
Specification and Verification of Views over Composite Web Services
Using High Level Petri-Nets

Khouloud Boukadi1, Chirine Ghedira1, Zakaria Maamar2, and Hanifa Boucheneb3

1LIRIS Laboratory, Claude Bernard Lyon 1 University, Lyon, France
{khouloud.boukadi, chirine.ghedira}@univ-lyon1.fr

2College of Information Systems, Zayed University, Dubai, U.A.E
zakaria.maamar@zu.ac.ae

3Ecole Polytechnique de Montreal, Montreal, Canada
hanifa.boucheneb@polymtl.ca

Abstract

This paper presents a high level Petri-Net approach for specifying and verifying views over composite Web

service. High level Petri-Nets have the capacity of formally modeling and verifying complex systems. A view

is mainly used for tracking purposes as it permits representing a contextual snapshot of a composite Web

service specification. The use of the proposed high level Petri-Net approach is illustrated with a running

example that shows how Web services composition satisfies users’ needs. A proof-of-concept of this

approach is also presented in the paper.

Keywords. Context, Petri-Net, View, Web service.

1 Introduction

For the World Wide Web Consortium (W3C), a Web service is a software application identified by a URI, whose

interfaces and binding are capable of being defined, described, and discovered by XML artifacts and supports direct interactions

with other software applications using XML-based messages via Internet-based applications. Web services have given Web

applications a new shape, from content display to service supplier. The capacity of defining composite Web

services is an advantage that currently backs the widespread use of Web services. Businesses and academia

have shown a significant interest in Web services composition [1]. Several composition standards exist such

as WSFL [2], Xlang [3], BPEL [4], BPML [5] , etc.

Despite the large body of research on Web services, much work still needs to be done to tie informal

methods, e.g., Petri-Nets, with specification languages for composite Web services. Few initiatives have

looked into the use of Petri-Nets in Web services including [6] and [7]. Indeed, there is no guarantee that the

specification of a composite Web service is free of errors. Conflicting actions like concurrent accept or reject

and deadlocks may occur during the specification execution. Fixing errors at run-time is time-consuming and

requires another round of low-level programming, which could be expensive, as well as error-prone. An

attractive solution would consist of allowing developers to detect and fix issues prior to any Web services

deployment and to formally verify the business processes underlying composite Web services against some

desired properties [6].

Composition does not only make Web services bind to each other, but emphasizes the cornerstone of

handling users’ preferences and constraints as part of the process of meeting personalization requirements.

Personalization is tightly related to the features of the environment in which Web services will operate after

triggering. These features can be related to users (e.g., state, location), computing resources (e.g., fixed device,

mobile device), time periods (e.g., in the afternoon, in the morning), physical places (e.g., mall, cafeteria), etc.

Sensing, gathering, and refining the features and changes in an environment contribute towards the definition

of what is known as context. Context is the information that characterizes the interactions between humans, applications,

and the surrounding environment [8]. Embedding Web services with context-awareness mechanisms has several

advantages as reported in [9]. To be aware of which part of the specification of the composite Web service

has to be adjusted because of changes in the user environment, an assessment of what-was-previously-

expected and what-is-effectively-happening is deemed appropriate. This specific part of the composite Web

service specification is referred to as view [10]. A view is a dynamic snapshot over the specification of a composite Web

service according to a certain context [10] .

In this paper, we aim at discussing the value-added of Petri-Nets to the specification of firstly, the

composite Web services and secondly, the views that run over those ones. We emphasize the use of high level

Petri-Nets, particularly Colored-Petri-Nets (CPN) and Hierarchical-Colored-Petri-Nets (HCPN) [11]. CPN

and HCPN have the capacity to specify and analyze concurrent systems [12]. Our contributions in this paper

are as follows: a definition of a composite Web service using high level Petri-Nets, an approach for checking

the correctness of a composite Web service, a specification of a view based on high level Petri-Nets, and

finally, automatic mechanisms for extracting and showing up views over composite Web services.

The rest of this paper is organized as follows. Section 2 presents a motivating scenario, reviews some

advantages of Petri-Nets, and suggests a list of related projects. Section 3 discusses the use of Petri-Nets in

modeling Web services and composite Web services, and talks about modeling component and composite

Web services using high level Petri-Nets. Section 4 describes the concept of view as a means for tracking the

execution of a composite Web service specification. Section 5 presents the prototype that was developed as a

proof-of-concept of our use of Petri-Nets in Web services. Concluding remarks are drawn in Section 6.

2 Background

2.1 Motivating scenario

Our motivation scenario concerns Anatole, a 60-years old patient who is treated in the Cardio-Thoracic and

Vascular department of “Edouard Herriot” Hospital in Lyon. Anatole has a Portable ECG Monitor (PEM),

which is used to detect and manage any cardiac event. An electrocardiogram (ECG) is a test that records the

heart’s electrical activity. When Anatole feels a chest pain, he turns on the PEM so his ECG is recorded. The

PEM starts with a serial analysis of this record and compares it with the referenced ECG. The PEM can

suspect any cardiac problems and send an alert to a call center, if needed. The alert triggers a Web service

whose role is to find a first-aid medical-center close from Anatole’s current location. Processing both the

recorded and referenced ECG, the selected medical center identifies two types of alarm: severe or minor.

In case of a minor alarm, LookforDoctor and TreatmentTransmission Web services are triggered.

When a doctor is assigned to Anatole, he gets access to his medical records and checks the referenced and

recorded ECG. Afterwards, he diagnoses the case and prescribes an adequate treatment for Anatole.

TreatmentTransmission Web service takes care of notifying the treatment, as an SMS message, to Anatole’s

mobile phone. The language of the message is set according to Anatole’s preferred-language like French,

English, etc. Before closing Anatole’s case, additional operations update his records. In case of a severe alarm,

LookforEmergency Web service is concurrently triggered with two other separate Web services that upload

Anatole’s medical records and identify Anatole’s location, respectively. Finally, ContactMobileCare Web

service is activated in case an ambulance needs to be dispatched to Anatole.

2.2 Rationale of colored Petri-Nets

Jensen formulates CPN as a formally founded graphically-oriented modeling language [11]. CPN have got

their name because they use different colors to be associated with tokens, which carry data values. This is in

contrast to low level Petri-Nets’ tokens, which by default are black. On the one hand, Petri-Nets provide the

necessary mechanisms for specifying synchronization of concurrent processes. On the other hand, any

programming language provides the primitives that are needed for defining and manipulating data types.

Compared to CPN, HCPN includes additional features such as substitution transitions and fusion places. The

underlying idea in HCPN is to use a number of small CPN in order to develop a complete HCPN. These

CPN are called pages (or sub-pages) and are related to each other in a well defined way.

Mapping CPN and HCPN concepts into Web services and composite Web services is to a certain extent

straightforward. First, a Web service behavior is basically a partially ordered set of operations. Therefore, it is

possible to represent it with a Petri-Net. Web service’s operations are modeled by transitions and the states of

the Web service are modeled by places [12]. Moreover, the use of colored tokens permits modeling contexts

of Web services and users by specifying places used to model these contexts. Moreover, the hierarchy

concept of the HCPN shows the components of a composite Web service at a higher level with no mention

to their internal details. This is really useful for running views over composite Web services. Indeed, adjusting

a composite Web service with the changes in user and Web service’s contexts does not require to highlight

the detailed descriptions of all the Web services that participate in this composition. The use of HCPN for

modeling Web services composition is detailed in the next section.

2.3 Related work

Benatallah et al. propose a Petri-Net-based algebra as a means for guaranteeing the reliability of the business

processes that underpin a composite Web service composition [13]. This algebra is enough expressive to

capture the semantics of complex Web service combinations. In this study, context is just ignored, which

does not permit capturing the changes in a Web services composition process. Yang et al. introduce an

approach whose objective is to verify and analyze composition specification of Web Services once these

specifications get translated into a Colored Petri-Net [6],[7]. The obtained colored Petri-Net can be simulated

using specific colored Petri-Net tools. In Yang et al.’s works, they suggest to model processes in BPEL as

colored Petri nets. However, the transformation process is ambiguous and no formal definition of how to

translate a BPEL specification into a colored Petri-Net is given. Xiaochuan et al. propose a model of a

simplified Travel Reservation system based on Web services [14]. This system captures both conversation

protocols and composition specification. The model uses a colored Petri-Net’s properties such as dead

marking, boundness, and reachability, during verification. In [15], Bing addresses the shortfalls of Xiaochuan

et al.’s work like incomplete conversation between Web services, removal of some major interactions within

Web services, and modeling of unnecessary components that make the graphical representation complex.

All these proposals mainly focus on Web services composition modeling with no-emphasis on contexts

of Web services and users. It should also be noted that colored Petri-Nets are suitable for validating Web

services composition. The transformation process for example from a BPEL specification towards a colored

Petri-Net is still ambiguous and a formal definition would be highly appreciated. In order to react in a proper

way to the detected changes in user and Web service environment, context needs to be handled during the

development of specifications of Web services.

3 Modeling Web services composition using high level Petri-Nets

In this section, we define a Web service and a composite Web service using CPN and HCPN, respectively.

To this purpose, we comply with Jensen’s work [11]. A composite Web service is defined by an HCPN to be

called as Composition Net (CN). Moreover, each component Web service in the CN has a page modeled by a

CPN to be called as Service Colored Net (SCN).

3.1 Definition of the service colored net

A Web service is a SCN that is defined as follows: SCN=<ΣΣΣΣ,P,T,L,A,N,C,E,G>.

•••• ΣΣΣΣ is a finite set of types also called color sets.

•••• P is a finite set of places that model the state of a system. A Web service’s states as proposed in [13]

include: not-instantiated, ready, running, suspended, and completed. In this paper, a Web service’s

state consists of distributing a data value, i.e., token, on the SCN’s places. Two types of places exist:

o Message Places (MP) contain messages exchanged between component Web services.

o Context Places (CP) containing the execution context of Web services.

Formally, this is represented as follows: P: (MP∪∪∪∪CP) and (MP∩∩∩∩CP)= ∅∅∅∅

•••• T is a finite set of transitions. Each operation in a Web service is captured by a CPN transition. We

can distinguish two types of transitions:

o Tgu is a finite set of transitions with guard condition.

o T
gu

 is a finite set of transitions without guard condition.

 Formally, this is represented as follows: T: (Tgu∪∪∪∪T
gu
) and (Tgu∩∩∩∩T

gu
)=∅∅∅∅.

•••• A is a set of directed arcs. An arc connects a place to a transition and vice-versa. In fact, an arc

represents a causality relation between places and transitions. Formally, this is represented as follows:

A⊆⊆⊆⊆(PxT)∪∪∪∪(TxP)

•••• L is a labeling function. We suppose that each operation in a Web service has a label. Formally, this is

represented as follows: ∀ t ∈∈∈∈ T L: t →→→→ L(t)

•••• N is function that links each arc going from a place to a transition and vice-versa.

•••• C is a color function that assigns a unique color to each place p. The color of a place is denoted as

C(p). Therefore, each token in a place p must have a color, i.e., data value, from C (p). Formally, this

is represented as follows: C: P→→→→ ∑ ⇔⇔⇔⇔ ∀ p ∈∈∈∈ P, ∃ C (p) C (p) ⊆⊆⊆⊆ ΣΣΣΣ

•••• E is a function that describes arcs using a set of variables. These variables determine the token’s

variables (i.e., a token has a set of variables) that are either consumed or produced during operation.

Formally, this is represented as follows: ∀∀∀∀a∈∈∈∈A, Type(var(E(a))=C(p(a)) and Type(var(E(a))) ⊆⊆⊆⊆∑∑∑∑

where: Type(var(E(a)) is a function that determines the types of the variables in an arc. In this

formula, the first part indicates that the types of the arc’s variables must be compatible with the

colors set of the starting place (arc connecting place-transition) or the colors set of the arrival place

(arc connecting transition-place). The second indicates that the token’s types must belong to the

colors set of the CPN.

• G is a guard function that tests the logical conditions in a transition.

The navigation inside a Service Colored Net of a composite Web service is based on two types of rules. It

will be shown later that these rules contribute towards the formal specification of a view.

1. Firing rule for a transition with guard condition: In order to get over a transition with guard

condition, we must consider the types of places, whether message or context, and thus the conditions

of these places. In case of a message place, four conditions should be verified before a transition can

be passed. The first condition deals with the color of the place, which must be expected by the color

sets necessary for passing over the transition. We assume that each transition has a color set, which is

the sum of all the color sets of the different connecting places. The second condition verifies that the

variable set of the arc has the same type as the place connected with this arc. In addition, the values

of the variables on an arc must match the expected data types such as integer. The last condition

checks if the guard condition returns true assuming that every type of variables of a guard belong to

the color sets of the service colored net. We use Is-enabled (Tgu) as the function that checks the four

conditions for each message place that is connected to transition Tgu. In case of a context place, only

the three first conditions must be verified. The following algorithm summarizes the different

conditions already explained.

2. Firing rule for a transition without guard condition: this transition is independent of the type of

its connected places. Is-enabled (T
gu

) function verifies only the first three conditions.

3.2 Definition of the composition net

A composite Web service is a HCPN that is defined as follows: CN=<S, ST, SA, PP, PT, PA, FP> where:

• S is a set of pages that represent the atomic Web services. Each page s∈S is a

SCN=<∑s,Ps,Ts,As,Ns,Cs,Es,Gs>.

• ST is a set of substitution transitions. A substitution transition identifies a Web service without any

internal details on how it is performed. Similarly to transitions in a service colored net, substitution

transitions in CN are with or without guard transition.

• SA is a function that assigns a Web service to a composite Web service. Indeed, each ST corresponds

to SCN (SA: ST →SCN). In contrast with Jensen’s substitution transition firing rules, we assume

that firing a substitution transition depends on the firing of all the transitions that are present in the

SCN. This means that Is-enabled(ST) function has to check each transition in the SCN and is related

to the transition ST if it is enabled or not.

• PP ⊆ P is the set of port places. Each SCN contains places that are tagged with either in, out, or i/o.

These places are named port places and permit the communication of a SCN with its peers. Similarly,

all places connected to a substitution transition model a Web service in a composition are defined as

input or output socket places. As mentioned before, each substitution transition is related to a SCN.

This is achieved by providing a port assignment, which describes how the port places of the SCN are

related to the socket places of the substitution transition.

• PT defines the type of the port, PT: PP→{in, out, i/o}. Each place connected to the substitution

transition has a specific type.

• PA is a port assignment function that describes how the port places of the SCN related to the socket

places of the substitution transition. Formally, this is represented as follows: PA:

ST⊆⊆⊆⊆(PPsourcexPPtarget) where PPsource is a set of port node (especially input or output socket places of

ST transition) and where PPtarget is a set of places in the target page (SA (ST)).

• FP is the first page of the CN, i.e., it represents the composite Web service. For each substitution

transition in the first page, a SCN is obtained.

3.3 Illustration with Anatole scenario

The composition net of Anatole scenario is shown in Figure 1. It consists of seven Web services designed as

substitution transitions, which permits abstracting their behavior. The substitutions transitions are:

LookforCenter, LookforDoctor, LookforEmergency, TreatmentTransmission, UpdatePatientRecord,

Localization, and ContactMobileCare.

The boxes that are next to each substitution transition specify the SCN that contains the detailed

description of the activity represented by the corresponding substitution transition. For example, the page

modeling LookforCenter Web service is modeled by the substitution transition named LookforCenter. The

SCN of this substitution transition is shown in Figure 3. In addition, the types of input places that connect

each substitution transition are “message” and “context”. For example, the substitution transition for

LookforCenter Web service is broken up into three context places (CP1, CP2, CP3), as an input and a single

message place (PTLFC). These places are the input socket places for this substitution transition. For

illustration purposes, the following assumptions are made regarding the context and message places:

• CP1 contains the required memory, e.g., 1’128 in Megabits, for the execution of the Web service.

• CP2 contains the time-slot availabilities of the Web service for execution.

• CP3 contains French language using 1’french. This represents the language the Web service uses for

returning responses to users.

• PTLFC models the message between the PEM and LookforCenter Web service.

Figure 1 : The CN for Anatole scenario

The two output socket places for this substitution transition are:

• LFCTLFD models the message between LookforCenter and LookforDoctor Web services.

• LFCTLFE models the message between LookforCenter and LookforEmergency Web services.

Formally, the composition net of Anatole scenario is defined by the tuple

CN=<S,ST,SA,PP,PT,PA,PP> where:

• S: six pages representing the existing Web services in Anatole scenario and the primary page.

• ST: six substitution transitions namely LookforCenter, LookforDoctor, LookforEmergency,

TreatmentTransmission, Localization, and ContactMobileCare.

• STgu={LookforDoctor, LookforEmergency}.

• ST
gu

={LookforCenter, TreatmentTransmission, Localization, ContactMobileCare}.

• SA: six sub-pages are present in the composition net. Each sub-page represents a service

composition net, which contains the detailed description of the Web services shown as substitution

transition. It is assumed that each Web service composition’s name has the same name of the

substitution transition, for example SA (LookforCenter)=SCNLFC.

• PP: lists the distinct messages and context places that are associated with substitution transitions.

o LookforCenter: Message places={PTLFC, LFCTLFD, LFCTLFE}, Context places={CP1,

CP2, CP3}.

o LookforEmergency: Message places={LFCTSE, SETL}, Context places={CP4, CP5,

CP6}.

o Localization: Message places={LFETL, TTL, LTCS}, Context places={CP7, CP8, CP9}.

• PT: lists the different types of ports that are connected to each substitution transition that appears in

the composition net of Anatole.

o LookforCenter: input socket places={PTLFC, CP1, CP2, CP3}, output socket

places={LFCTLFD, LFCTLFE}.

o LookforEmergency: input socket places={LFCTLFE, CP4, CP5, CP6}, output socket

place={LFETL}.

o Localization: input socket places={LFETL, TTL, CP7, CP8, CP9}, output socket

place={LTCMC}.

• PA: is the function that specifies the relationships between a substitution transition and its associated

service colored net. This means describing how the port places of this net are related to the socket

places of the substitution transition.

o LookforCenter: PPsource={PTLFC, CP1, CP2, CP3, LFTLFD, LFCTLFE}. The SCN of

this substitution transition is named LookforCenter. The port nodes of this SCN are:

PPtarget={PTLFC, CP1, CP2, CP3, LFCTLFD, LFCTLFE}.These input ports are linked to

the input socket places of LookforCenter substitution transition. Analogously, the two

output ports LFCTLFD and LFCTLFE are related to the output socket places: LFCTLFD

and LFCTLFE.

o LookforEmergency: PPsource={LFCTLFE, CP4, CP5, CP6, LFETL}. The SCN of this

substitution transition is named LookforEmergency. Its port nodes are:

PPtarget={LFCTLFE, CP4, CP5, CP6, LFETL}.

• FP: is the primary page as shown in Figure 3 .

3.4 Modeling a component Web service

Let us now consider the sub-page of Figure 3, which is about the detailed description of the activity that

LookforCenter Web service carries out. The sub-page shows two operations captured by two transitions. We

also consider EvaluationState transition in order to observe how the firing rules get initiated.

EvaluationState transition is fired iff the following conditions are satisfied:

1. The color set of each place connected to EvaluationState transition is included in the color set of this

transition. EvaluationState transition is only connected to P1 place, so the needed color-set for firing

this transition is the Boolean color which corresponds to P1’s colors set.

2. The arc’s variables type matches the color of P1. As shown in Figure 2 , the arc connecting P1 place

to EvaluationState transition only contains the ok variable. This variable has a Boolean color, which

corresponds to the color of P1 place.

3. The ok variable must be assigned to a value with a specific type. Having a Boolean color, the ok

variable can only receive true or false. Besides, this variable must have a type already defined in the

color set of SCNLFC.

4. EvaluationState transition is enabled if the ok variable in the guard condition evaluates to true.

In our case, the last condition depends on the value that is randomly assigned to the ok variable since all

others conditions are satisfied.

Figure 3 : SCN for LookforCenter Web service

3.5 Verifying a composite Web service

The use of high level Petri-Nets permits increasing the reliability level of composite Web services. Indeed, the

checking of a composite Web service could happen prior to any deployment. The associated composition net

could be subject to analysis using different techniques and computer tools for CPN [16]. These tools support

interactive and automatic simulation. The most important analysis technique is known as a state space

method [16]. It consists of designing a graph that has a node for each reachable marking (i.e., set of data value

distribution in different places), as well as an arc for each occurring binding element. We suggest in the

following, the definitions of some properties that can be checked using CPN:

• Reachability determines whether it is possible for a composition to achieve the desired results by

using the state space method that generates all the reachable states.

• Boundness determines the minimal and the maximal number of tokens in the different places. If

the type of a place is “context”, then it can only contain a single token; otherwise errors are raised

during the execution of the process. If the type of place is “message”, then boundness checks

buffer overflows.

• Dead transition determines the number of transitions which will never be enabled. If dead

transitions are initially detected, this means bad design.

• Dead marking is a marking with no enabled transitions. If the number of dead markings

reported by the state space analysis is more than expected, then there must be an error in the

composition design.

The verification of a composite Web service needs to take into account the current context that reflects

the progress of this composite Web service. To apply HCPN modeling to a Web services composition

according to a specific context, we introduce the concept of view.

4 The concept of view

4.1 Formal definition

We recall that a view is a dynamic snapshot over the specification of a composite Web service according to a

certain context. We suggest below that a view is extracted out of the specification of a composite Web service

using this time high level Petri-Nets. To this purpose, a set of definitions is provided.

• Initial composition net definition. Let us suppose that there is an Initial Composition Net (ICN)

and a Derived Composition Net (DCN) and suppose also that CN=ICN∪DCN. With a high level

abstraction, some attributes of the CN can be discarded. Hence, ICN is defined as the following

triplet: ICN=<S,ST
gu

,STgu> where: S is the set of pages that are included in the CN where ∀ s∈S,

s is an SCN, and ST
gu

is and STgu= are like previously defined.

• Context template definition. Noted CT, it is the formal model of the corresponding context during

view extraction. The CT includes two types of context: user (U-context) and Web service (W-

context), CT={U-context∪W-context}. Additional details on contexts of user and Web service

are given in [17].

• Derived composition net definition. The extraction of a view according to a certain context over

an initial or derived composition specification permits obtaining a DCN. DCN is defined with the

following triplet: a DCN=<S’,S’T
gu

,S’Tgu> where:

o S’: is the derived specification that does not accept any additional Web services through their

pages.

o S’T
gu
={ st’|∃ st∈ST

gu
∧ Is-enabled (st)=true} is the new set of substitution transitions

without guard conditions.

o STgu={ st’|∃ st∈STgu∧ Is-enabled (st)=true} is the new set of substitution transitions

with guard conditions. Is-enabled function is already defined. It checks if the conditions

relating to the different transitions (with or without guard condition) are satisfied in the

context running CT.

4.2 Application to Anatole scenario

Let us assume that Anatole’s context returns details on his physical state and localization. Others details on

Web services contexts are also returned. The context template is as follows:

• CT={U-context ∪ W-context}.

• SU-context={Identity=“Anatole”, Age=“60”, Gender=“Male”}.

• DU-context={PsychologicalState=“stressed”, PhysicalState=“serious”, Localization=“Fourvière

Cathedral”}.

An example of Web service context is the context of ContactMobileCare Web service:

• W-context={SW-context∪ DW-context}.

• SW-context={Name= “ContactMobileCare”, Memory= “128”, language= “French”}.

• DW-context={availability=“no”}.

In Figure 1, the CN of Anatole scenario is illustrated. The net is a triple CN = <S, ST
gu

,STgu> where

• S={SCNLFC, SCNLFD, SCNT, SCNUR, SCNLFE, SCNL, SCNCS}.

• STgu={LookforDoctor, LookforEmergency, Localization, ContactMobileCare }.

• ST
gu
= {LookforCenter, UpdatePatientRecord}.

Figure 4 : DCN for Anatole scenario

Figure 4 shows the derived composition net that is extracted out of the composition net of Figure 1

according to the defined context template. The DCN is defined by the triple <S’,S’T
gu

,S’Tgu> where

S’={SCNLFC, SCNLFE, SCNUR, SCNL}, STgu={Localization, UpdatePatientRecord}, and

ST
gu

={LookforCenter, LookforEmergency}. The testing of the various concepts that were discussed in this

paper is presented in the next section.

5 Prototype

A prototype that supports our proposal for using high level Petri-Nets in the specification and verification of

views over composite Web services is fully operational. We used Java to implement the needed functionalities

for context collection and generation as well as for view extraction. The main architecture of the prototype is

shown in Figure 5. The prototype comprises two modules that a Java program orchestrates. The first module

is about the context generator and the second is the view extraction.

Figure 5: Architecture of the prototype

For demonstration purposes, we assumed that the context generator provides upon request several

contextual details related to users and Web services. To this purpose, two XML files are obtained out of the

context generator. Both files are then submitted to the view extraction module, which requires an additional

input, which is the XML file that contains the composite Web service specification in a high level Petri-Net

form, i.e., the initial composition net. We used CPN Tools, which is a tool for editing, simulating and

analyzing Colored Petri-Nets. The extraction of a view consists of comparing the expected contextual

elements that are associated with this specification to the current contextual details that are obtained out of

the context generator. The result of the comparison is an XML file that describes the derived composition

net. The XML file corresponds to the view that can now be visualized as a Petri-Net using the CPN Tools

and verified using the various properties we listed in Section 3.4.

Figure 6 : Snap shot of the developed prototype

In Figure 6, the context generator provides details on the context of Anatole (e.g., PhysicalState=“not

serious”, PsychologicalState=“stressed”) as well as details on the context of Web services such as

LookforCenter. This Web service is available and uses French to return responses to users.

6 Conclusion

In this paper, we presented a high level Petri-Net approach for the specification and verification of composite

Web services. Our literature review has shown the importance of developing composite Web services and

making them reliable and efficient, i.e., error-free. This definitely calls for formal techniques to use as part of

the verification process of developing composite Web services prior to any deployment. Our literature review

has also shown that few initiatives dealt with context during the specification exercise of a composite Web

service. Therefore, we proposed a high level Petri-Net approach that integrates context during specification,

maps this specification onto a Petri-Net, and finally checks the obtained Petri-Net with some automatic tools.

Furthermore, we discussed in this paper how the execution of a composite Web service is tracked using the

concept of view. We illustrated and prototyped the dual use of Petri-Nets and views with a patient-related

scenario. Although this scenario was fictitious and simple, it revealed the challenges that need to be taken up

when deploying Web services in critical domains such as healthcare. Our next work aims at proposing

extensions for BPEL4WS so that user and Web service contexts are included. In addition, we aim at

developing a tool that converts an extended BPEL specification into a colored Petri-Net for automatic

verification purposes of this specification.

References

[1] F. Daniel and B. Pernici, "Insights into Web Service Orchestration and Choreography," International

Journal of E-Business Research, The Idea Group Inc., vol. 1, pp. 58 - 77, 2005.

[2] F. Leymann, "Web services flow language (WSFL1.0) ", IBM Software Group May 2001.

[3] D. Levy, "Coordination of web services : langages de description et plate-formes d'exécution,"

Septembre 2002.

[4] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, F. J. Klein, K. L. Leymann, D. Roller, D. Smith, S.

Thatte, I. Trickovic, and S.Weerawarana, "Business Process Execution Language for Web Services

(BPEL4WS) version 1.1", May-2003.

[5] J. Mendling and M. Müller, "A Comparison of BPML and BPEL4WS," in R. Tolksdorf, R. Eckstein

(eds.): Proceedings of the 1st Conference "Berliner XML-Tage". Berlin, Germany, October 2003.

[6] Y. Yang, Q. Tan, J. Yu, and F. Liu, "Transformation BPEL to CP-nets for verifying Web services

composition", in Proceedings of The International Conference on Next Generation Web Services Practices

(NWeSP'05). Seoul, Korea, 2005.

[7] Y. Yang, Q. Tan, J. Yu, and F. Liu, "Verifying Web Services composition Based on Hierarchical

Coloured Petri Nets", in Proceedings of the first international workshop on Interoperability of heterogeneous

information systems. Bremen, Germany, 2005.

[8] B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid, "Composing Web services on the Semantic

Web," International Journal on Very Large Data Bases, vol. 12, pp. 333-351, 2003.

[9] Z. Maamar, S. K. Mostefaoui, and H. Yahyaoui, "Toward an agent-based and context-oriented

approach for Web services composition", IEEE Transactions on Knowledge and Data Engineering, vol. 17,

pp. 686-697, 2005.

[10] Z. Maamar, D. Benslimane, C. Ghedira, and M. Mrissa, "On tracking personalized Web services

using views", in Proceedings of The IEEE International Conference on e-Technology, e-Commerce and e-Service,

(EEE'05), Hong Kong, China, 2005.

[11] K. Jensen, Coloured Petri Nets: Basic Concepts, Analysis Methods, and Practical Use, 2nd ed. Berlin; New

York: Springer, 1997.

[12] C. Petri, "Kommunikation mit Automaten". Germany: University of Bonn, 1962.

[13] B. Benatallah and H. Rachid, "A Petri net-based model for web service composition", in Proceedings of

the Fourteenth Australasian database conference on Database technologies. Adelaide, Australia, 2003.

[14] Y. Xiaochuan and K. Krys J, "Process Composition of Web Services with Complex Conversation

Protocols: a colored Petri Nets Based Approach", in Proceedings of The Design, Analysis and Simulation of

Distributed Systems Conference, 2004.

[15] H. Bing, "Choreography Modelling and Analysis of a Travel Reservation Web Service", in Proceedings

of The Fifth International Joint Conference on Autonomous Agents & Multi-Agent Systems. Hakodate, Japan,

2006.

[16] CPN Tools, "http://wiki.daimi.au.dk/cpntools/cpntools.wiki", Aarhus University, 2006.

[17] C. Ghedira and H. Mezni, "Through Personalized Web Service Composition Specification: From

BPEL to C-BPEL", Electronic Notes in Theoretical Computer Science, vol. 146, pp. 117-132, 2006.

