
About softness for inductive querying on sequence
databases

Ieva Mitasiunaite
INSA Lyon

LIRIS CNRS UMR 5205
69621 Villeurbanne cedex, France

Ieva.Mitasiunaite@insa-lyon.fr

Jean-François Boulicaut
INSA Lyon

LIRIS CNRS UMR 5205
69621 Villeurbanne cedex, France

Jean-Francois.Boulicaut@insa-lyon.fr

Abstract— In many application domains (e.g., WWW usage
mining, telecommunication data analysis, molecular biology),
large sequence databases are available and yet under-exploited.
The inductive database framework assumes that both such
databases and the various patterns holding within them might
be queryable. In this setting, queries which return patterns are
called inductive queries and solving them is one of the main
topics in database mining research. Indeed, constraint-based
mining techniques on sequence databases have been studied
extensively the last few years and efficient algorithms enable
to compute complete collections of patterns (e.g., sequences)
which satisfy conjunctions of monotonic and/or anti-monotonic
constraints in potentially large sequence databases (e.g., minimal
and maximal frequency constraints). Studying new applications
of these techniques, we consider that fault-tolerance and softness
are extremely important issues for tackling real-life data analysis.
In this paper, we address some of the open problems when
computing soft occurrences of patterns within database sequences
instead of the classical exact matching ones. Such an extension
is not trivial since it prevents the clever use of monotonicity
for pruning the search space. We describe our proposal and we
provide an experimental validation on real-life clickstream data
which confirms the added value of this approach.

I. I NTRODUCTION

Collecting huge volumes of sequential data (i.e., the data
is a collection of sequences or strings in a given alphabet)
has become far easier in many application domains (e.g., E-
commerce, networking, life sciences). Our ability to discover
actionable patterns from such datasets remains however lim-
ited.

This paper focuses on substring mining, i.e., the searched
patterns are strings as well. Knowledge discovery processes
based on substrings in string databases have been studied ex-
tensively. We study a database perspective on such processes,
the so-called inductive database approach [1], [2], [3], [4].
The idea is that many steps in complex knowledge discovery
processes might be considered as queries which returns se-
lected data instances and/or patterns holding in the data. De-
signing query languages which would support such a querying
activity remains a long-term goal, and only preliminary results
have been obtained for some quite specific scenarios (e.g.,
rather simple processes based on association rule mining [5]).

We focus on the so-called inductive queries, i.e., queries
which declaratively express the constraints that have to be
satisfied by the substring solution patterns. Typical challenges
are (a) to identify useful primitive constraints to specify the

a priori interestingness of the substring patterns in the data,
and (b) to be able to design efficient and (when possible)
complete solvers for computing every pattern which satisfies a
combination of primitive constraints. In other terms, the core
technology for developing inductive querying is related to the
quite active research area of constraint-based data mining.

The state-of-the-art is that efficient algorithms are available
for solving specific conjunctions of primitive constraints. For
instance, many solvers have been designed for frequent sub-
string or sequential patterns possibly combined with some
more or less restricted types of syntactic constraints (e.g.,
[6], [7], [8], [9], [10], [11]). A promising approach has
been developed by De Raedt and colleagues which con-
sider arbitrary Boolean combination of primitive constraints
which are either monotonic or anti-monotonic [12], [13],
[14]. Indeed, a key issue for designing efficient solvers is
to consider constraint properties (like anti-monotonicity and
its dual monotonicity property) and exploit them for clever
search space pruning. Many useful primitive constraints are
monotonic (e.g., maximal frequency in a data set, enforcing a
given sub-string occurrence) or anti-monotonic (e.g., minimal
frequency, avoiding a given sub-string occurrence).

Some useful constraints are however neither anti-monotonic
nor monotonic. It is the case of regular expression constraints
for which efficient ad-hoc optimization strategies have been
developed [15], [16], [17]. It can be also useful to look for
patterns which are similar to a reference pattern. For instance,
it is interesting to look for sequences of actions on a WWW
site which are frequent for a given group of users, infrequent
for another group and which are similar enough to an expected
pattern specified by the WWW site designer. Such a primitive
similarity constraint generally lacks from any monotonicity
property. In [18], we have considered a possible decomposition
of such a constraint into a conjunction of an anti-monotonic
one and a monotonic one. It has been implemented on top
of FAVST [14] and it enables to combine such a similarity
constraint with other user-defined constraints.

This paper follows this direction of research and it considers
the intrinsic limitations of these previous approaches which
are all based on exact matching of candidate patterns with
data instances. We are indeed interested in sequence database
analysis for various application domains (e.g., biological data
analysis, WWW usage mining, seismic data analysis). Even

jfboulicaut
Zone de texte
Proceedings 7th Int. Baltic Conf. on Databases and Information Systems DB&IS 2006,Vilnius, Lithuania, July 3-6, 2006. pp. 77-82. IEEE.

though our raw data is fundamentally sequential (spatially or
temporally ordered), the sequences to be mined are generally
preprocessed: the data can be fundamentally noisy due to
technological issues w.r.t. measurement, alphabet design can
be somehow exploratory, but also the phenomena we would
like to observe can be fundamentally fuzzy and such that soft
computing approaches are needed.

Let us assume the realistic context, e.g., in molecular
biology, where we consider that patterns play a major role
in the studied mechanisms (e.g., gene regulation) while it is
well-known that evolution has lead to many variants of the
“originally” useful patterns. As a result, when looking at the
major scientific question of transcription factor binding site
in DNA sequences, molecular biologists consider consensus
regular expressions instead of exact matching information over
the gene promoter sequences.

In some cases, the alphabet is specified a priori (e.g.,
{a,c,t,g} for gene promoter sequences). In many cases, the
alphabet has to be designed and/or computed. For instance,
in a WWW usage mining context, assume that the raw data
concern facts about “Users who performedOperations
from Machines ”. Depending of the analysis task, many
event types and thus alphabets might be considered (e.g., an
operation is performed from a machine, a user has performed
something, a user has performed something from a machine)
and a meaningful browsing sequence will often be again some
kind of consensus between different occurrences of similar
browsing sequences. Finally, many data are available as nu-
merical time series that can be analyzed by means of substring
pattern algorithms provided that the data is discretized and thus
encoded as a sequence of events in a “computed” alphabet.
These methods are not always robust enough and again, soft
occurrences of patterns might appear much more meaningful.

In this paper, we address some of the open problems
when computing soft occurrences of patterns within database
sequences. Our choice is to study first the impact of soft
frequency constraints. Such an extension is not trivial since it
prevents the clever use of monotonicity for pruning the search
space. In Section 2, we provide the needed definitions and the
problem setting. Section 3 introduces our definition of soft
occurrences while Section 4 is dedicated to soft frequency
constraints. In Section 5, we provide an experimental valida-
tion on real-life clickstream data which confirms the added
value of our approach which has been implemented on top of
the FAVST algorithm. Finally, Section 5 is a short conclusion.

II. PROBLEM SETTING

Definition 1 (Basic notions on strings):Let Σ be a finite
alphabet, a stringσ over Σ is a finite sequence of symbols
from Σ, andΣ∗ denotes the set of all strings overΣ. Σ∗ is
our language of patternsL and we consider that the mined
data set denotedr is a multi-set1 of strings built onΣ. |σ|
denotes the length of a stringσ andε denotes the empty string.
We noteσi the ith symbol of a stringσ, 1 ≤ i ≤ |σ|, so

1Data may contain multiple occurrences of the same sequence.

that σ = σ1σ2 . . . σ|σ|. A sub-stringσ′ of σ is a sequence
of contiguous symbols inσ, and we noteσ′ v σ. σ is thus a
super-string ofσ′, and we noteσ w σ′. We assume that, given
a patternφ ∈ L, the supporting set of strings inr is denoted
by ext(φ, r) = {σ ∈ r | φ v σ}.

Example 1:Let Σ = {a, b, c, d}. abbc, abdbc, ε are exam-
ples of strings overΣ. Examples of sub-strings forabdbc are
a anddbc. aabdbcd is an example of a super-string ofabdbc.
If r is {abccb, adccba, ccabd}, ext(ccb, r) = {abccb, adccba}.

Definition 2 (Inductive queries):A constraint is a predicate
that defines a property of a pattern and evaluates either totrue
or false. An inductive query onL and r with parametersp
is fully specified by a constraintQ and its evaluation needs
the computation of{φ ∈ L | Q(φ, r, p) is true} [19]. In the
general case,Q is a Boolean combination of the so-called
primitive constraints.

Definition 3 (Generalisation/specialisation):A patternφ is
more general than a patternψ (denoted φ º ψ) iff
∀r ext(φ, r) ⊇ ext(ψ, r). We also say thatψ is more
specific thanφ (denotedψ ¹ φ). Two primitive constraints
can be defined:MoreGeneral(φ, ψ) is true iff φ º ψ and
MoreSpecific(φ, ψ) is true iff φ ¹ ψ.

For strings, constraintSubString(φ, ψ) ≡ φ v ψ
(resp., SuperString(φ, ψ) ≡ φ w ψ) are instances of
MoreGeneral(φ, ψ) (resp.,MoreSpecific(φ, ψ)). In other
terms,∀φ, ψ ∈ L, φ º ψ iff φ v ψ.

Definition 4 (Examples of constraints):Given a threshold
value v, typical syntactic constraints areMinLen(φ, v) ≡
|φ| ≥ v andMaxLen(φ, v) ≡ |φ| ≤ v. Assume thatFr(φ, r)
denotes the number of strings inr that are super-strings ofφ,
i.e., |ext(φ, r)|. Given a threshold valuef , MinFr(φ, r, f) ≡
Fr(φ, r) ≥ f (resp. MaxFr(φ, r, f) ≡ Fr(φ, r) ≤ f)
denotes a minimal (resp. maximal) frequency constraint inr.

Example 2:Assume r = {abd, abc, dc, c, dc}, we have
Fr(abd, r) = 1, Fr(dc, r) = 2, Fr(ad, r) = 0,
and Fr(ε, r) = 5. MinFr(dc, r, 2), MaxFr(abd, r, 2),
MoreGeneral(c, dc), andMinLen(abd, 3) are examples of
satisfied constraints.Q ≡ MinFr(φ, r, 2)∧MaxFr(φ, r, 4)∧
MinLen(φ, 2) is an example of an inductive query whose
solution set is{ab, dc}.

The concept of anti-monotonicity and its dual notion of
monotonicity is central to our work. When an anti-monotonic
constraint like the minimal frequency is violated by a candi-
date, no more specific string (i.e., super-string) can satisfy it
and it gives rise to pruning in the search space. This has been
the key property for the many efficient algorithms which mine
frequent strings. Negations of anti-monotonic constraints are
called monotonic, e.g., the maximal frequency, and can lead
to dual pruning strategies. This has been studied in detail in
many papers, e.g., [19], [12].

Definition 5 ((Anti-)monotonicity):Let r be a data set,L be
the pattern language andp be parameters. A constraintQ is
anti-monotonic iff∀r and ∀φ, ψ ∈ L, φ º ψ ⇒ Q(ψ, r, p) →
Q(φ, r, p). Dually, a constraintQ′ is monotonic iffφ ¹ ψ ⇒
Q′(ψ, r, p) → Q′(φ, r, p).

Notice that conjunctions and disjunctions of anti-monotonic

(resp. monotonic) constraints are anti-monotonic (resp.
monotonic).

Example 3:SuperString, MinLen, andMaxFr are mo-
notonic constraints.SubString, MaxLen, and MinFr are
anti-monotonic ones.

The evaluation of some constraints on a patternφ does not
require to scanr (e.g., SuperString, MaxLen), while to
evaluate some others, one needs to find the occurrences ofφ
in r. For instance, we have definedMinFr(φ, r, f) based on a
number of strings whereφ occurs exactly (i.e., the cardinality
of {σ ∈ r such thatσ w φ}). However, in many application
domains, measures based on such exact occurrences may be
misleading. We consider it is important to study a frequency
constraint based on soft-occurrences. The idea is that a string
σ ∈ r supportsφ if σ contains a sub-stringσ′ similar enough
to φ. σ′ is then called a soft-occurrence ofφ.

Extensive studies of (anti)-monotonicity properties have
given rise to efficient search space pruning strategies. It is far
more complex and sometime impossible to consider generic
algorithms2 for constraints that do not have the monotonicity
properties. An “enumerate and test” strategy is never possible
in real-life problems (large alphabets and/or large input se-
quences and/or huge number of input sequences). A solution
might be to heuristically compute part of the solution. We
are however convinced that completeness has an invaluable
added value, and we prefer to study smart relaxation or
decomposition strategies to solve our inductive queries on
strings.

Therefore, our objective is to tackle a minimum soft-
frequency constraint. It means that we have to consider sim-
ilarity constraints via the soft-occurrence concept. In most
application domains, a relevant similarity constraint is fun-
damentally neither monotonic nor anti-monotonic [18]. A
minimum soft-frequency constraint itself is neither guaranteed
to preserve the anti-monotonicity ofMinFr(φ, r, f). We how-
ever seek for (anti)-monotonic properties of these constraints
since they enable to exploit efficient generic strategies for
solving combinations of (anti)-monotonic constraints [12],
[13] and its optimization for string mining called FAVST [14].
The added value of building up our proposal on top of the
FAVST framework is that it enables an efficient evaluation
for not only soft-frequency constraints but also for arbitrary
conjunctions of these constraints with other (anti)-monotonic
constraints.

III. D EFINING SOFT-OCCURRENCES

The soft frequency of a patternψ is derived from the
number of its soft occurrencesφ, i.e., patternsφ such that
sim(φ, ψ) wheresim returns true when the two patterns are
similar. It enables to use the similarity approach from [18],
slightly modifying the monotonic sub-constraint such that its
parameters become less connected to|ψ|.

Definition 6 (Longest Common Subsequence):Let x be a
pattern fromL. A subsequence ofx is any stringw that can

2Algorithms not dedicated to a specific combination of primitive constraints

be obtained fromx by deleting zero or more (not necessarily
consecutive) symbols. More formally,w is a subsequence ofx
if there exists integersi1 < i2 < . . . < in s.t.w1 = xi1 , w2 =
xi2 , . . . , wn = xin . w is a Longest Common Subsequence
(LCS) of x andφ if it is a subsequence ofx, a subsequence
of φ, and its length is maximal.

Notice that|w| = lcs(φ, x) and, in general,w is not unique.
Definition 7 (Insertions, Deletions):Let x be the reference

pattern,φ be a candidate pattern fromL. Let fix any LCS of
φ and x, and denote the symbols ofφ (resp.x) that do not
belong to a LCS as deletions (resp. insertion). The number of
deletions (resp. insertions) isDels(φ, x) = |φ| − lcs(φ, x)
(resp. Ins(φ, x) = |x| − lcs(φ, x)). Notice that x can be
produced fromφ by deleting fromφ the deletions and inserting
into φ the insertions.

Lemma 1:Assumex, φ ∈ L, φ′ v φ, w one LCS ofφ and
x, andw′ one LCS ofφ′ andx. We have|w| = lcs(φ, x) ≥
lcs(φ′, x) = |w′|.

The formal proofs of this lemma and the other propositions
or properties are available and can be asked to the authors.

Definition 8 (Max Insertions constraint):Let x be the ref-
erence pattern,φ be a candidate pattern fromL, and ins a
threshold value. The Maximum Insertions constraint is defined
asMaxIns(φ, x, ins) ≡ Ins(φ, x) ≤ ins.

Proposition 1: MaxIns(φ, x, ins) is monotonic.
Example 4:Assumex = cbcddda. Patternsφ1 = dbddda

and φ2 = bcddada satisfy MaxIns(φ, x, 2): Ins(φ1, x) =
|x| − |bddda| = 2 and Ins(φ2, x) = |x| − |bcddda| = 1.
Patternφ3 = accadcdccccdddd also satisfies it:Ins(φ3, x) =
|x| − |ccddd| = 2.

ConstraintMaxIns(φ, x, ins) enables to specify a degree
of similarity (i.e., a maximum number of non matching sym-
bols on reference), and thus to capture patterns which are sim-
ilar to the reference one. Note however thatMinLCS(φ, x, l)
does not restrict the dissimilarity of a candidate. Thus, we
need for a second constraint that would bound the number of
”errors“ within a candidate.

Definition 9 (Max Deletions constraint):Let x be the ref-
erence pattern,φ be a candidate pattern fromL, anddels a
threshold value. The Maximum Deletions constraint is defined
asMaxDels(φ, x, dels) ≡ Dels(φ, x) ≤ dels.

Proposition 2: MaxDels(φ, x, d) is anti-monotonic.
Definition 10 (A Similarity constraint):Given a reference

patternx and thresholdsins anddels, our similarity constraint
for a patternφ w.r.t. x is defined asCsim(φ, x, ins, dels) ≡
MaxIns(φ, x, ins) ∧MaxDels(φ, x, dels).

Example 5:Continuing Example 4, patternsφ1 and φ2

satisfy Csim(φ, x, 2, 1). Pattern φ4 = dbdddca satisfies
Csim(φ, x, 2, 2) since lcs(φ4, x) = |x| − |bddda| = 2.
Pattern φ3 does not satisfy neitherCsim(φ, x, 2, 1) nor
Csim(φ, x, 2, 2).

Remark 1:Note that |x| − ins ≤ |φ| ≤ |φ| + dels is an
essential condition forCsim(φ, x, ins, dels) to be satisfied.

Definition 11 (Soft-occurrence):If a string σ ∈ r contains
φ such thatCsim(φ, ψ, ins, dels) is satisfied, we say thatφ is
a soft-occurrence ofψ denoted assOcc(ψ, ins, dels).

IV. D EFINITION OF SOFT-FREQUENCY

Definition 12 (Soft-frequency):If sOcc(φ, ins, dels)1,
sOcc(φ, ins, dels)2, . . ., sOcc(φ, ins, dels)n are the
soft-occurrences forφ in r, the soft-frequency of φ
SoftFr(φ, r, ins, dels) is |ext(sOcc(φ, ins, dels)1, r)∪ . . .∪
ext(sOcc(φ, ins, dels)n), r)|.

Definition 13 (Minimum Soft-Frequency):Given a user-
defined thresholdf , the Minimum Soft-Frequency con-
straint is defined asMinSoftFr(φ, r, f, ins, dels) ≡
SoftFr(φ, r, ins, dels) ≥ f .

Example 6:Continuing from Example 2.
SoftFr(abd, r, 1, 1) = 2 and {bd, abc, abd, ab} are the
soft-occurrences ofabd on r. SoftFr(dc, r, 1, 1) = 5
and {c, dc, d, bc, bd} are the soft-occurrences ofdc on
r. MinSoftFr(dc, r, 4, 1, 1) is an example of satisfied
constraint.

Proposition 3: Constraint MinSoftFr(φ, r, ins, dels) is
anti-monotonic whendels ≥ ins.

Remark 2:The relation sim(φ, x) induced by
Csim(φ, x, ins, dels) is symmetric (i.e., if sim(φ, x)
thensim(x, φ)) ⇐⇒ ins = dels.

Remark 3: In most of the application domains,
it makes sense to use a similarity relation which
is symmetric. With symmetric Csim(φ, x, ins, dels),
MinSoftFr(φ, r, f, ins, dels) has the desired anti-
monotonicity property.

V. EXPERIMENTS

This section concerns our empirical evaluation of the
MinSoftFr(φ, r, ins, dels) constraint solving.

To the best of our knowledge, FAVST algorithm [14]
is among the best algorithms for mining strings that sat-
isfy conjunctions of anti-monotonic and monotonic con-
straints. It uses a Version Space Tree (VST) [12] de-
signed to index a version space of strings. The FAVST
framework enables to push constraintsCsim(φ, x, ins, dels),
MinSoftFr(φ, r, ins, dels) (when dels ≥ ins), and their
arbitrary conjunctions with other anti-(monotonic) constraints
deeply into the extraction phase.

We have implemented FAVST in C and we decided to
process KDD Cup 2000 real-world clickstream datasets [20]
on a Intel(R) Pentium(R) M 1.69GHz processor (1GB main
memory).

We have extracted attributes ”Session ID“, ”Request Se-
quence“, ”Request Template“ and we produced time ordered
sequences of templates requested for each session. We had
234, 954 sessions and137 different request templates. As a
result, the used sequence database was containing234, 954
strings over an alphabet of137 symbols. The shortest input
string had a length of1 while the largest one had a length of
5, 487.

A. MinSoftFr(φ, r, ins, dels) and Csim(φ, x, ins, dels)

Solving MinSoftFr(φ, r, ins, dels) for φ means to solve
Csim(ψ, φ, ins, dels) to find all patternsψ that are soft-
occurrences ofφ for parametersins anddels.

We considered two strategies to pushCsim(ψ, φ, ins, dels).
The first one denoted ”ExploitDelsAndIns“ explores the

search space by exploiting bothMaxDels(ψ, φ, dels) and
MaxIns(ψ, φ, ins).

The second one, denoted ”ExploitIns” explores the search
space by exploitingMaxLen(ψ, |ψ| + dels) (see Remark
1) andMaxIns(ψ, φ, ins). It exploits MaxDels(ψ, φ, dels)
only to ensure thatCsim(ψ, φ, ins, dels) is satisfied.

The idea underlying such strategies is to get a trade-of
between the size of pruned search space and the cost of
constraint evaluation which gives rise to such a pruning.

Whendels < ins, MinSoftFr(ψ, r, ins, dels) can not be
exploited efficiently, i.e., it has to be evaluated for everyψ
on r. Obviously, extraction becomes intractable. A solution
might be firstly prune the search space by pushing other (anti)-
monotonic constraints (e.g.,MinLen, MaxLen, MinFr,
MaxFr) and then post-processMinSoftFr(ψ, r, ins, dels)
on such a restrictedψ space.

B. StudyingCsim(φ, x, ins, dels) pruning

Our definition of Csim(φ, x, ins, dels) has given rise to
(anti)-monotonic constituents which can be used for effi-
cient pruning. In case we would like to evaluate a simi-
larity constraint which no monotonicity properties, it would
lead to a constraint checking for every candidate pattern
φ. Nevertheless, many known similarity measures on strings
(e.g., [21], [22] or edit distances [23]) enable to infer the
minimal and maximal length of the patternsφ which might
be similar toψ. It means that we can exploitMinLen(φ, v)
andMaxLen(φ, v) to prune the search space for a number of
similarity constraints.

To empirically evaluate the impact ofCsim(φ, ψ, ins, dels)
evaluation when checkingMinSoftFr(ψ, r, f, ins, dels)
and thus looking forsOcc(ψ, ins, dels), we have com-
puted SoftFr(ψ, r, 1, 1) for all ψ satisfying IQ ≡
MinFr(ψ, 0.01%)∧MinLen(ψ, 4)∧MaxLen(ψ, 32). Three
strategies have been used: ”ExploitDelsAndIns“, ”Ex-
ploitIns“, and pushing onlyMinLen(φ, |ψ| − ins) and
MaxLen(φ, |φ|+ dels) (see Remark 1), denoted ”DoNotEx-
ploit“. There are6, 945 patterns satisfyingIQ, 5, 013 of them
are of length≤ 6. The graph given in Fig. 1 plots a mean
value of number of tests ofCsim(φ, ψ, 1, 1) for each length
of ψ.

First, let us observe that ”ExploitIns“ always performs
better than ”DoNotExploit“. For4 ≤ |ψ| ≤ 7, ”ExploitIns“
over-performs ”DoNotExploit“ by approximately1000 (i.e.,
”DoNotExploit“ evaluated the similarity constraint for ap-
proximately 1000 more candidates than ”ExploitIns“), for
8 ≤ |ψ| ≤ 11 by approximately100, from ψ ≥ 20
they start to converge. ”ExploitDelsAndIns“ over-performs
”DoNotExploit“ approximately4 times for 4 ≤ |ψ| ≤ 6.
The behaviors coincides at|ψ| = 7, |ψ| = 8, and thereinafter
”ExploitDelsAndIns“ performs poorer than both ”ExploitIns“
and ”DoNotExploit“. This suggests to use an adaptive strategy
that would dynamically enforce either ”ExploitDelsAndIns“ or
”ExploitIns“.

Fig. 1. Strategies to computeCsim(φ, ψ, ins, dels)

C. Comparative study of frequency, soft-frequency, and de-
grees of softness

We have performed experiments to assess the soft-
frequency w.r.t. frequency, and the impact of differ-
ent combinations of parametersins and dels on re-
sulting “softness”. We have computedSoftFr(ψ, 1, 1),
SoftFr(ψ, 1, 2), and SoftFr(ψ, 2, 1) for all ψ satisfying
IQ ≡ MinFr(ψ, 0.01%)∧MinLen(ψ, 7)∧MaxLen(ψ, 7).
We got796 solution patterns. Table I provides some statistical
summary.

Let us notice that, in most cases, the frequency of a pattern is
quite small w.r.t. its soft-frequency. Also,SoftFr(1, 1) tends
to be smaller thanSoftFr(1, 2) and SoftFr(2, 1). Finally,
SoftFr(1, 2) tends to be smaller thanSoftFr(2, 1).

D. Studying pruning thanks to minimal (soft-)frequency

We performed experiments to compare the selectivity
of MinSoftFr(φ, r, f, ins, dels) and MinFr(φ, r, f) con-
straints. For this purpose, we have computed solutions to
IQ1 ≡ MinFr(φ, r, f) ∧ MinLen(φ, 5) ∧ MaxLen(φ, 8),
IQ2 ≡ MinSoftFr(φ, r, f, 1, 1) ∧ MinLen(φ, 5) ∧
MaxLen(φ, 8), and IQ3 ≡ MinSoftFr(φ, r, f, 1, 2) ∧
MinLen(φ, 5)∧MaxLen(φ, 8). The size of the correspond-
ing solutions is plotted against differentf thresholds on the
graph given in Fig. 2.

MinFr(φ, r, f) with even very small frequency thresh-
olds drastically prunes, while the same frequency val-
ues for MinSoftFr(φ, r, f, ins, dels) are not selective
at all. These extractions emphasize the added value
for MinSoftFr(φ, r, f, ins, dels): one might assume that
at least 1% of the sessions share something, and
MinSoftFr(φ, r, 1%, ins, dels) enables to extract these
common regularities whileMinFr(φ, r, 1%) leads to an
empty collection.

Fig. 3 plots the run time to solveIQ1 and IQ2 with
different f values. A rather poor time efficiency to process
MinSoftFr(φ, r, f, ins, dels) is not surprising. First, we
do not use the well-knownMinFr(φ, r, f) efficient prun-
ing, and we evaluateMinSoftFr(φ, r, 1%, ins, dels) for

Fig. 2. MinFr(φ, r, f) andMinSoftFr(φ, r, sf, ins, dels) pruning

Fig. 3. Run timeMinFr(φ, r, f) andMinSoftFr(φ, r, sf, 1, 1)

all candidates occurring at least once in the data. Then,
MinSoftFr(φ, r, f, ins, dels) is far less selective than
MinFr(φ, r, f). Finally, its evaluation is expensive. When
ins = dels, one can exploit the symmetric property of
the underlying similarity relation. An adaptive computation
strategy, dynamic choice betweenExploitInsAndDels and
ExploitIns (see Section V-B), can be considered.

It is clear that further experiments are needed for a deeper
empirical evaluation of the minimum soft-frequency con-
straint. Basic ideas for optimization (e.g., adaptive strategies)
have been however identified.

VI. CONCLUSION

The promising vision of the inductive database framework
is that expert data owners might be able to query both the data
and the patterns holding in the data. In this paper, we have
considered the so-called inductive querying problem on string
databases, i.e., the evaluation of constraints which specify
declaratively the desired properties for string patterns. Solving
by means of generic algorithms, arbitrary combinations of
useful primitive constraints is challenging. In this paper, we
have started to revisit constraint-based mining of substring
patterns by introducing soft-frequency constraints. It might be

TABLE I

FREQUENCY AND SOFT-FREQUENCY

Fr Fr×100%
SoftFr(1,1)

Fr×100%
SoftFr(1,2)

Fr×100%
SoftFr(2,1)

SoftFr(1,1)
SoftFr(1,2)

SoftFr(1,1)
SoftFr(2,1)

Min val 23 1.53 1.14 0.54 0.45 0.06
Max val 843 100 100 97.6 1 0.99
Mean val 57.89 14.61 12.37 6.9 0.76 0.37
Stand Dev 70.63 21.26 20.6 14.72 0.09 0.18

quite useful when dealing with intrinsically noisy data sets. We
formalized an approach to soft-frequency constraint checking
which can take the most from efficient strategies for solving
conjunctions of monotonic and anti-monotonicity constraints.
As a result, the analysts can combine our soft-frequency
constraints with other many other user-defined constraints
of interest. Preliminary applications of these ideas on gene
promoter sequence database analysis are ongoing.

ACKNOWLEDGMENT

We wish to thank Blue Martini Software for contributing
the KDD Cup 2000 data. This research is partly funded by
ACI CNRS MD 46 Bingo and by EU contract IST-FET IQ
FP6-516169 (FET arm of the IST programme).

REFERENCES

[1] T. Imielinski and H. Mannila, “A database perspective on knowledge
discovery,” CACM, vol. 39(11), pp. 58-64, 1996.

[2] L. De Raedt, “A perspective on inductive databases,”SIGKDD
Explorations, vol. 4(2), pp. 69-77, 2003.

[3] J-F. Boulicaut, “Inductive databases and multiple uses of frequent
itemsets: the cInQ approach,” InDatabase Technologies for Data Mining
- Discovering Knowledge with Inductive Queries, Springer-Verlag LNCS
2682, 2004, pp. 1-23.

[4] J-F. Boulicaut, L. De Raedt, and H. Mannila (Editors),Constraint-based
mining and inductive databases, Springer-Verlag LNAI 3848, 2006, 405
pages.

[5] M. Botta, J-F. Boulicaut, C. Masson, and R. Meo, “Query languages
supporting descriptive rule mining: a comparative study,” InDatabase
Technologies for Data Mining - Discovering Knowledge with Inductive
Queries, Springer-Verlag LNCS 2682, 2004, pp. 27-56.

[6] R. Srikant and R. Agrawal, “Mining sequential patterns: Generalizations
and performance improvements,” InProceedings EDBT, 1996, Springer-
Verlag, pp. 3-17.

[7] F. Masseglia, F. Cathala, and P. Poncelet, “The PSP approach for mining
sequential patterns,” InProceedings PKDD, 1998, Springer-Verlag, pp.
176-184.

[8] M.J. Zaki, “Spade: An efficient algorithm for mining frequent se-
quences,”Machine Learning, vol. 42(1-2), pp. 31-60, 2001.

[9] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M-C. Hsu,
“Freespan: frequent pattern-projected sequential pattern mining,” In
Proceedings ACM SIGKDD, 2000, pp. 355-359.

[10] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and
M-C. Hsu, “Prefixspan: Mining sequential patterns by prefix-projected
growth,” In Proceedings IEEE ICDE, 2001, pp. 215-224.

[11] M. Leleu, C. Rigotti, J-F. Boulicaut, and G. Euvrard, “Constraint-based
mining of sequential patterns over datasets with consecutive repetitions,”
In Proceedings PKDD, 2003, Springer-Verlag, pp. 303–314.

[12] L. De Raedt, M. Jaeger, S. Dan Lee, and H. Mannila, “A theory of
inductive query answering,” InProceedings IEEE ICDM, 2002, pp.
123-130.

[13] S. Dan Lee and L. De Raedt, “An algebra for inductive query
evaluation,” InProceedings IEEE ICDM, 2003, pp. 147-154.

[14] S. Dan Lee and L. De Raedt, “An efficient algorithm for mining string
databases under constraints,” InProceedings KDID, 2004, Springer-
Verlag, pp. 108-129.

[15] M. N. Garofalakis, R. Rastogi, and K. Shim, “Spirit: Sequential pattern
mining with regular expression constraints,” InProceedings VLDB,
1999, Morgan Kaufmann Publishers Inc., pp. 223-234.

[16] J. Pei, J. Han, and W. Wang, “Mining sequential patterns with constraints
in large databases,” InProceedings ACM CIKM, 2002, pp. 18-25.

[17] H. Albert-Lorincz and J.-F. Boulicaut, “Mining frequent sequential
patterns under regular expressions: a highly adaptive strategy for pushing
constraints,” InProceedings SIAM DM, 2003, pp. 316-320.

[18] I. Mitasiunaite and Jean-François Boulicaut, “Looking for monotonicity
properties of a similarity constraint on sequences,” InProceedings of
ACM Symposium of Applied Computing SAC 2006, Special Track on
Data Mining, ACM Press, pp. 546-552.

[19] H. Mannila and H. Toivonen, “Levelwise search and borders of theories
in knowledge discovery,”Data Mining and Knowledge Discovery, vol.
1(3), pp. 241-258, 1997.

[20] R. Kohavi, C. Brodley, B. Frasca, L. Mason, and Z. Zheng, “KDD-Cup
2000 organizers’ report: Peeling the onion,”SIGKDD Explorations, vol.
2(2), pp. 86-98, 2000.

[21] M.-F. Sagot, V. Escalier, A. Viari, and H. Soldano, “Searching for
repeated words in a text allowing for mismatches and gaps,” In
Proceedings 2nd South American Workshop on String Processing, 1995,
pp. 87-100.

[22] D. Sankoff and J. Kruskal,Time Warps, String Edits, and Macromole-
cules: The Theory and Practice of Sequence Comparison, Reading,
Mass. Addison-Wesley, 1983.

[23] V. Levenshtein, “Binary codes capable of correcting spurious insertions
and deletions of ones,”Probl. Inf. Transmission, vol. 1, pp. 8-17, 1965.

