne de plasmas.

Mots-clés : visualisation scientifique, données hyper-volumétriques, physiques des plasmas, schéma de com-
pression
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1 Introduction
A large number of computer simulations generate multidimensional results and consequently need the analysis
of multidimensional values. Since visualization constitutes a powerful data exploration tool, much work in
information and scientific visualization has already been performed in this way. But multidimensional datasets
can be very hard to categorize, according to the simulation context and parameters. In fact, different kinds of
multidimensional visualization methods exist depending on the number of dimensions involved, the sampling
rates and the size of the datasets.

In this report, we focus on the visualization of scalar functions of several variables evolving with time. These
functions are defined by y = f(x1, ..., xn, t), where xi is a variable of the i-th dimension. More specifically, we
consider the case of n = 4, that is, f is a function going to the space R4 + t to the space R + t. For each time
step t, a densely sampled discretization of f in the 4-D space has to be visualized (at least 64× 64× 64× 64).
In addition, many time steps are involved (about a hundred). As a consequence, very large datasets (more than
20GB) have to be processed, which provides the motivation behind this out-of-core approach.

Before describing our method, let us first introduce the physical context of this application, since this is
what has driven our main motivations and subsequent choices. The present work deals with the visualization
of a simulation computing the evolution of a plasma over time [29]. Plasma can be considered as the fourth
state of matter, which appears at certain condition of temperature and pressure (typically 104K or more).
These conditions can be attained in various facilities and in particular in tokamak reactors and particle beam
accelerators. To characterize plasma behavior, a kinetic description is used, governed by the Vlasov equation
further coupled with Poisson or Maxwell equations:

∂ ~f

∂t
+ ~v .

∂f

∂~x
+

q

m

(
~E +

~v ∧ ~B

c

)
.
∂f

∂~v
= 0. (1)

Equation (1) characterizes the evolution of particles distribution in time and phase space according to the
electrical and magnetic fields ~E and ~B, where the distribution function f(~x,~v, t) represents the particle (mass
m and charge q) densities at a time step t for a position (~x,~v) in phase space.

Two major numerical schemes exist to compute an approximate solution of this equation. The first one,
called “Particle In Cell” (PIC), follows a large number of discrete particles (' 109) in 6-D phase space. Some
recent work has been proposed to visualize the large amount of generated time-space particles [21, 3].

The second scheme, used by the Vlasov solver described in [29], is based on a semi-Lagrangian method [13].
It approximates the particle distribution on a full discretization of the phase space. Consequently, at each
time step this kind of simulation generates a multi-dimensioned regular grid, which contains the value of the
distribution function for a given discrete position and velocity on each cell. Due to the tremendous amount of
data, numerical semi-Lagrangian plasma simulations are generally not performed in full 6-D phase space but
only in 4-D space using some symmetric properties and approximations. But even in 4-D, the amount of data
remains very large. Regular grids of resolution 64 already require 128MB in double floating point precision for
each time step.

In order to explore at real-time framerates plasma simulations involving more than a hundred time steps,
we have to face two major problems: multi-dimensional visualization and data compression. Despite a lot of
work in both fields, their adequate linking still remains a highly challenging task, especially to meet real-time
visualization constraints. In addition, due to the continuous increase of temporal data produced by simulations,
this task likewise becomes more and more of immediate interest in scientific visualization. In this report, we
propose an original out-of-core technique to tackle the problem of visualizing very large regular four-dimensional
scalar fields evolving over time. This problem is particularly difficult since recent research activities show that
it is already challenging to be able to visualize three-dimensional scalar fields evolving over time. In this report,
our main contribution is to present new ways in which the data can be represented, compressed and visualized
(that is, the way that all of these tasks are linked together).

The report is organised as follows. Section 2 presents some previous work on multidimensional data visual-
ization and on data compression. Section 3 describes our visualization method for 4-D+t scalar data resulting
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4 F. Zara & M. Haefele & C. Mion & J.-M. Dischler

from plasma simulations. Section 4 deals with our compression method adapted to the visualization technique.
Section 5 summarizes the implemented algorithm. Section 6 presents the results obtained from different exper-
iments together with comments on them. Finally some concluding remarks are made and some future work is
given in Section 7.

2 Previous Work
In order to reach interactive visualization framerates using an out-of-core approach, it is important to build an
efficient compression scheme that limits both the time spent to load the data from hard disk and the time spent
for decompression.

Run Length Encoding [14], Huffman codes [15] and dictionary methods [30] are lossless compression
algorithms, i. e. initial datasets are exactly recovered after decompression. But the main drawback for these
kinds of methods is the low compression ratio obtained for scalar values.

On the other hand, lossy compression algorithms can reach very high compression ratios. Among all
the existing methods, we may distinguish two major classes of approaches:

• Scalar quantization reduces the data size by clustering some of the data together. It consists in building
several intervals which cover data boundaries. Vector quantization [20, 5, 4] is based on such a principle,
but data blocks and distances between these blocks are considered instead of single values and intervals.

• Wavelet transforms [7, 8, 22, 25] consist in projecting the data on a wavelet basis. Data are considered
as a discrete function that is expressed as a linear combination of wavelet functions which form a basis
of L2. This procedure transforms the initial data into a set of wavelet coefficients, in a way that lots of
them are near to zero. Then, thresholding these small coefficients according to a given ε0 will compress
the data.

Multidimensional visualization techniques can be subdivided into two main areas. The first one consists in
database visualization, where all dimensions are represented equally as parallel coordinates [16], star coordinates
[18] or using different glyphing techniques [26, 19, 2, 27]. These techniques enable a global representation of
the whole database to be built by highlighting major dependencies among some variables. But this is not our
purpose here. The second class of techniques performs the visualization of functions from Rm to Rn mainly
by reducing dimensions. Such a dimension reduction can be done either by projecting the data along different
hyperplanes [1, 6] or by extracting planes or volumes from the hypervolume. For a function from Rm to R,
the principle consists in affecting a value to m − 2 (resp. m − 3) variables, and to visualize the resulting
2-D (resp. 3-D) dataset. Worlds within worlds [12, 11, 9] and hyperslice [28] techniques represent different
ways of selecting some given dimensions, affecting a value to these dimensions and visualizing the resulting
subspaces. Some hybrid approaches, called "focus + context" methods provide an integrated overview of the
entire multidimensional function space around a particular multidimensional focus point. A radial "focus +
context" is proposed in [17], whereas a multidimensional table lens is proposed in [24].

3 4-D Data Visualization

3.1 Graphical Pipeline
At each time step t, the plasma simulation computes a 4-D scalar field (y = f(x, y, vx, vy)) from a regular grid.
We store this data on a 2-D array of size N ×N called Dt (or D) for “diagnostic at time t”. Each component
of Dt is a 2-D array of size N ×N called Dt

u,v with (u, v) ∈ [1, N ]. This array will be called subspace of the
diagnostic Dt. A component Dt

u,v[i][j] of this subspace, with (i, j) ∈ [1, N ], represents the particles density
at a (u, v) position and a (i, j) velocity for a given time t. The average density, Du,v, on the spatial position
(u, v) is given by:

Du,v =
1

N2

N∑
i=1

N∑
j=1

Du,v[i][j].

INRIA
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Figure 1 depicts this data structure.

j

Particles density

u

i

Subspace
v

x

y

Diagnostic

vx

vy

Du,v

Du,v[i][j]

D

Figure 1: Data structure for a diagnostic D.

A “focus and context” approach combined with a “worlds within worlds” method is used to visualize this
4-D scalar field. The “focus” is materialized by a lens, which can be interactively shifted by the user. This lens
LuL,vL,SL

corresponds to a set of subspaces of D defined by:

LuL,vL,SL
= {DuL+k,vL+l}

with (k, l) ∈ [1, SL] and (uL, vL) ∈ [1, N − SL + 1].

SL corresponds to the size of the lens and (uL, vL) to its position (left up corner) in the diagnostic D. At a
given time t, the diagnostic D is visualized in 3-D as depicted on figure 2.

N

N

uL

vL

SL

Height map
Average density

Lens LuL,vL,SL

Lens

SL

Figure 2: 3-D visualization of the diagnostic D using a rectangular lens LuL,vL,SL
of size SL × SL placed inside

D on (uL, vL) with SL = 8.

• Each subspace Du,v exterior to the lens i. e. such that Du,v /∈ LuL,vL,SL
, is displayed by a square “quad”

with color cu,v defined by cu,v = F
(
Du,v

)
where F is a transfer function relating each scalar to a

(R,G,B) color.

• Inside the lens i. e. such that Du,v ∈ LuL,vL,SL
, a full display of the subspace Du,v is made with a height

map colored using the same transfer function F .

Figure 3 depicts the graphical pipeline of our 4-D visualization technique. When a time step t is selected
by the user, the diagnostic D is visualized as described above. Firstly, a part of the compressed information
concerning the diagnostic D is loaded from the hard disk. This information is then decompressed in memory
and stays there as long as the time step t is not modified. Secondly, according to the (uL, vL) position of the
lens, another part of the information, concerning only the lens, is loaded. This information is decompressed
only on demand i. e. whenever we have to visualize the corresponding height map.
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RAM CPU GPU
Rasterisation

Modification of time

time
Lens moving

Load time

Decompression
time and triangle

coordinates generationD
t1
ui,vi

D
t1

D
t2

D
t2
ui,vi

Figure 3: Pipeline of the 4-D+t “out-of-core” visualization system.

The number of generated triangles NT for displaying the height maps can be very important, especially if
a brute force approach is used, that is, each pixel of each subspace Du,v is displayed using a pair of triangles.
To avoid sending too many triangles to the GPU, we propose to adapt the resolution of the Du,v subspaces
according to their positions inside the lens as well as to the position of the observer. The decompression scheme
implemented allows us to control precisely this resolution.

Figure 3 illustrates the three main bottlenecks of this system: (1) time spent to load files depending on the
disk bandwidth and the size of the files (the latter also depends on the compression ratio), (2) decompression
time depending on the processor and the decompression method and (3) time spent to display the height fields
depending on the number of triangles. These three different timings added together have to fullfill the real-time
constraint.

3.2 Generation of Height Map Triangles
As shown on Figure 2, the lens L determines the part of the diagnostic visualized using a full 3-D display i. e.
with a height map.

We note that in the past, a large number of visualization methods have been proposed to efficiently display
height maps such as for example ROAMing [10] (Real-time Optimally Adapting Meshes). These techniques
adapt the number and sizes of the triangles according to the position of the observer as well as the underlying
height function mainly by computing errors. Unfortunately, this error computation is usually costly. In our
case, the decompression scheme already stresses nearly all the CPU resources. For this reason, we could not
use straightforwardly existing algorithms.

To solve the problem, we propose to control the visualization resolution of the height maps directly by
exploiting our compression scheme. This compression, based on a Haar wavelets transform, enables the subspaces
Du,v to be formulated with a hierarchical structure. We define by Hm[i][j] the height map for a given resolution
level m. Hm[i][j] is directly obtained using the inverse Haar transform, which is simply stopped at level m (see
next section).

The resolution level m is fixed empirically according to the position of the observer and according to the
position of the subspace Du,v inside the lens. The more the subspace is close to the center of the lens (on the
center we use the highest resolution), the greater is the resolution since this mostly attracts the attention of the
user.

4 4-D+t Data Compression
Our compression scheme certifies an important compression rate with a high precision. Moreover, this scheme
is totally adapted to the hierarchical visualization method that we previously described. Indeed, a 2−D+2−D
scheme, as proposed in this report, allows us to only load the necessary data in real-time. The scheme is applied
independently on each diagnostic D at each time step t so temporal coherency is not considered.

For each diagnostic D, the compression is carried out at two levels:

INRIA



Hypervolumetric Plasma-data Visualization 7

• At a local level i. e. for each subspace Du,v. Indeed, each subspace corresponds to a 2-D array which can
be compressed with the usual techniques. We chose the Haar wavelet transform because of its hierarchical
formulation, and its small computational cost.

• At a global level, in order to take into account the consistency of the N × N subspaces of the same
diagnostic D.

4.1 Haar Wavelet Compression of Subspaces
Here, we do not precisely describe the algorithm of the well-known Haar wavelet compression [23], but only
some main steps explaining our own implementation. Each subspace Du,v (2-D array) is iteratively re-written
line by line and column by column as differences and averages. Consequently, as shown in Figure 4, we obtain
for a given subspace Du,v a new 2-D array of size N ×N called Haar wavelet transform H(Du,v), where the left
upper corner corresponds to the average of the whole original array.

By applying the inverse transformation, the subspace Du,v can be rebuilt from H(Du,v). Moreover, the
hierarchical Haar representation enables the subspace to be rebuilt only to a desired level m. The highest
hierarchy level corresponds to a N ×N resolution. The decompression time depends on the chosen level m.

Due to the fact that the H(Du,v) values result from difference computations, they are generally close to zero.
The compression consists then in choosing a threshold ε0 and to clamp to zero the values of H(Du,v) lower than
ε0. We call H′(Du,v) the resulting sparse structure (see Figure 4).

H′(Du,v) is stored as a couple denoted (Bu,v[N ][N ], Tu,v[Nu,v]), where Bu,v is a bit mask identifying the
zero and non-zero values of H′(Du,v), and Tu,v is a linear array containing only non-zero values of H′(Du,v).
For any subspace Du,v we need N2/8 bytes to store Bu,v while the size Nu,v of Tu,v depends on the threshold
ε0. Figure 4 summarizes this compression scheme for a subspace of size N = 4.
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Figure 4: Compression example for a subpace of size N = 4.
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4.2 Total Compression of a Diagnostic
Once the Haar wavelet compression algorithm has been applied, all subspaces Du,v are represented by a boolean
matrix Bu,v associated to an array Tu,v containing only the non-zero values of H′(Du,v).

This first level of compression does not take into account the potential consistency among the different
subspaces of the same diagnostic D. For this reason, a second compression scheme is applied at two levels:

1. Creating a unified dictionary by combining all the Tu,v arrays according to a threshold ε1. Conse-
quently, we obtain a single array TD for all the subspaces of a given diagnostic.

2. Compression of the TD dictionary using an adaptive scalar quantization algorithm with a threshold
ε2.

To blend the arrays Tu,v, we first sort them, then we combine them by removing identical values according
to ε1. We obtain a single array TD of size NTD

sorted by decreasing order i. e. ∀k, TD[k] > TD[k+1]. Moreover,
due to the ε1 accuracy used for the blending, we have ∀k, TD[k] ≥ TD[k + 1] + ε1.

By blending the arrays Tu,v, we lose the connections among the matrices Bu,v and the components of Tu,v.
Consequently, we have to build a table Iu,v which allows us to restore this connection. The components of Iu,v

are defined so that TD[Iu,v[k]] is equal to Tu,v[k] plus or minus ε1. So, the size of the array Iu,v depends on Nu,v.
Practically, the integers of Iu,v are encoded on 24 bits which we found experimentally to be enough. Indeed,
this allows for 224 = 16 777 216 different entries in TD.

To summarize, at this stage of the compression scheme, a subspace Du,v is now defined as a pair (Bu,v, Iu,v)
associated to a dictionary TD common to all subspaces of the same diagnostic D.

Next, the compression of the common dictionary TD is performed. Our new compression scheme takes
advantage of the non uniformity of the values in TD by performing an adaptative scalar quantization with an
ε2 error on L intervals. A linear course of TD can be used to build the different intervals of size d = M × ε2
where M is the sampling rate at each interval (see Figure 5).

v0 v2v1

Figure 5: Quantization of the common dictionary.

The quantization is then performed on each interval Il = [vl−M × ε2; vl], by turning a real value TD[k] into
an m ∈ [1,M ] integer defined as :

vl −m× ε2 ≥ TD[k] ≥ vl − (m + 1)× ε2.

Instead of storing NTD
double precision values, we now store for each interval:

• Its index l (Log2(L) bits).

• Its right bound value vl (64 bits).

• The index m (Log2(M) bits) for each value within the interval.

The number of generated intervals now hardly depends on the non-uniformity of the data.

INRIA
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5 Summary of the Method
Figure 6 presents an overview of our method and table 1 sums up the symbols used.

Load of the averages of the

Decompression in memory

Previous computations:

by the lens

Triangles generation

transform of

Creation of the height 
maps

Inverse wavelets

at a m level of resolution

Load of
newly selectioned

Execution of the 4D+t visualization tool

Iterative visualization loop

subspaces of

of

Display inside the lens

(for all subspaces)

(for all subspaces

Choice of a time step t Moving of the lens

generation of the compressed data files (dictionary and subspaces for each time step)

Load of the unified
dictionary

Re−construction of

Display of the non−selected quads 

newly selected)

T t
D

(Bt
u,v, I

t
u,v)

Dt

H
′(Du,v)

Hm
u,v

T ′t
D

H
′(Du,v)

Figure 6: Draft of the implemented method.

First of all, some pre-computations are made only once for a given simulation in order to perform the
compression of the 4-D+t data. The result is stored into several different files. Note that all diagnostics Dt are
considered independently. At this stage, we have for each diagnostic Dt:

• A unified dictionary T t
D stored in a file in a compressed form.

• A set of couples (Bt
u,v, It

u,v) computed for each subspace Du,v of the diagnostic D. These couples are
stored in several files.

In the case where N is huge, and to avoid the creation of too large a number of files, the subspaces (Bt
u,v, It

u,v)
are clustered into the same file by blocks of size 4× 4.

After the pre-computations, the user can start the visualization application. Firstly, the system loads the
compressed dictionary T ′

D of the desired diagnostic and decompresses it to obtain the unified dictionary TD.
This dictionary will stay in memory unless the time step is changed. Moreover, averages of all subspaces, which
have been stored into a single file, are also loaded to perform the display outside the lens.
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10 F. Zara & M. Haefele & C. Mion & J.-M. Dischler

Symbols Significations
n Space dimension (in our case n=2)
N Discretisation resolution
t Time
~x Positions vectory
~v Velocities vectory

f(~v, ~x, t) Distribution function of the charged particles
(u, v) Coordinates on grid of the physical space (x, y)
(i, j) Coordinates on grid of the velocity space (vx, vy)

Dt or D Diagnostic at time t
Du,v Subspace of the diagnostic D

Du,v[i][j] Component of the subspace Du,v

Du,v Average density of Du,v

LuL,vL,SL
Lens

SL Size of the lens
(uL, vL) Position of the lens inside D

cu,v Color of the square “quad” (u, v)
F Transfer function
NT Number of generated triangles
m Resolution level

Hm[i][j] Height map of Du,v[i][j]
H(Du,v) Haar wavelets transform of Du,v

ε0 Threshold associated to the Haar algorithm
H′(Du,v) Result of the H(Du,v) thresholding

Nu,v Number of the non-zero values of H′(Du,v)
Tu,v Array of the non-zero values of H′(Du,v)
Bu,v Bit mask of H′(Du,v)
ε1 Threshold associated to the blending
TD Unified dictionary of D
NTD

Size of the unified dictionary TD

Iu,v Index table to the unified dictionary TD

ε2 Threshold associated to the compression of TD

L Number of partitions of the unified dictionary TD

vl Borders of the partitions of the unified dictionary
m Subsystems of the unified dictionary TD

T ′
D Compressed unified dictionary of D
ε Error of the total compression scheme

Table 1: Overview of the used symbols.

INRIA
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Secondly, only files containing the subspaces selected by the lens are loaded. Therefore it was important
to use a 2 − D + 2 − D compression technique and not a full 4-D one to only load the necessary information
for the lens rendering. Note that, because of clustering, we may load some more subspaces than the number
of subspaces actually covered by the lens, but these additional subspaces are used as cache. For all loaded
subspaces, the couples (Bt

u,v, It
u,v) are used with the unified dictionary TD to build the Haar wavelet transforms

H′(Du,v). They correspond to 2-D arrays of real values of size N ×N . This information stays in memory until
the lens is moved.

The third part concerns visualization. First, “quads” outside of the lens are displayed by using average
values. Next, only subspaces covered by the lens are decompressed by using the inverse Haar transform for a
given level m. This level depends on the position of the observer and the position of the given subspace inside
the lens. This stage allows the creation of the height maps Hm

u,v for different resolutions m. Then, these height
maps are used to generate triangles that are sent to the graphics card.

Whenever the lens is moved, new blocks of subspaces can be loaded and decompressed. Since the lens can
only be moved step by step (or subspace by subspace), a cache system allows us to re-use already decompressed
subspaces.

When the time step is changed, all the methods have to be re-iterated. In this case the performance is
mostly stressed. A correct choice of the size of the lens is important to maintain real time performances even
when we change the visualized plasma diagnostics.

Note that we are not limited by the number of time steps but only by the capacity of the hard disk. The
global performance depends on the simulation size N , the compression ratio, the size of the lens and the number
of subspaces clustered in individual files.

6 Results

6.1 Visualization Method
In the previous sections, we described the data structure of the diagnostic Dt as an array of subspaces Dt

u,v,
where (u, v) represented the Euclidean space (x, y). But it is naturally also possible to describe it using other
integration spaces for (u, v), namely (x, y), (vx, vy), (x, vx) or (y, vy).

Figure 7 presents visualization results obtained for a same simulation, but using these four different integra-
tion spaces. In our system, the user can switch interactively between these four spaces. Figure 7 shows results
without a lens, that is, without subspace visualization. This is the technique that physicists commonly use for
analyzing plasma data.

Figure 7: Visualization of a diagnostic on different integration spaces, respectively (vx, vy), (x, y), (x, vx) and
(y, vy).

Figure 8 illustrates a complete visualization using the lens and the subspaces. Tag (1) presents the interval
pointed to the lens in the initial integration space. This lens allows for a visualization of particles density
variation (tags (3) and (4)) that would not be visible without the lens (tag (5)). It thus enables users to better
understand the plasma evolution during the simulation, since it shows the full 4-D data.

Figure 9 presents a tool added to the application to pick up individual values of density (tag (2)) for a given
point (tag (1)) within the 4-D data. The threshold of our compression scheme allows us to give a value with
very low error. Moreover, the average of density is also given for the complete subspace (tag (3)).
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(2) Visualization support

(4)

(5)

(1) Interval defined by the lens

(3)

Figure 8: Visualization of the application with the lens.

(3) Average value

(1) Position inside the subspace

(2) Selectioned value

Figure 9: The lens and the pointing tool.
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6.2 Compression Method
The results presented in this section are obtained on a low-end PC with an AMD Athlon XP 3000+processor
with 1GB 300Mhz Dual Channel DDR and a Hitachi 160GB SATA hard disk with an 8MB cache and a ATI
9700Pro AGP 8x graphic board.

The performances are evaluated for four different physical cases, and for each one, the four possible projec-
tions are computed. But since compression results are almost similar for all of these four simulations, we only
present results for the integration space (x, y) of one of these simulations. The different simulations have been
run on 4-D phase space grids of size 644 over 40 time steps, which represents 128 MB for a single diagnostic.
To simplify the parameterization of the compression, we always fix the three thresholds to the same value
(ε0 = ε1 = ε2 = ε). Experimentally, we observe that the resulting absolute error remains less than the ε we
fixed for the compression.

The pre-processing step takes about 2− 3s to compress a single diagnostic for a particular projection, so the
whole simulation compression can be computed in less than 6min for the four different projections.

In Figure 10 a compression ratio greater than 90% is obtained even for very low error tolerances (ε = 10−8).
The resulting size of a single diagnostic is between 3MB (ε = 1) and 11MB (ε = 10−8), which enables to load
between respectively 5 and 25 time steps per second according to a 50MB/s hard disk bandwidth. The time
spent to decompress the unified dictionary is at most 11− 12µs (ε = 10−8).

Haar compression rate
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Figure 10: Compression ratio and size of a single diagnostic in MB after compression according to ε for the
integration space (x, y).

In Figure 11 we present the time spent in the inverse Haar transform for several resolutions according to ε.
This time, constant for the different thresholds, is between 426µs (64×64 resolution) and 2µs (4×4 resolution).

Figure 12 shows the maximal time spent for loading subspaces selected by a lens of size 8×8 and the maximal
time spent to build the height maps in the case of maximal resolution (H′(Du,v) reconstruction + inverse Haar
transform). The third plot (sum of the two first) corresponds to the total time spent when the lens is moved.

To conclude, once the pre-processing step is finished, our method enables us to visualize at real-time rates
the 4-D data f(x, y, vx, vy) computed by the plasma simulation. A 8 × 8 lens is considered for framerates
evaluation. The resolution is highest (64× 64) at the center, gradually decreasing towards the border (16× 16).
We measured the following framerates: 15−20fps when the time step is changed, 15−20fps when the projection
space is changed and 25− 34fps when the lens is moved.
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Figure 11: Time in µs spent in the inverse Haar transform for several resolutions (64, 32, 16, 8, 4) according to
ε for the integration space (x, y).
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Figure 12: Maximal time (in µs) spent when the lens (8× 8) is moved according to ε.
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7 Conclusions and Future Work
This report proposes an original out-of-core technique to tackle the difficult problem of visualizing very large
regular four-dimensional scalar fields evolving with time. The core contribution lies in the way the data are
represented, compressed and then hierarchically visualized using a worlds within worlds technique (that is, 2-D
subspaces on 2-D arrays). The method is simple and satisfies well the crucial real-time constraint in spite of
the continuous load from the mass-storage device.

We based the 3-D visualization on the use of a lens, locally enabling the full display of a distribution function
f(x, y, vx, vy) by means of height fields. This 3-D visualization turns out to be much more expressive than a
2-D one, which would only use 2-D textures for the subspaces instead of height maps.

We solved the major problem of dealing with very large datasets by implementing an efficient hierarchical
compression scheme allowing us to only load the necessary data for our "focus + context” visualization. Moreover
it keeps a high accuracy desired by plasma scientists who are usually looking for phase space regions where the
the particles distribution is low. Indeed, small particle densities can have a large impact on the whole plasma
behavior.

In the near future, and with the continuous increase of computational power it should be possible to compute
full 6-D semi-Lagrangian plasma simulations. These will raise an even more difficult problem of storage and
visualization. We are presently starting to tackle the problem of dealing with even more data, in particular
using a parallelization of the current algorithm.
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