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Ruggero G. Pensa, Céline Robardet, and Jean-François Boulicaut

INSA Lyon, LIRIS CNRS UMR 5205
Bâtiment Blaise Pascal

F-69621 Villeurbanne cedex, France
{Ruggero.Pensa, Celine.Robardet, jfboulicaut}@insa-lyon.fr

Abstract. Within 0/1 data, co-clustering provides a collection of bi-
clusters, i.e., linked clusters for both objects and Boolean properties.
Beside the classical need for grouping quality optimization, one can
also use user-defined constraints to capture subjective interestingness
aspects and thus to improve bi-cluster relevancy. We consider the case
of 0/1 data where at least one dimension is ordered, e.g., objects de-
notes time points, and we introduce co-clustering constrained by interval
constraints. Exploiting such constraints during the intrinsically heuristic
clustering process is challenging. We propose one major step in this di-
rection where bi-clusters are computed from collections of local patterns.
We provide an experimental validation on two temporal gene expression
data sets.

1 Introduction

Many data mining techniques have been designed to support knowledge discovery
from 0/1 data, i.e., Boolean matrices whose the rows denote objects and the
columns denote Boolean attributes recording object properties.

Table 1. A Boolean context r

g1 g2 g3 g4 g5

t1 1 0 1 1 0
t2 0 1 0 0 1
t3 1 0 1 1 0
t4 0 0 1 1 0
t5 1 1 0 0 1
t6 0 1 0 0 1
t7 0 0 0 0 1

For instance, given r in Table 1, object t1 satisfies only properties g1 and
g3, and g4. Exploratory data analysis processes often make use of clustering
techniques to get insights about global patterns within the data, i.e., to propose
partitions of objects and/or of properties such that a grouping quality measure is
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optimized. Many efficient algorithms can provide good partitions but suffer from
the lack of explicit cluster characterization. This has motivated the research on
conceptual clustering, e.g., the co-clustering approaches [1,2,3,4]. Co-clustering
goal is to compute bi-clusters, i.e., associations of (possibly overlapping) sets of
objects with sets of properties. An example of an interesting bi-partition in r
is {{{t1, t3, t4}, {g1, g3, g4}}, {{t2, t5, t6, t7}, {g2, g5}}}. The first bi-cluster indi-
cates that the characterization of objects from {t1, t3, t4} is that they almost
always share properties from {g1, g3, g4}. Also, properties in {g2, g5} are charac-
teristic of objects in {t2, t5, t6, t7}.

Given a clustering algorithm, the analyst has generally a weak control on
the clusters he/she obtains. Typically, he/she can decide for ad-hoc parameter
settings which are quite operational and conceptually far from the declarative
specification of desired properties. A co-clustering algorithm tries to optimize
an objective function (e.g., Goodman-Kruskal’s τ coefficient in [1] or the loss
of mutual information in [2]) but it might also ensure that some user-defined
constraints are satisfied (e.g., the fact that some objects and/or properties have
to be together or not). In other terms, we would like to support the search
for relevant bi-clusters by enabling user-defined selection predicates (i.e., the
conjunction of the objective function optimization constraint with the other user-
defined constraints) on bi-partitions as if every possible bi-partition had been
computed beforehand. We all know that such a computation is not possible in
practice. It explains while a typical (co-)clustering algorithm like Cocluster
[2] uses heuristic local optimization to provide a good bi-partition without being
able to guarantee the optimal one (i.e., the optimization constraint is relaxed). It
explains also that using other user-defined constraints is challenging: enforcing
some constraints might lead to lower values for the objective functions. Indeed,
to the best of our knowledge, only preliminary approaches have concerned mono-
dimensional constrained clustering for simple types of user-defined constraints,
mainly the so-called must-link and cannot-link constraints [5,6,7,8].

In this paper, we address the problem of (bi-)cluster discovery when at least
one of the dimensions is ordered and when interval constraints are defined w.r.t.
orders. One of the typical application domains which motivates our study is tem-
poral gene expression data analysis. In this case, objects denotes gene expression
level measurements performed for successive time points on a given organism
(e.g., major phases of the developmental cycle), and properties are Boolean gene
expression properties (e.g., gene up-regulation or over-expression). For a given
organism and during its live cycle, groups of genes are activated and then in-
hibited, being somehow characteristic of some development stages. A biologist
might be interested in finding such co-regulated genes to putatively assign some
biological functions and (co-)clustering is a popular techniques for this [4]. In our
experience, it is however possible that known stages of a development cycle are
not really identified by available clustering algorithms. Bi-clusters may contain
samples from different stages, or involve time points which are not contiguous.
This is quite confusing for biological interpretation. On another hand, the tem-
poral relationship between the sets of biological conditions can be so strong
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that all clustering algorithms return perfect time intervals. In that case, when
studying interactions between genes which are co-regulated in different stages, it
would be nice to enforce the algorithm to look at alternative bi-partitions, i.e.,
with no mapping to the development stages.

Therefore, our contribution is twofold. First, we consider constraint-based co-
clustering on ordered data and this gives rise to new types of constraints. It is
then possible to specify whether a collection of bi-clusters has to be consistent
w.r.t. these orders, i.e., the so-called Interval and Non-interval constraints. It en-
ables to get clusters associated to time intervals or to space regions. Our second
contribution concerns the framework which is used to compute the bi-partitions
given the specified constraints. We recently proposed a generic framework to
compute bi-clusters based on collections of local patterns which capture locally
strong associations [9]. From an algorithmic point of view, we show here that it is
possible to extend it towards constraint-based bi-cluster mining. A related work
in gene expression data analysis is [10]. It provides an algorithm to compute
clusters which are constrained by some local patterns maximizing the interclass
variance. In such a proposal, some local patterns are used to constrain the par-
tition but they are not selected w.r.t. a declarative specification. Our goal is
indeed to build a bi-partition which satisfies user-defined declarative constraints
via a preliminary selection of local patterns.

Section 2 provides the problem setting, including the definition of bi-cluster
constraints. Section 3 recalls the framework from [9] and discusses its extension
towards constrained-based co-clustering. Section 4 concerns our experimental
validation on real gene expression data sets. Section 5 concludes.

2 Problem Setting

Assume a set of objects T = {t1, . . . , tm} and a set of Boolean properties G =
{g1, . . . , gn}. The Boolean context to be mined is r ⊆ T × G, where rij = 1 if
property gj is satisfied by object ti. For the sake of clarity, D denotes either
T or G. We define the co-clustering task as follows: we want to compute a
partition P T of K clusters of objects (say {P T

1 , . . . , P T
K}) and a partition PG of

K clusters of properties (say {PG
1 , . . . , PG

K}) with a bijective mapping denoted σ
between both partitions s.t. each cluster of objects is characterized by a single
cluster of properties (σ : P T → PG). The computed bi-partition is denoted
P = {P1, . . . , PK} s.t. Pi = (P T

i , σ(P T
i )). Assume now that a real value s(xi) is

associated to each element xi ∈ D, where function s : D → R. For instance, s(xi)
can be a temporal or spatial measure related to xi. In microarray data, where T
is a set of DNA chips, and G is a set of genes, s(ti) might be the sampling time
related to the DNA chip ti. On another hand, s(gi) might measure the absolute
position in the whole DNA sequence (if known). The function s, allows to define
an order � on dimension D. We say that xi � xj iff s(xi) ≤ s(xj). For the sake
of simplicity, if a function s exists on dimension D, then all its elements xi are
ordered, i.e., ∀i, j s.t. i < j, s(xi) ≤ s(xj). We can now redefine the co-clustering
task by taking into account the information about the ordered dimension.
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Definition 1 (interval and non-interval constraint). If an order (�) is
defined on D, an interval constraint on this dimension, denoted Cint(D,P), en-
forces each cluster on D to be an interval: ∀k = 1 . . .K, if xi, xj ∈ PD

k then ∀xl

s.t. xi � xl � xj, xl ∈ PD
k . A non-interval constraint denoted Cnon−int(D,P)

specifies that clusters on D should not be intervals: ∀k = 1 . . .K, ∃xi, xj ∈ PD
k ,

∃xl ∈ D s.t. xi � xl � xj, xl 	∈ PD
k .

An interval constraints can be used to find clusters which, for instance, contain
only adjacent time points (i.e., which are continuous intervals), while a non-
interval constraints can be used to find clusters which are not intervals. In the
first case, we are able to capture associations which characterize any single stage
of the sampling period, while in the second case, we might point out interactions
which are somehow time-independent. Other interesting constraints might be de-
fined like extended cannot-link or must-link constraints. Due to space limitation,
this is out of the scope of this paper.

3 A Local-to-Global (L2G) Approach

In [9], a generic co-clustering framework is introduced and we have to recall it
before its extension towards constraint-based co-clustering. The main idea is to
compute bi-partitions from bi-sets which capture locally strong associations be-
tween sets of objects and sets of properties. Formally, a bi-set is an element bj =
(Tj , Gj) (Tj ⊆ T , Gj ⊆ G) and we assume that a collection of a priori interesting
bi-sets denoted B has been extracted from r beforehand. Let us now describe
bj by the Boolean vector < tj >, < gj >=< tj1, . . . , tjm >, < gj1, . . . , gjn >
where tjk = 1 if tk ∈ Tj (0 otherwise) and gjk = 1 if gk ∈ Gj (0 otherwise).
We are looking for K clusters of bi-sets {PB

1 , . . . , PB
K} (PB

i ⊆ B). Let us define
the centroid of a cluster of bi-sets PB

i as μi =< τi >, < γi >=< τi1, . . . , τim >,
< γi1, . . . , γin > where τ and γ are the usual centroid components:

τik =
1

|PB
i |

∑

bj∈PB
i

tjk, γik =
1

|PB
i |

∑

bj∈PB
i

gjk

We now define our distance between a bi-set and a centroid:

d(bj , μi) =
1
2

(
|tj ∪ τ i| − |tj ∩ τ i|

|tj ∪ τ i|
+

|gj ∪ γi| − |gj ∩ γi|
|gj ∪ γi|

)

It is the mean of the weighted symmetrical differences of the set components. We
assume |tj ∩ τ i| =

∑m
k=1 ak

tjk+τik

2 and |tj ∪ τ i| =
∑m

k=1
tjk+τik

2 where ak = 1
if tjk · τik 	= 0, 0 otherwise. Intuitively, the intersection is equal to the mean
between the number of common objects and the sum of their centroid weights.
The union is the mean between the number of objects and the sum of their
centroid weights. These measures are defined similarly on properties.

Objects tj (resp. properties gj) are assigned to one of the K clusters (de-
noted i) for which τij (resp. γij) is maximum. We can enable that a number
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Table 2. CDK-Means pseudo-code

CDK-Means (r is a Boolean context, B is a collection of bi-sets in r, K is the
number of clusters, MI is the maximal iteration number.)

1. Let μ1 . . . μK be the initial cluster centroids. it := 0.
2. Repeat

(a) For each bi-set bi ∈ B, assign it to cluster PB
k s.t. d(bi, μk) is minimal.

(b) For each cluster PB
i , compute τi and γi .

(c) it := it + 1.
3. Until centroids are unchanged or it = MI .
4. For each tj ∈ T (resp. gj ∈ G), assign it to the first cluster P T

i (resp. PG
i )

s.t. τij (resp. γij) is max.
5. Return {P T

1 . . . P T
K } and {PG

1 . . . PG
K}

of objects and/or properties belong to more than one cluster by controlling the
size of the overlapping part of each cluster. Thanks to our definition of clus-
ter membership determined by the values of τ i and γi, we just need to adapt
the cluster assignment step given some user-defined thresholds. A simplified al-
gorithm CDK-Means from [9] is recalled in Table 2 (for the sake of brevity,
we do not consider cluster overlapping). It computes a bi-partition of r given
a collection of bi-sets B extracted from r beforehand (e.g., formal concepts).
CDK-Means can provide the example bi-partition given in Section 1.

Let us now propose a significant extension of the L2G framework when an
Interval or Non-interval constraint has been specified. The key idea is that,
to compute a bi-partition which satisfies a (global) constraint, we can process
a collection of local patterns which do not violate a local counterpart of this
constraint. Using such a local level constraint (possibly associated with a prop-
agation strategy), might enable to get efficiently a bi-partition which satisfies
the global level one. Notice that given the state-of-the-art in constraint-based
mining of bi-sets, quite efficient algorithms can now extract constrained bi-sets.
For instance, in our applications, we use D-Miner [11] for computing complete
collections of formal concepts which also satisfy various user-defined constraints.
It is possible to enforce the same interval and non-interval constraints in the
used bi-set collection. However, in the case of Interval constraint, it might be
too stringent in practice, while for Non-interval, it will not be selective enough.
For this reason, we propose to relax the Interval constraint and strengthen the
Non-interval one on bi-sets by introducing two new local constraints.

Definition 2 (max-gap and min-gap constraints). Given an order on D,
a max-gap constraint on this dimension, denoted Cmaxgap(D, l, b), is satisfied iff,
for each pair of consecutive elements xi, xj ∈ b, xi ≺ xj, |{xh 	∈ b|xi ≺ xh ≺
xj}| ≤ l. A min-gap constraint, denoted Cmingap(D, l, b), is satisfied iff, for each
pair of consecutive elements xi, xj ∈ b, xi ≺ xj , |{xh 	∈ b|xi ≺ xh ≺ xj}| ≥ l.

It is straightforward to prove the following property:
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Property 1. The min-gap constraint is anti-monotonic and can be used to ef-
ficient pruning.

The max-gap constraint does not have any monotonicity property w.r.t. to set
inclusion. In fact, for a dimension D = {x1, x2, . . . , xn} a max-gap constraint
Cmaxgap(D, 1), is not satisfied by the set X1 = {x2, x3, x7}, but is satisfied by
it superset X2 = {x2, x3, x5, x7}, and by its subset X0 = {x2, x3}. Then it
is neither monotonic nor anti-monotonic1. The first one (max-gap) is used for
the Interval constraint processing. The second one (min-gap) supports the Non-
interval constraint processing. Clearly, final constraint satisfaction is not ensured,
but the computational behavior is satisfactory (see the experimental section).

4 Experimental Validation

Evaluation Method. A general criterion to evaluate clustering results consists
in comparing the computed partition with a “correct” one. It means that data
instances are already associated to some correct labels and that one quantifies
the agreement between computed labels and correct ones. A popular measure
is the Rand index which measures the agreement between two partitions of m
elements. If C = {C1 . . . Cs} is our clustering structure and P = {P1 . . . Pt} is
a predefined partition, each pair of data points is either assigned to the same
cluster in both partitions or to different ones. Let a be the number of pairs
belonging to the same cluster of C and to the same cluster of P. Let b be the
number of pairs whose points belong to different clusters of C and to different
clusters of P. The agreement between C and P can be estimated using

Rand(C,P) =
a + b

m · (m − 1)/2

which takes values between 0 and 1 and is maximized when s = t.
We also want to evaluate co-clustering quality by means of an internal crite-

rion. An interesting measure for this purpose is the symmetrical Goodman and
Kruskal’s τ coefficient [12] which evaluates the proportional reduction in error
given by the knowledge of Co on the prediction of Cp and vice versa. It is eval-
uated in a contingency table p. Let pij be the frequency of relations between
an object of a cluster Co

i and a property of a cluster Cp
j , and pi. =

∑
j pij and

p.j =
∑

i pij . The Goodman-Kruskal’s τ coefficient, is defined as follows:

τ =
1
2

∑
i

∑
j (pij − pi.p.j)

2 pi.+p.j

pi.p.j

1 − 1
2

∑
i p2

i. − 1
2

∑
j p2

.j

Time Interval Cluster Discovery. We have studied the impact of the Interval
constraint in two microarray data sets, malaria and drosophila. The first one

1 The search space can be pruned by considering specific ordering at candidate gen-
eration phase.
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[13] concerns the transcriptome of the intraerythrocytic developmental cycle of
Plasmodium Falciparum, i.e., a causative agent of human malaria. The data
provide the expression profile of 3 719 genes in 46 biological samples. Each
sample corresponds to a time point of the developmental cycle: it begins with
merozoite invasion of the red blood cells, and it is divided into three main phases,
the ring, trophozoite and schizont stages. The second data set is described in
[14]. It concerns the gene expression of the Drosophila melanogaster during its
life cycle. The expression levels of 3 944 genes are evaluated for 57 sequential
time periods divided into embryonic, larval and pupal stages. The numerical gene
expression data given in [13] has been discretized by using one of the encoding
methods described in [15]: for each gene g, we assigned the Boolean value 1 to
those samples whose expression level was greater than X% of its max expression
level. X was set to 25% for malaria and 35% for drosophila. The two matrices
have been mined for formal concepts by using D-Miner [11].

We applied Cocluster algorithm [2], and the unconstrained version of
CDK-Means with K = 3 to identify the three developmental stages. Since
the initialization of both algorithms is randomized, we average all the measures
on 100 executions. We have measured the Rand index w.r.t. to the real partition-
ing (which has been inferred from the literature), and the Goodman-Kruskal’s
coefficient to evaluate the bi-partition quality.

There is a significant difference between the two data sets. In malaria, if
Cocluster achieves a good Goodman-Kruskal’s coefficient, the bi-clusters ob-
tained by CDK-Means are more consistent with the biological knowledge (i.e.,
the partition has a higher Rand index). On another hand, the number of com-
parisons is rather high. What we expect here, is that a constrained approach can
obtain the same clustering results by using less computing resources. Instead,
for Drosophila, both algorithms fail in finding the correct partitioning w.r.t. the
available biological knowledge. The number of jumps is in both cases high, while
the Rand index is relatively low. In this case we expect to obtain better results
with our constrained clustering approach.

We have defined the Interval constraint on the biological condition dimension.
Different levels of the max-gap constraint have been applied and we have studied
the impact on the final partition by measuring the Rand index and the Goodman-
Kruskal’s coefficient.

For malaria (graphics are omitted for sake of brevity), for low values of max-
gap, we obtain a better agreement w.r.t. to the three developmental stages,
while the Goodman-Kruskal’s coefficient is not significantly dissimilar to the
one obtained without constraints. On another hand, setting a max-gap constraint
considerably reduce the size of the collection, then CDK-Means perform faster.
As a secondary observation, notice that our definition of max-gap constraint
works for open time intervals. By setting an open time interval constraint, we
are always able to obtain a circular sequence of intervals (capturing typical
developmental life cycles).

For drosophila, the improvements are more obvious. Unconstrained cluster-
ing results have shown that good partitions (with a high Goodman-Kruskal’s
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Fig. 1. Results on the drosophila dataset

coefficient) contain a lot of jumps. With a max-gap constraint of 2 or 3, we can
sensibly increase the quality of the partition (Fig. 1a) w.r.t. the available biolog-
ical knowledge. The fact that for these max-gap values, the Goodman-Kruskal’s
coefficient is minimum (Fig. 1b), indicates that the partition which better sat-
isfies the constraints is not necessarily the “best” one. Moreover, the average
number of comparisons is reduced by 60 (max-gap=2) and 30 (max-gap=3).

Using Non-interval Constraint. We have shown how interval constraints can
support the discovery of time interval clusters. Within some data (e.g., malaria),
an unconstrained approach already gives perfect intervals, and then the ques-
tion is: is it possible to discover different gene associations which hold between
time points belonging to different intervals? To answer this question, we applied
the Non-interval constraint to the gene expression data concerning adult time
samples of the drosophila melanogaster life cycle. Time samples from t1 to t10
concern the first days of male adult individual life cycle. Time samples from t11
to t20 concern female individuals.

When we apply CDK-Means (with k = 2) without specifying any constraint
on this data set, the two intervals t1, . . . , t10 and t11, . . . , t20 are well identified in
the 100 executions of the algorithm. Then, we obtain almost exactly a bi-cluster

Table 3. Clustering results on adult drosophila individuals

τ Rand

bi-part. inst. mean std.dev mean std.dev

co:MF 56 0.5605 0.0381 0.82 0.06

co:mixed 44 0.1156 0.0166 0.51 0.02

co:overall 100 0.3648 0.2240 0.69 0.16

cdk:unconst 100 0.4819 0.0594 0.88 0.04

cdk:int 100 0.4609 0.0347 1.00 0.00

cdk:nonint 100 0.1262 0.0761 0.53 0.04
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of males and a bi-cluster of females. Moreover , the Goodman-Kruskal’s coeffi-
cient and the loss in mutual information appears rather stable (see cdk:unconst
result on Tab. 3). We computed these coefficients on the 100 bi-partitions re-
turned by Cocluster and we noticed a significant unstability (see Tab. 3). It
seems that there are two optimum points for which the two measures are distant.
For 56 runs, we got a high τ coefficient (mean 0.5605), for the other 44 ones the
τ coefficient was sensibly smaller (mean 0.1156). If we consider each group of
results separately, the standard deviation is significantly smaller. It means that
these two results are two local optima for the Cocluster heuristics. From a
semantical point of view, the first group of solution reflects the male and female
repartition of the individuals, while in the second group each cluster contains
both male and female individuals. The average Rand value is 0.69 and the stan-
dard deviation is 23% of the mean. Then, we tried to specify a min-gap constraint
on the collection of formal concepts. Even for small values of the min-gap con-
straint, the average Rand value is high, while the standard deviation is lower
(12% of the mean for min-gap=2, 4% for min-gap=3) w.r.t. Cocluster results.
The cdk:nonint row in Tab. 3 summarizes the more stable (w.r.t. the τ coef-
ficient) results obtained with min-gap=10. We also tested whereas an interval
constraint could influence the stability of the bi-partition. Setting max-gap=5
enables to get more stable bi-partitions where the Rand index is always equal
to one (see cdk:int results in Tab. 3). These results show that, by specifying an
Interval or a Non-interval constraint, the user gets some control on the shape of
the bi-partition. An algorithm like Cocluster has sometimes found bi-clusters
where the sex of the individual is the major discriminative parameter. At some
moment, it has captured something else. Our thesis is that a biologist might
be able to have a kind of supervision on such a process. Moreover, using con-
straints also speeds up the bi-partition construction because we have to process
a reduced collection of bi-sets.

5 Conclusion

Co-clustering is an interesting conceptual clustering approach. Improving bi-
cluster relevancy remains a difficult task in real-life exploratory data analysis
processes. First, it is hard to capture subjective interestingness aspects, e.g.,
the analyst’s expectation given her/his domain knowledge. Next, when these ex-
pectations can be declaratively specified, using them during the computational
process is challenging. We have shown that it was possible to use a simple but
powerful generic bi-clustering framework based on local patterns. New types of
constraints on bi-clusters have been considered when at least one of the dimen-
sions is ordered. Applications on temporal gene expression data analysis have
been sketched. Many other applications rely on ordered data analysis and might
benefit from such constrained co-clustering approaches. A short-term perspec-
tive is to formalize the properties of the global constraints (i.e., constraints on
bi-partitions) which can be, more or less automatically, transformed into local
level constraints.
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