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Abstract. The notion of rules is very popular and appears in different flavors,
for example as association rules in data mining or as functional (or multivalued)
dependencies in databases. Their syntax is the same but their semantics widely
differs. In this article, we focus on semantics for which Armstrong’s axioms are
sound and complete. In this setting, we propose a unifying framework in which
any "well-formed" semantics for rules may be integrated. We do not focus on the
underlying data mining problems posed by the discovery of rules, rather we prefer
to emphasize the expressiveness of our contribution in a particular domain of
application: the understanding of gene regulatory networks from gene expression
data. The key idea is that biologists have the opportunity to choose - among some
predefined semantics - or to define the meaning of their rules which best fits into
their requirements. Our proposition has been implemented and integrated into an
existing open-source system named MeV of the TIGR environment devoted to
microarray data interpretation.

1 Introduction

Microarray technology provides biologists with the ability to measure the expression
levels of thousands of genes in a single experience. It is believed that genes of sim-
ilar function yield similar expression patterns in microarray experiences [1]. As data
from such experiences accumulates, it is essential to have accurate means for assigning
functions to genes. Also, the interpretation of large-scale gene expression data provides
opportunities for developing novel mining methods for selecting for example good drug
candidates (all genes are potentially drug targets) from among tens of thousands of
expression patterns [2, 3].

However, one real challenge lies in inferring important functional relationships from
these data. Beyond the cluster analysis [4], a more ambitious purpose of genetic inference
is to find out the underlying regulatory interactions from the expression data, using
efficient inference procedures.

Rules between genes are a promising knowledge to reveal regulatory interactions
from gene expression data. The conjecture that association rules could be a model for the
discovery of gene regulatory networks has been partially validated in [5, 6, 7, 8, 9, 10, 11].
Nevertheless, we believe that many different kinds of rules could be useful to cope with
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different biological objectives and the restricted setting of association rules could not be
enough.

Clearly, the notion of rules is very popular and appears in different flavors, the two
more famous examples being association rules in data mining and functional dependen-
cies in databases. A simple remark can be done on these rules: their syntax is the same
but their semantics i.e. their meaning widely differs.

In this paper, we propose a unifying framework in which any "well-formed" semantics
for rules may be integrated. The key features of our approach are the following:

1. Given a dataset, defining a semantics in collaboration with domain experts (e.g.
biologists and physicians).

2. Verifying if the semantics fits into our framework, i.e. if Armstrong’s axiom system
is sound and complete for this semantics [12].

3. Discovering the rules from the dataset, more precisely a cover for exact rules [13, 14]
and a cover for approximate rules [15, 16].

4. Computing in a post-processing step, several quality measures for the obtained rules.

Note that we do not focus on the underlying data mining problems posed by the
discovery of rules, rather we prefer to emphasize the expressiveness of our contribution
in a particular application domain: the understanding of gene regulatory networks from
gene expression data.

Due to space limitation, we introduce only one semantics based on a pairwise compar-
ison of experiences to analyze variations of gene expression levels [5]. This semantics is
close to the semantics of functional dependencies extended to deal with gene expression
data. For others semantics, the reader is referred to [10, 17].

Our proposition has been implemented in a friendly graphical user interface to make
it useful by biologists. We chose to integrate it as a module into a microarray data
analysis open-source software: MeV. This tool is a part of an application suite, called
TM4, developed by The Institute for Genomic Research (TIGR) [18].

Paper Organization. In Section 2, the framework of our approach is given. In Section 3,
one semantics for rules is detailed and its compliance with the framework is shown in
Section 4. Implementation details are given in Section 5 and we conclude in Section 6.

2 Framework of Our Approach

Our approach is based on the notion of rule, also called implication. A rule is an ex-
pression of the shape X → Y i.e. "X implies Y" and the semantics of the rule is the
signification one wants to give to this implication. For example, association rules in data
mining or functional dependencies in databases are two types of semantics.

In this paper, we focus on special kinds of rules, which exhibit nice properties, i.e.
Armstrong’s axiom system is sound and complete for the considered semantics. Such a
semantics for rules is called "well-formed" in the sequel. We have chosen to focus on
Armstrong’s axioms since they apply obviously for functional dependencies but also for
implications defined on a closure system [19] and thus turn out to have many practical
applications (see examples given in [19]).
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Practical interests of a well-formed semantics are twofold:

– Firstly, we can perform some kind of reasoning on rules from the Armstrong’s
axioms: From a set of rules F , it is possible to know if a rule is implied by this set
of rules [20]. This problem is known as the implication problem and a linear time
algorithm does exist for this problem. Thus, if there is a relation r which satisfies F
then we know that all the rules that can be deduced from F thanks to theArmstrong’s
axioms will be satisfied in this relation.

– We can also work on "small" covers of rules [21, 22] and propose a discovery process
specific to the considered cover, but applicable to all well-formed semantics. It is
also possible to propose covers for non-satisfied rules [23].

The theoretical framework that we propose to use for the generation of rules defined
with well-formed semantics, comes from the inference of functional dependencies [24,
14]. Basically, since by definition the Armstrong’s axioms apply for any well-formed
semantics, the augmentation axiom implies a monotone property: given an attribute A,
X → A ⇒ ∀ Y ⊃ X, Y → A.
That is to say that the predicate "X implies A" is monotone with respect to set inclusion,
thus the predicate "X does not implyA" is anti-monotone. So well known characterization
may be used to produce the rules [25].
In other words, the largest left-hand sides not implying A constitute the positive border
of the predicate "X does not imply A" and the smallest left-hand sides implying A
constitute its negative border. Consequently, this negative border gives a subset of the
canonical cover (i.e. rules with minimal left-hand sides and A as right-hand side) while
the positive border gives a subset of the Gottlob and Libkin cover [23] (i.e. rules with
maximal left-hand sides and A as right-hand side).

Details on the generation of rules are out of the scope of this paper, interested readers
are referred to [13, 14, 25].

Moreover, an important key point of our approach is to take into account charac-
teristics of gene expression data. Indeed, from the microarray analysis domain, two
underlying "constraints" have to be understood: firstly, the number of experiences is
small (a few hundreds at most) whereas the number of genes is large (several thou-
sands). Such a constraint differs widely from those usually held in databases or data
mining where the number of tuples can be huge whereas the number of attributes (i.e.
genes in the context of this paper) remains rather small. That is why for example our ap-
proach does not take into account a minimum support threshold as usual for association
rules. Statistical measures are computed a posteriori on the discovered rules.

Secondly, data pre-processing steps on gene expression data are not fully understood
yet and therefore, we have to take into account noisy data. Thus microarray technology
delivers numerical values with a relatively small confidence on these values, biologists
have to interpret the data, for example as levels of expression, which implies a dis-
cretization step. In this setting, we propose to deal with noise in data not as an explicit
pre-treatment step but implicitly within the semantics of the rules.
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3 Example of Semantics for Rules

Our approach consists to interact with biologists in order to establish a semantics for the
rules which fits into their objectives and requirements.

In the sequel, we restrict ourselves to one semantics studying similar variations of
gene expression levels. In [17], we propose two others semantics for rules specially
defined for gene expression data.

In many cases, it does make sense to compare experiences in a pairwise fashion to
find some regularities between experiences. Such kind of reasoning is well known in
the database community through the notion of functional dependencies. However, in
our context, the FD satisfaction - its meaning - has to be relaxed to take into account
noise in gene expression data. Since a crisp FD X → Y can be rephrased as "equal X-
values correspond to equal Y-values", we would like to obtain something like "close X-
values correspond to closeY-values". Thus, instead of requiring strong equality between
attribute values, we admit an error less or equal to the absolute value of the difference
(obviously, other norms should have been taken). This leads to the following definition.

Definition 1. (pairwise comparison semantics) Let X, Y ⊆ G, be two sets of genes
and r a relation over G. A rule X → Y is satisfied in r with the semantics pc defined
with two thresholds ε1 and ε2, denoted by r |=pc X → Y , if and only if ∀t1, t2 ∈ r,
if ∀g ∈ X, ε1 ≤ |t1[g] − t2[g]| ≤ ε2 then ∀g ∈ Y, ε1 ≤ |t1[g] − t2[g]| ≤ ε2.

Classical satisfaction of functional dependencies is achieved when ε1 = ε2 = 0.
Thus, X → Y can be interpreted in our context as follows: for each gene g of X ,

each time g has a similar expression level in two experiences of r, then for each gene g
of Y , g has also a similar expression level in those experiences.

Example 1. Let us consider a running example made of a set of 6 experiences
(t1, t2, t3, t4, t5 and t6) over a set of 8 genes (g1, g2, g3, g4, g5, g6, g7 and g8) as de-
picted in Table 1.

Table 1. A running example

r g1 g2 g3 g4 g5 g6 g7 g8

t1 1.9 0.4 1.4 -1.5 0.3 1.8 0.8 -1.4
t2 1.7 1.5 1.2 -0.3 1.4 1.6 0.7 0.0
t3 1.8 -0.7 1.3 0.8 -0.1 1.7 0.9 0.6
t4 -1.8 0.4 1.7 1.8 0.6 -0.4 1.0 1.5
t5 -1.7 -1.4 0.9 0.5 -1.8 -0.2 1.2 0.2
t6 0.0 1.9 -1.9 1.7 1.6 -0.5 1.1 1.3

Let us suppose that the biologists are interested in low variations of expression levels
between experiences. Thresholds should be defined as follows: ε1 = 0.0 and ε2 = 0.2.
The hypothesis is that a gene does not vary for two experiences if the difference of the
expression levels is between 0.0 and 0.2.

The expression levels of the genes g6 and g7 are plotted in Figure 1. In that case,
the rule g6 → g7 is satisfied in the relation r (on the other hand the rule g7 → g6 is not
satisfied because of the variation between the experiences e3 and e4).
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Fig. 1. Expression levels of the genes g6 and g7

The rule g6 → g7 is interpreted in the following way: for some two experiences, if
the expression level of the gene g6 does not vary then the expression level of the gene
g7 does not vary neither.

4 Well-Formed Semantics

The second step of the process is to verify the well-formedness of the semantics defined
by domain experts, i.e. verify that this semantics can be used within our framework.

This step is very important since many semantics could be defined, some of them
verifying these requirements, others not (cf Theorem 2).

Definition 2. A semantics s is well-formed if Armstrong’s axiom system is sound and
complete for s.

Let us recall the Armstrong’s axiom system for a set of rules F defined over a set of
attributes (i.e. genes in our context) G:

1. (reflexivity) if X ⊆ Y ⊆ G then F � Y → X
2. (augmentation) if F � X → Y and W ⊆ G, then F � XW → Y W
3. (transitivity) if F � X → Y and F � Y → Z then F � X → Z

The notation F � X → Y means that a proof of X → Y can be obtained using
Armstrong’s axiom system from F . Moreover, given a semantics s, the notation F |=s

X → Y means that for all relations r over G, if r |=s F then r |=s X → Y .
As expected, the semantics previously introduced verify these requirements.

Theorem 1. The semantics pc is well-formed.

We need to show that Armstrong’s axiom system is sound and complete for pc.

Lemma 1. Armstrong’s axiom system is sound for pc.

Proof. Let F be a set of rules. We need to show that if F � X → Y then F |=pc X → Y .
Let r be a relation over a set of genes G.
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1. (reflexivity) evident.
2. (augmentation) Let t1, t2 ∈ r such that ∀g ∈ X ∪ W, ε1 ≤ |t1[g] − t2[g]| ≤ ε2.

We need to show that ∀g ∈ Y ∪ W, ε1 ≤ |t1[g] − t2[g]| ≤ ε2, which implies that
r |=pc XW → Y W . By assumption F � X → Y , then we have ∀g ∈ Y, ε1 ≤
|t1[g] − t2[g]| ≤ ε2. The result follows.

3. (transitivity) Let t1, t2 ∈ r such that ∀g ∈ X, ε1 ≤ |t1[g] − t2[g]| ≤ ε2. We need to
show that ∀g ∈ Z, ε1 ≤ |t1[g] − t2[g]| ≤ ε2, which implies that r |=pc X → Z. By
assumption, F � X → Y and F � Y → Z, then ∀g ∈ Y, ε1 ≤ |t1[g] − t2[g]| ≤ ε2
and ∀g ∈ Z, ε1 ≤ |t1[g] − t2[g]| ≤ ε2 respectively. The result follows.

Lemma 2. Armstrong’s axiom system is complete for pc.

Proof. We need to show that if F |=pc X → Y then F � X → Y or equivalently, if
F 
� X → Y then F 
|=pc X → Y . As a consequence, assuming that F 
� X → Y , it is
enough to give a counter-example relation r such that r |=pc F but r 
|=pc X → Y .

Let r over G be the relation shown in Table 2, with ε1 = 0.0 and ε2 = 0.2.

Table 2. Counter-example

X+ U − X+

0.1 ... 0.1 0.1 ... 0.1
0.2 ... 0.2 1.2 ... 1.2

Firstly, we have to show that r |=pc F . We suppose the contrary that r 
|=pc F
and thus, ∃V → W ∈ F such that r 
|=pc V → W . It follows by the construction
of r that V ⊆ X+ and ∃A ∈ W such that A ∈ U − X+. Since V ∈ X+, we have
F � X → V and since F � V → W , we have F � V → A. Thus, by the transitivity
rule, F � X → A and thus A ∈ X+. This leads to a contradiction since A ∈ W , and
thus r |=pc F .

Secondly, we have to show that r 
|=pc X → Y . We suppose the contrary that
r |=pc X → Y . It follows by the construction of r that Y ⊆ X+ and thus F � X → Y .
It leads to a contradiction since F 
� X → Y was assumed, and thus r 
|=pc X → Y .

As an example of semantics which does not fit into our framework, let us consider
the following semantics, noted pc′, which extends the semantics pc with an additional
constraint:

Definition 3. (pc’) Let X, Y ⊆ G, be two sets of genes and r a relation over G. A
rule X → Y is satisfied in r with the semantics pc′ defined with two thresholds ε1
and ε2, denoted by r |=pc′ X → Y , if and only if ∀t1, t2 ∈ r, if ∀g ∈ X , ε1 ≤
|t1[g] − t2[g]| ≤ ε2 then ∀g ∈ Y, ε1 ≤ |t1[g] − t2[g]| ≤ ε2 and ∃t1, t2 ∈ r such that
∀g ∈ X, ε1 ≤ |t1[g] − t2[g]| ≤ ε2.
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We have the following result:

Theorem 2. The semantics pc′ is not well-formed.

Proof. Let F be a set of rules and X ⊆ G, we have F � X → X by the reflexivity
axiom. Nevertheless, F 
|=pc′ X → X . Let us consider the following counter-example
made of 4 experiences (t1, t2, t3 and t4) over a set of 2 genes (g1 and g2) as depicted in
Table 3.

Table 3. Counter-example for pc′

r g1 g2

t1 -1.8 1.8
t2 -1.7 0.2
t3 0.2 -1.4
t4 0.3 -1.8

Let us consider the thresholds ε1 = 0.0 and ε2 = 0.2.We can see that r 
|=pc′ g2 → g2
because 
 ∃ t1, t2 ∈ r such that 0.0 ≤ |t1[g2] − t2[g2]| ≤ 0.2. By the way, the result is
proved since the reflexivity axiom is not sound.

5 Implementation

We have implemented the generation of rules as a C++/STL modules integrated into an
open-source freeware devoted to microarray data analysis: MeV (MultiExperi-
mentViewer) [18]. This tool is a part of an application suite, called TM4, developed
by The Institute for Genomic Research (TIGR). These tools devoted to microarray data
propose various functions such as storing the data, image analysis, normalization, inter-
pretation of the results.

MeV is the application devoted to the analysis of gene expression data. Furthermore,
MeV takes in input several file formats resulting from various image analysis software,
has an important number of functionalities already integrated and is based on a GUI
easy to use for biologists.

For the interface, we chose to limit as much as possible the options proposed to the
users to make it easier. An example of the graphical user interface developed on top of
MeV is presented in Figure 2.

The software was tested on several datasets and we were naturally interested in
the post-treatment of rules. Without being exhaustive, four quality measures (support,
confidence, dependence and lift) are computed to be able to sort the rules following these
criterion. We plan to integrate some other quality measures of rules [26]. The user looks
at only the rules he considers interesting according to these various indications.
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Fig. 2. Graphical user interface of the software

An application has been performed on expression profiles of a sub-sample of genes from
breast cancer tumors. The results are presented in [17].

6 Conclusion

In order to attempt a reverse engineering of gene regulatory networks from gene expres-
sion data, we have proposed an on-going work aiming at defining different semantics
of rules between genes, fitting in the same theoretical framework. Such rules form a
complementary and hopefully new knowledge with respect to classical unsupervised
techniques used so far [4].

The framework proposed in this paper, based on Armstrong’s axiom system, is able
to deal with different kinds of semantics in a unified manner. The semantics proposed
for gene expression data were implemented as an extension of a free software dedicated
to the analysis of microarray data (MeV of TIGR Institute).

For the time being, soundness and completeness of the Armstrong’s axiom system
have to be proved for every new semantics. We are currently working on a generic
definition of a semantics which ensures that a semantics is well-formed if and only if it
complies with this definition.

Moreover we are working on a more interactive process of discovery of rules, which
would consist in requiring to the biologists some "templates" for the rules they are
interested in, and then determining the semantics for which these rules are satisfied.
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