
Ant Algorithm for the Graph Matching Problem

Olfa Sammoud1, Christine Solnon2, and Khaled Ghédira1

1 SOIE, Institut Supérieur de Gestion de Tunis,
41 rue de la Liberté, Cité Bouchoucha, 2000 Le Bardo, Tunis

{olfa.sammoud,khaled.ghedira}@isg.rnu.tn
2 LIRIS, CNRS UMR 5205, bât. Nautibus, University of Lyon I

43 Bd du 11 novembre, 69622 Villeurbanne cedex, France
christine.solnon@liris.cnrs.fr

Abstract. This paper describes a new Ant Colony Optimization (ACO)
algorithm for solving Graph Matching Problems, the goal of which is to
find the best matching between vertices of multi-labeled graphs. This
new ACO algorithm is experimentally compared with greedy and reactive
tabu approaches on subgraph isomorphism problems and on multivalent
graph matching problems.

1 Introduction

Numerous applications require to measure the similarity of objects. For instance,
Case-Based Reasoning (CBR) relies on the hypothesis that similar problems have
similar solutions, so that CBR systems solve new problems by retrieving similar
ones, for which solutions are known and can be adapted [1]. Also, information
retrieval systems must be able to measure the similarity of documents and images
in order to retrieve relevant documents from a database.

In many of these applications, objects are described by graphs, so that mea-
suring objects similarity turns into determining graphs similarity, i.e., matching
graph vertices to identify their common features [6, 8, 10]. This may be done by
looking for an exact graph or subgraph isomorphism in order to show graph
equivalence or inclusion. However, the objects to be compared are usually not
identical and the assumption of the existence of an isomorphism between the cor-
responding graphs is usually too strong. As a consequence, error-tolerant graph
matchings such as maximum common subgraph and graph edit distance have
been proposed [7, 10]. Such matchings drop the condition that all vertices and
edges must be preserved: the goal is to find a ”best” matching, i.e., one which
preserves a maximum number of vertices and edges.

Most recently, three different papers proposed to go one step further by
introducing multivalent matchings, where a vertex in one graph may be matched
with a set of vertices of the other graph:

– In [4], graph matching is used for model-based pattern recognition of brain
images. In this case, the assumption of a bijection between regions of models
and images is too strong: models have schematic aspects easy to segment

while images are noised and usually over-segmented. Therefore, scene recog-
nition is better expressed as a multivalent matching problem where a set of
vertices of the scene may be linked to a same vertex of the model.

– Guided by very similar motivations, [2] proposes a new graph edit distance
that introduces two new edit operations —vertex splitting and merging— in
order to handle the fact that images may be over- or under- segmented.

– In [9], graphs are used to model design objects in a computer-aided design
application. In this context, vertices are used to represent object components
and one single component of an object may play the same role than a set
of components of another object, depending of the granularity of object
description. Therefore, the authors introduce a similarity measure based on
multivalent matchings so that one vertex in a graph may be associated with
a set of vertices of the other graph.

The graph similarity measure of [9] is generic and is parameterized by functions
that allow one to express domain dependent knowledge. Hence, [16] shows that
the matchings introduced in [4] and [2] are special cases of the graph similarity
measure of [9].

In this paper, we address the problem of computing this graph similarity
measure. Indeed, [9] has proposed a first greedy algorithm that incrementally
builds multivalent matchings. These matchings are quickly computed but are
usually far from optimality. Hence, we propose to improve the quality of the
constructed matchings by using the Ant Colony Optimization (ACO) meta-
heuristic [11]: the idea is to use pheromone trails to keep track of the best
components of matchings built by the greedy algorithm.

Section 2 briefly describes the generic graph similarity measure and the as-
sociated greedy algorithm introduced in [9]. Section 3 describes a new ACO
algorithm —Ant Graph Matching (ANT-GM)— for computing this measure.
Section 4 presents experimental results on different graph matching problems,
and compares ANT-GM with the greedy algorithm of [9] and a reactive tabu
search algorithm introduced in [16].

2 A generic similarity measure for multi-labeled graphs

2.1 Definition of multi-labeled graphs

A directed graph is defined by a couple G = (V,E), where V is a finite set of
vertices and E ⊆ V × V is a set of directed edges. Vertices and edges may be
associated with labels that describe their properties. Given a set LV of vertex
labels and a set LE of edge labels, a multi-labeled graph is defined by a triple
G = 〈V, rV , rE〉 such that:

– V is a finite set of vertices,
– rV ⊆ V ×LV is a relation associating labels to vertices, i.e., rV is the set of

couples (vi, l) such that vertex vi is labeled by l,

– rE ⊆ V × V ×LE is a relation associating labels to edges, i.e., rE is the set
of triples (vi, vj , l) such that edge (vi, vj) is labeled by l. Note that the set
E of edges of the graph can be defined by E = {(vi, vj)|∃l, (vi, vj , l) ∈ rE}.

We shall call the tuples of rV and rE the vertex and edge features of G. The
set descr(G) = rV ∪ rE of all vertex and edge features of a graph G completely
describes the graph G.

2.2 Similarity measure

We now briefly describe the graph similarity measure introduced in [9], we refer
the reader to [9] for more details. This similarity measure is defined for two
multi-labeled graphs G = 〈V, rV , rE〉 and G′ = 〈V ′, rV ′ , rE′〉, defined over the
same sets of vertex and edge labels LV and LE , and such that V ∩ V ′ = ∅.

The first step for measuring graph similarity is to match vertices. The match-
ing function considered here is multivalent, i.e., each vertex of one graph is
matched with a possibly empty set of vertices of the other graph. More formally,
a multivalent matching of two graphs G and G′ is a set m⊆V×V ′ which contains
every couple (v, v′) ∈ V × V ′ such that vertex v is matched with vertex v′.

Once a multivalent matching is defined, the next step is to identify the set of
features that are common to the two graphs with respect to this matching. This
set contains all the features from both G and G′ whose vertices (resp. edges)
are matched by m to at least one vertex (resp. edge) that has the same feature.
More formally, the set of common features descr(G)um descr(G′), with respect
to a matching m, is defined as follows:

descr(G) um descr(G′) =̇ {(v, l) ∈ rV | ∃(v, v′) ∈ m, (v′, l) ∈ rV ′}
∪ {(v′, l) ∈ rV ′ | ∃(v, v′) ∈ m(v), (v, l) ∈ rV }
∪ {(vi, vj , l) ∈ rE | ∃(vi, v

′
i) ∈ m,∃(vj , v

′
j) ∈ m (v′i, v

′
j , l) ∈ rE′}

∪ {(v′i, v′j , l) ∈ rE′ | ∃(vi, v
′
i) ∈ m,∃(vj , v

′
j) ∈ m (vi, vj , l) ∈ rE}

Given a multivalent matching m, we also have to identify the set of split
vertices, i.e., the set of vertices that are matched to more than one vertex, each
split vertex v being associated with the set sv of its matched vertices:

splits(m) = {(v, sv) | v ∈ V, sv = {v′ ∈ V ′|(v, v′) ∈ m}, |sv| ≥ 2}
∪ {(v′, sv′) | v′ ∈ V ′, sv′ = {v ∈ V |(v, v′) ∈ m}, |sv′ | ≥ 2}

The similarity of G and G′ with respect to a matching m is then defined by:

simm(G, G′) =
f(descr(G) um descr(G′))− g(splits(m))

f(descr(G) ∪ descr(G′))
(1)

where f and g are two functions that are defined to weight features and splits,
depending on the considered application. For example, if f is the cardinality
function and g is the null function, then the similarity is proportional to the
number of common features with respect to the total number of features. If g

is the cardinality function, instead of the null function, then the similarity is
decreased proportionally to the number of split vertices.

Finally, the maximal similarity sim(G, G′) of two graphs G and G′ is the
greatest similarity with respect to all possible matchings, i.e.,

sim(G, G′) = max
m⊆V×V ′

simm(G, G′)

Note that the denominator in the definition of formula (1) does not depend on
the matching m —this denominator is introduced to normalize the similarity
value between zero and one. Hence, it will be sufficient to find the matching that
maximizes the score function below:

score(m) = f(descr(G) um descr(G′))− g(splits(m))

2.3 Greedy algorithm

A greedy algorithm for approximating sim(G, G′) is introduced in [9]. We briefly
describe it as it is used as a starting point of our ACO algorithm.

The algorithm starts from the empty matching m = ∅, and iteratively adds to
this matching couples of vertices that are chosen within the set cand = V×V ′−m
in a greedy way: at each step, the algorithm first selects the set of couples
(u, u′) ∈ cand that most increase the score function. This set of best scored
couples often contains more than one couple. To break ties between them, the
potentiality of each candidate (u, u′) is looked ahead by taking into account the
features that are shared by edges starting from (resp. ending to) both u and u′

and that are not already in descr(G) um∪{(u,u′)} descr(G′). More formally, one
defines the set look aheadm(u, u′) of potential common edge features by:

{(u, v, l) ∈ rE | ∃v′ ∈ V ′, (u′, v′, l) ∈ rE′} ∪ {(u′, v′, l) ∈ rE′ | ∃v ∈ V, (u, v, l) ∈ rE}
∪ {(v, u, l) ∈ rE | ∃v′ ∈ V ′, (v′, u′, l) ∈ rE′} ∪ {(v′, u′, l) ∈ rE′ | ∃v ∈ V, (v, u, l) ∈ rE}
− descr(G) um∪{(u,u′)} descr(G′)

The next couple to enter the matching is randomly selected within the set
of couples (u, u′) that most increase the score function and that maximize
f(look ahead(u, u′)).

This greedy algorithm stops iterating when every couple neither directly
increases the score function nor has looked-ahead common edge features.

3 Description of ANT-GM

The greedy algorithm may be run several times, in order to compute different
matchings. We propose to combine such iterated greedy constructions with the
Ant Colony Optimization (ACO) meta-heuristic, in order to take benefit of the
previously computed matchings when building new ones.

The ACO meta-heuristic is a bio-inspired approach that has been used to
solve different hard combinatorial optimization problems [14, 12]. The main
idea is to model the problem to solve as the search for a minimum cost path

in a graph —called construction graph— and to use artificial ants to search for
good paths. The behavior of artificial ants is inspired from real ants: they lay
pheromone trails on graph components and they choose their path with respect
to probabilities that depend on pheromone trails that have been previously laid,
these pheromone trails progressively decrease by evaporation. Intuitively, this
indirect stigmergic communication means aims at giving information about the
quality of path components in order to attract ants, in the following iterations,
towards the corresponding areas of the search space.

The proposed ACO algorithm for computing graph similarity follows the clas-
sical ACO algorithmic scheme for static combinatorial optimization problems
[11]. At each cycle, each ant constructs a complete matching in a randomized
greedy way, and then pheromone trails are updated. The algorithm stops iter-
ating either when an ant has found an optimal matching, or when a maximum
number of cycles has been performed.

3.1 Construction graph

The construction graph is the graph on which artificial ants lay pheromone
trails. Vertices of this graph are solution components that are selected by ants
to generate solutions. In our graph matching application, ants build match-
ings by iteratively selecting couples of vertices to be matched. Hence, given two
attributed graphs G = (V, rV , rE) and G′ = (V ′, rV ′ , rE′), the construction
graph is the complete non-directed graph that associates a vertex to each couple
(u, u′) ∈ V × V ′.

3.2 Pheromone trails

Ants communicate by laying pheromone trails on edges of the construction
graph3. The amount of pheromone on an edge < (u, u′), (v, v′) > is noted
τ<(u,u′),(v,v′)> and represents the learnt desirability of matching together u with
u′ and v with v′. Hence, to reward a matching mi, ants lay pheromone trails
between every pair of matched vertices ((u, u′), (v, v′)) ∈ m2

i . Then, when con-
structing a new matching mk, vertices that are matched in mi will be more likely
to be matched in mk if mk already contains some matched vertices of mi. More
precisely, the more mk will contain matched vertices of mi, the more the other
matched vertices of mi will be attractive.

3.3 Construction of a matching by an ant

At each cycle, each ant constructs a matching, starting from the empty matching
m = ∅, by iteratively adding couples of vertices that are chosen within the set
cand = {(u, u′) ∈ V×V ′ − m}. As usually in ACO algorithm, the choice of the

3 We have defined another ACO algorithm where pheromone trails are laid on vertices
of the construction graph (instead of edges). However, experiments showed us that
this algorithm obtains much worse results than when pheromone is laid on edges.

next couple to be added to m is done with respect to a probability that depends
on pheromone and heuristic factors. More formally, given a matching m and a
set of candidates cand, the probability pm(u, u′) of selecting (u, u′) ∈ cand is:

[τm(u, u′)]α · [h1m(u, u′)]β1 · [h2m(u, u′)]β2∑
(v,v′)∈cand[τm(v, v′)]α · [h1m(v, v′)]β1 · [h2m(v, v′)]β2

(2)

where

– τm(u, u′) is the pheromone factor and is defined by the sum of all pheromone
trails laying between the candidate (u, u′) and every couple (v, v′) already
selected in m, i.e.,

τm(u, u′) =
∑

(v,v′)∈m

τ<(u,u′),(v,v′)>

When m = ∅, i.e., when choosing the first couple, τm(u, u′) = 1 so that the
probability only depends on heuristic factors).

– h1m(u, u′) is a first heuristic factor that aims at favoring couples that most
increase the score function, i.e.,

h1m(u, u′) = score(m ∪ {(u, u′)})− score(m)

– h2m(u, u′) is a second heuristic factor that aims at favoring couples that have
many looked-ahead features (as defined for the greedy algorithm described
in Section 2), i.e.,

h2m(u, u′) = f(look aheadm(u, u′))

– α, β1, and β2 are three parameters that determine the relative importance
of the three factors.

Ants stop adding new couples to the matching m when every couple neither
directly increases the score function nor has looked-ahead common edge features,
or when the score function has not been increased since the last three iterations.

3.4 Pheromone updating step

Once every ant has constructed a matching, pheromone trails are updated ac-
cording to the ACO meta-heuristic. First, evaporation is simulated by multiply-
ing every pheromone trail τ<(u,u′),(v,v′)> by (1 − ρ), where ρ is the pheromone
evaporation rate such that 0 ≤ ρ ≤ 1.

Then, the best ant of the cycle deposits pheromone. More precisely, let mk

be the best matching (with respect to the score function) built during the cycle
(if there are several best matchings, ties are randomly broken), and mbest be the
best matching built since the beginning of the run (including the current cycle).
The quantity of pheromone laid is inversely proportional to the gap of score
between mk and mbest, i.e. it is equal to 1/(1+ score(mbest)− score(mk)). This
quantity of pheromone is deposited on every edge ((u, u′), (v, v′)) connecting two
different couples (u, u′) and (v, v′) of mk.

 57

 58

 59

 60

 61

 62

 63

 64

 10 100 1000

S
co

re
 o

f t
he

 b
es

t m
at

ch
in

g
(a

ve
ra

ge
 o

n
20

 r
un

s)

Number of cycles (logscale)

alpha=0 rho=1.00
alpha=1 rho=0.01
alpha=1 rho=0.02
alpha=2 rho=0.01
alpha=2 rho=0.02

Fig. 1. Evolution of the score of the best found matching w.r.t. the number of cycles,
for different settings of α and ρ (with 10 ants, β1 = 8 and β2 = 3)

4 Experimental study of ANT-GM

4.1 Influence of pheromone on the solution quality

As usually in ACO algorithms, the behavior of ANT-GM depends on its pa-
rameters, and more particularly on α, the pheromone factor weight, and ρ, the
evaporation rate. Diversification can be emphasized both by decreasing α, so
that ants become less sensitive to pheromone trails, and ρ, so that pheromone
evaporates more slowly. When increasing the exploratory ability of ants in this
way, better solutions are found, but as a counterpart it takes more longer time.

This is illustrated in Figure 1 on the si2r001s80 UNINA instance [13]. On this
figure, one can remark that when α or ρ increase, ants converge quicker towards
a matching: convergence occurs around cycle 500 when α=1 and ρ=0.01, around
cycle 350 when α=1 and ρ=0.02, and around cycle 200 when α=2 and ρ=0.02.
As a counterpart, ants find better matchings, at the end of the solution process,
when α and ρ are set to lower values such as α=1 and ρ=0.01.

Note also that when α=0 and ρ=1, i.e., when pheromone is totaly ignored,
so that the solution process is a pure randomized greedy one, the constructed
matchings have a much lower score and hardly reach 60.5 at the end of the

solution process, instead of more than 62.5 when pheromone is used. This shows
that pheromone improves the solution quality.

4.2 Comparison of ANT-GM with Greedy and Reactive approaches

Considered algorithms. We compare our ACO algorithm (ANT-GM) with the
Greedy Search algorithm (GS) of [9] described in Section 2 and a Reactive Tabu
Search algorithm (RTS) described in [16].

RTS improves a matching built by the greedy search algorithm of [9] by per-
forming local search: the idea is to iteratively move from a matching to one of
its neighbours (obtained by either adding or removing one couple of vertices)
until the optimal solution is found or until a maximum number of moves have
been performed. At each step, the search moves towards the best neighbour of
the current matching (with respect to the same criteria than for the greedy algo-
rithm). To avoid being trapped in locally optimal matchings, a Tabu list is used
that memorizes the last moves in order to forbid backward moves. As proposed
in [3], the length of this Tabu list is dynamically adapted during the search,
depending on the need for diversification/intensification.

Experimental Setup. ANT-GM, GS, and RTS have been implemented in C++, and
run on a 1.8Ghz pentium M with 512Mo RAM.

For ANT-GM, we have set α to 1, ρ to 0.01, β1 to 8, β2 to 3, the maximum
number of cycles MaxCycle to 1000 and the number of ants nbAnts to 10,
so that each run builds 10, 000 matchings. Parameters of RTS have been set as
recommended in [16].

To compare algorithms independently from implementation issues, all runs
on a given instance are limited to a same number of moves, where a move is
defined by the addition or removal of one couple of vertices to a matching. This
limit on the number of moves depends on the considered instance. Indeed, one
run of ANT-GM builds 10, 000 matchings, but the size of these matchings, and
therefore the number of moves performed by ANT-GM, depends on the considered
instance. Hence, let x be the average size of the matchings built by ANT-GM for a
given instance, the number of moves performed by ANT-GM is x ∗ 10, 000 so that
the maximum number of moves for this instance is set to x ∗ 10, 000.

Each algorithm has been run 20 times on each instance of each benchmark.

Results on subgraph isomorphism problems. We first consider 11 benchmarks of
subgraph isomorphism problems, for non labeled graphs, issued from a UNINA
benchmark [13] and available at http://amalfi.dis.unina.it.graph. For each
of these 11 benchmarks, we have considered the 30 first instances.

Each instance is composed of two graphs G=(V,E) and G′=(V ′, E′) such
that |V | ≤ |V ′|, and the goal is to find an injective function φ : V → V ′ such
that (v1, v2)∈E ⇒ (φ(v1), φ(v2))∈E′.

To solve subgraph isomorphism problems with the generic similarity measure
of formula (1), we define function g as the cardinality function and function f
as a weighted sum where the weight of the features of G (resp. G′) is 1 (resp.

Benchmark ANT-GM GS RTS

Name (nb vertices) GSR ISR Mv T GSR ISR Mv T GSR ISR Mv T

si2r001s100 (20/100) 76.8 86.7 40492 33.2 33.3 33.3 89 0.2 67.5 100.0 9758 6.6

si2r001s80 (16/80) 93.3 100.0 42240 10.1 33.3 33.3 37 0.0 90.0 100.0 5585 2.4

si2r001s60 (12/60) 99.7 100.0 22164 2.8 46.7 46.7 15 0.0 99.2 100.0 1590 0.4

si4r001s80 (32/80) 81.3 90.0 110818 44.1 23.3 23.3 507 0.5 85.7 100.0 8292 7.5

si4r001s60 (24/60) 99.2 100.0 44539 9.0 40.0 40.0 39 0.1 93.2 100.0 5066 2.5

si4r001s40 (16/40) 100.0 100.0 8634 0.7 53.3 53.3 41 0.0 99.7 100.0 1759 0.4

si4r001s20 (8/20) 100.0 100.0 166 0.0 83.3 83.3 9 0.0 100.0 100.0 219 0.0

si4r005s40 (16/40) 89.7 96.7 34976 4.4 6.7 6.7 67 0.0 88.0 96.7 4647 1.0

si6r001s60 (36/60) 99.7 100.0 79738 21.0 63.3 63.3 110 0.1 94.5 100.0 6964 5.2

si6r001s40 (24/40) 100.0 100.0 16547 1.9 86.7 86.7 44 0.0 98.3 100.0 3101 1.0

si6r001s20 (12/20) 100.0 100.0 352 0.0 93.3 93.3 24 0.0 100.0 100.0 266 0.0

Average 94.5 97.6 36424 11.6 51.2 51.2 89 0.1 92.4 99.7 4295 2.45

Table 1. Results on 11 benchmark sets of subgraph isomorphism problems. For each
benchmark set, the table first reports its name and the number of vertices of the two
graphs to be matched. Then, for each algorithm, it reports the global success rate
(GSR), i.e., the percentage of successful runs over all runs for all instances of the
benchmark, the instance success rate (ISR), i.e., the percentage of instances that have
been solved at least once over the twenty runs, and the number of moves (Mv) and the
CPU time (T) spent to find the solution (average on successful runs only).

0). In this case, sim(G, G′)=1 if and only if there exists a mapping m such that
descr(G) ⊆ descr(G) um descr(G′) (as f(descr(G) ∪ descr(G′))= |descr(G)|)
and splits(m) = ∅, i.e., sim(G, G′) = 1 if and only if there exists a subgraph
isomorphism.G and G′.

Table 1 reports results obtained on these subgraph isomorphism problems.
These results first show that GS is much less successfull than both ANT-GM and
RTS, being able to solve nearly twice as less instances. Moreover, global and
instance success rates of GS are always equal and, when a solution is found, the
number of moves performed to find it is always very low. Indeed, the search
is not much diversified in GS: random choices are performed only to break ties
between candidates that have equally highest scores. As a consequence, GS always
computes very similar matchings and, given an instance, either it very quickly
finds a solution, or it never finds it.

When comparing ANT-GM with RTS, one can note that the global success rate
of ANT-GM is nearly always greater or equal to the one of RTS: 94.5% of the
20 ∗ 30 ∗ 11 runs of ANT-GM have succeeded instead of 92.4% for RTS. However,
the instance rate of ANT-GM is always smaller or equal to the instance success
rate of RTS: 97.6% of the 30 ∗ 11 considered instances have been solved at least
once over the 20 runs of ANT-GM instead of 99.7% for RTS. Actually, given an
instance, the result of an execution of ANT-GM is nearly always the same (i.e.,
either it nearly always fail or it nearly always succeed), whereas the result of an
execution of RTS is more variable and highly depends on the starting point of
the local search.

Problem ANT-GM RTS

name Sim Mv T Sim Mv T

hom-v20-e60 0.795 303167 30.9 0.798 17747 2.2

hom-v30-e90 0.863 512746 155.0 0.865 14187 4.4

hom-v40-e120 0.885 685155 477.9 0.895 24801 13.7

hom-v45-e135 0.895 717767 709.5 0.904 60085 40.5

hom-v50-e150 0.804 847699 1075.6 0.913 53922 47.9

Average 0.848 613307 489.8 0.875 34149 21.7
Table 2. Results on 5 multivalent matching problems. For each problem and for each
algorithm, the table displays the average similarity (Sim), the average number of moves
(Mv) and the average CPU time in seconds (T) needed to find the best solution.

Table 1 also shows that ANT-GM performs 8.5 times as more moves as RTS to
find a solution. However, as one move of ANT-GM is performed twice as fast, RTS
is 4.7 times as fast as ANT-GM.

Experimental comparison on multivalent matching problems. We have also com-
pared ANT-GM and RTS on 5 multivalent graph matching problems that have been
randomly generated. Each problem named hom-vN-eM is composed of a cou-
ple of non labeled graphs such that the first graph has N vertices and M edges
(randomly generated) and the second graph is obtained by randomly removing 6
vertices and their incident egdes of the first graph, and then randomly splitting
5 vertices and their incident edges.

Table 2 shows the results obtained by ANT-GM and RTS on these multivalent
matching problems. On this table, one can note that similarities computed by
ANT-GM are slightly worse than those computed by RTS. Moreover, when graph
sizes increase, this difference in quality becomes more important. Also, ANT-GM
needs more moves to converge towards its best solution, and therefore it is more
time consuming.

5 Conclusion

We have introduced in this paper ANT-GM, a new ACO algorithm for solv-
ing multivalent graph matching problems. First experiments on benchmarks of
subgraph isomorphism problems showed us that ANT-GM is able to solve to
optimality a wide majority of these problems. A key point of the multivalent
graph matching problem is that each vertex may be mapped to a set of vertices,
so that it can be used to evaluate the similarity of two graphs, and not only their
equivalence, inclusion or intersection. As there does not yet exist benchmarks
dedicated to this problem, we have generated random instances. Experiments
showed us that, on these problems, ANT-GM is outperformed by a Reactive Tabu
Search approach.

Further work will mainly concern the integration within ANT-GM of some
local search technics such as the one used by RTS. Indeed, experiments showed

us that results obtained by ANT-GM and RTS are rather complementary, each al-
gorithm being able to solve instances that the other one cannot solve. Actually,
the best performing ACO algorithms for many combinatorial problems are hy-
brid algorithms that combine probabilistic solution construction by a colony of
ants with local search [12, 15].

References

1. A. Aamodt and E. Plaza. Case-Based Reasoning: Foundational Issues, Method-
ological Variations, and System Approaches. AI Communications, IOS Press, Am-
sterdam (NL), 7(1):39-59, 1994.

2. R. Ambauen, S. Fischer, and H. Bunke. Graph Edit Distance with Node Splitting
and Merging, and Its Application to Diatom Identification. IAPR-TC15 Wksp on
Graph-based Representation in Pattern Recognition, LNCS, Springer Verlag, 95-
106, 2003.

3. R. Battiti and M. Protasi. Reactive Local Search for the Maximum Clique Problem.
Algorithmica, Springer-Verlag, (29), 610-637, 2001.

4. M. Boeres, C. Ribeiro, and I. Bloch. A Randomized Heuristic for Scene Recognition
by Graph Matching. WEA 2004, 100-113, 2004.

5. H. Bunke. Error-tolerant Graph Matching: A Formal Framework and Algorithms.
Lecture Notes in Computer Science. Springer, Berlin, 1998.

6. H. Bunke and B.T. Messmer. Recent advances in graph matching. International
Journal of Pattern Recognition and Artificial Intelligence, (11):169-203, 1997.

7. H. Bunke and K. Shearer. A graph distance metric based on maximal common
subgraph. Pattern recognition letters, (19):255-259, 1998.

8. H. Bunke and X. Jiang. Graph matching and similarity. Volume Teodorescu, H-N,
Mlynek, D. Kandel, A. Zimmermann, H-J. (ds.): Intelligent Systems and Interfaces,
chapter 1, 2000.

9. P. Champin and C. Solnon. Measuring the similarity of labeled graphs. 5th Interna-
tional Conference on Case-Based Reasoning (ICCBR). Lecture Notes in Computer
Science - Springer Verlag, 2003.

10. D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph matching
in pattern recognition. International Journal of Pattern Recognition and Artificial
Intelligence, 18(3):265-298, 2004.

11. M. Dorigo and G. Di Caro. The Ant Colony Optimization Meta-heuristic. In D.
Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization. McGraw
Hill, London, UK, pages 11-32, 1999.

12. M. Dorigo and L. Gambardella. Ant Colony System: A cooperative learning ap-
proach to traveling salesman problem. IEEE transactions on evolutionary compu-
tation, 1(1):53-66, 1997.

13. P. Foggia, C. Sansone, and M. Vento. A database of graphs for isomorphism and
sub-graph isomorphism benchmarking. In 3rd IAPR-TC15 Workshop on Graph-
based Representations in Pattern recognition, pages 176-187, 2001.

14. V. Maniezzo and A.Colorni. The Ant System Applied to the Quadratic Assigne-
ment Problem. IEEE Transactions on Data and Knowledge Engineering, 11(5):769-
778, 1999.

15. T. Stützle and H.H. Hoos. MAX −MIN Ant System. Journal of Future Gener-
ation Computer Systems, 16:889-914,2000.

16. S. Sorlin and C. Solnon. Reactive Tabu Search for Measuring Graph Similarity.
to appear in 5th IAPR Workshop on Graph-based Representations in Pattern
Recognition (GbR 2005), LNCS, Springer Verlag, 2005.

