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Abstract. Formal concept analysis has been proved to be useful to sup-
port knowledge discovery from boolean matrices. In many applications,
such 0/1 data have to be computed from experimental data and it is
common to miss some one values. Therefore, we extend formal concepts
towards fault-tolerance. We define the DR-bi-set pattern domain by al-
lowing some zero values to be inside the pattern. Crucial properties of
formal concepts are preserved (number of zero values bounded on objects
and attributes, maximality and availability of functions which “connect”
the set components). DR-bi-sets are defined by constraints which are ac-
tively used by our correct and complete algorithm. Experimentation on
both synthetic and real data validates the added-value of the DR-bi-sets.

1 Introduction

Many application domains can lead to possibly huge boolean matrices whose rows
denote objects and columns denote attributes. Mining such 0/1 data has been
studied extensively and quite popular data mining techniques have been designed
for set pattern extraction (e.g., frequent sets or association rules which capture
some regularities among the one values within the data). We are interested in bi-
set mining, i.e., the computation of sets of objects and sets of attributes which
are somehow “associated”. An interesting case concerns Conceptual Knowledge
Discovery [8,9,10,11,6]. It is based on the formal concepts contained in the data,
i.e., the maximal bi-sets of one values [17]. Examples of formal concepts in r1
(Table 1) are ({o1, o2, o3, o4}, {a1, a2}) and ({o4}, {a1, a2, a3, a4}). Formal con-
cept discovery is related to the popular frequent (closed) set computation. Ef-
ficient algorithms can nowadays compute complete collections of constrained
formal concepts (see, e.g., [15,2]).

In this paper, we address one fundamental limitation of Knowledge Discovery
processes based on formal concepts. Within such local patterns, the strength of
the association of the two set components is often too strong in real-life data.
Indeed, errors of measurement and boolean encoding techniques may lead to
erroneous zero values which will give rise to a combinatorial explosion of the
number of formal concepts. Assume that K1 represents a real phenomenon but

H. Schärfe, P. Hitzler, and P. Øhrstrøm (Eds.): ICCS 2006, LNAI 4068, pp. 144–157, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Mining a New Fault-Tolerant Pattern Type as an Alternative 145

Table 1. A formal context K1 (left), K2 with 17% of noise (right)

a1 a2 a3 a4

o1 1 1 0 0
o2 1 1 0 0
o3 1 1 0 0
o4 1 1 1 1
o5 0 0 1 1
o6 0 0 1 1

a1 a2 a3 a4

o1 1 1 0 0
o2 1 0 1 0
o3 1 1 0 1
o4 1 1 1 1
o5 0 0 1 0
o6 0 0 1 1

that data collection and preprocessing lead to the data K2. The number of formal
concepts in K2 is approximately twice larger than in K1. Based on our expertise
in real-life data mining, it is now clear that the extraction of formal concepts,
their post-processing and their interpretation is not that relevant in noisy data
which encode measured and/or computed boolean relationships. Our hypothesis
is that mining formal concepts with some zero values might be useful and should
be considered as a valuable alternative to formal concept discovery. For example,
the bi-set ({o1, o2, o3, o4}, {a1, a2}) appears to be relevant in K2: its objects and
attributes are strongly associated (only one zero value) and the outside objects
and attributes contain more zero values.

Therefore, we propose to extend formal concepts towards such fault-tolerant
patterns by specifying a new type of bi-sets, the so-called DR-bi-sets. The main
challenge is to preserve important properties of formal concepts which have been
proved useful during pattern interpretation:

– The numbers of zero values are bounded on objects and attributes.
– These bi-sets are maximal on both dimensions.
– It does not exist an outside pattern object (resp. attribute) which is identical

to an inside pattern object (resp. attribute). It increases pattern relevancy.
– There exist two functions, one which associates to a set of objects (resp.

attributes) a unique set of attributes (resp. objects). Such functions ensure
that every DR-bi-set captures a relevant association between the two set
components. As such it provides powerful characterization mechanisms.

Section 2 discusses related work. Section 3 is a formalization of our new pattern
domain. It is shown that DR-bi-sets are a fairly natural extensions of formal
concepts. Section 4 sketches our correct and complete algorithm which computes
every DR-bi-set. Section 5 provides experimental results on both synthetic and
real data. Section 6 concludes.

2 Related Work

Looking for fault-tolerant pattern has been already studied. To the best of our
knowledge, most of the related work has concerned mono-dimensional patterns
and/or the use of heuristic techniques. In [18], the frequent set mining task is
extended towards fault-tolerance. A level-wise algorithm is proposed but their
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fault-tolerant property is not anti-monotonic while this is needed to achieve
tractability. Therefore, [18] provides a greedy algorithm leading to an incom-
plete computation. [14] revisits this work and it looks for an anti-monotonic
constraint such that a level-wise algorithm can provide every set whose density
of one values is greater than δ in at least σ situations. Anti-monotonicity is ob-
tained by enforcing that every subset of extracted sets satisfies the constraint as
well. The extension of such dense sets to dense bi-sets is difficult: the connection
which associates objects to properties and vice-versa is not decreasing while this
is an appreciated property of formal concepts. Instead of using a relative density
definition, [12] considers an absolute threshold to define fault-tolerant frequent
patterns: given a threshold δ, a set of attributes P , such that �P > δ, holds in an
object X iff �(X∩P ) ≥ �P −δ where �X denotes the size of X . To ensure that the
support is significant for each attribute, they use a minimum support threshold
per attribute beside the classical minimum support. Thus, each object of an ex-
tracted pattern contains less than δ zero values and each attribute contains more
one values than the given minimum support for each attribute. This definition is
not symmetrical on the object and attribute dimension, and the more the support
increases, the less the patterns are relevant. In [7], the authors are interested in
geometrical tiles (i.e., dense bi-sets which involve contiguous elements given or-
ders on both dimensions). Their local optimization algorithm is not deterministic
and thus can not guarantee the global quality of the extracted patterns. Fur-
thermore, the hypothesis on built-in orders can not be accepted on many data.

Some fault-tolerant extensions of formal concepts have been recently pro-
posed as well. In [1], available formal concepts are merged while checking for a
bounded number of exceptions on both dimensions. The proposed technique is
however incomplete, and the mapping between set components of the extracted
bi-sets is not guaranteed. The proposal in [13] concerns an extension which can
be computed efficiently but none of the appreciated properties are available. This
research is also related to condensed representations of concept lattices or dense
bi-sets. [16] introduces a “zooming” approach on concept lattices. The so-called
α-Galois lattices exploit a partition on the objects to reduce the collection of
the extracted bi-sets: a situation s is associated to a set G if α% of the objects
which have the same class value than s are associated to elements from G and
if s is associated to G as well. Our context is different since we want to preserve
the duality between objects and attributes as far as possible.

3 Formalization

Let G and M be sets, called the set of objects and attributes respectively. Let I be
a relation I ⊆ G×M between objects and attributes: for g ∈ G, m ∈ M, (g, m) ∈
I holds iff the object g has the attribute m. The triple K = (G, M, I) is called
a (formal) context.

A bi-set (X, Y ) is a couple of sets from 2G×2M . Some specific types of bi-sets
have been extensively studied. This is the case of formal concepts which can be
defined thanks to Galois connection [17]:
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Definition 1. Given X ⊆ G and Y ⊆ M , the Galois connection on K is the
couple of functions (φ, ψ) s.t. ψ(X) = {m ∈ M | ∀g ∈ X, (g, m) ∈ I} and
φ(Y ) = {g ∈ G | ∀m ∈ Y, (g, m) ∈ I}. A bi-set (X, Y ) is a formal concept with
extent X and intent Y iff X = φ(Y ) and Y = ψ(X).

We now give a new way to define formal concepts which will be generalised to
DR-bi-sets.

Definition 2. Let us denote by Zo(x, Y ) the number of zero values of an object
x on the attributes in Y : Zo(x, Y ) = �{y ∈ Y |(x, y) �∈ I}. Similarly Za(y, X) =
�{x ∈ X |(x, y) �∈ I} denotes the number of zero values of an attribute y on the
objects in X.

Formal concepts can now be characterized by the following lemma:

Lemma 1. A bi-set (X, Y ) is a formal concept of the context K iff:
∀x ∈ X, Zo(x, Y ) = 0 or similarly, ∀y ∈ Y, Za(y, X) = 0 (1)
(∀x ∈ G \ X, Zo(x, Y ) ≥ 1) and (∀y ∈ M \ Y, Za(y, X) ≥ 1) (2)

It introduces constraints which can be used to compute formal concepts [2].
Interestingly, these constraints ensure the maximality (w.r.t. set inclusion) of
the bi-sets which satisfy them. It is well-known that constraint monotonicity
properties are extremely important for a clever exploration of the associated
search space. These properties are related to a specialization relation. Let us
consider an unusual specialization relation for building concept lattices.

Definition 3. Our specialization relation � on bi-sets is defined as follows:
(X1, Y1) � (X2, Y2) iff X1 ⊆ X2 and Y1 ⊆ Y2. A constraint C is said anti-
monotonic w.r.t. � iff ∀D, E ∈ 2G × 2M s.t. D � E, C(E) ⇒ C(D). Dually, C
is said monotonic w.r.t. � iff C(D) ⇒ C(E). Notice that C(D) denotes that the
constraint C is satisfied by the bi-set D.

For instance, we might use a minimal size constraint Cms(σ1, σ2, (X, Y )) ≡ �X ≥
σ1 ∧ �Y ≥ σ2. Such a constraint is monotonic w.r.t. �.

3.1 Dense Bi-sets

We want to compute bi-sets with a strong association between the two sets and
such that its number of zero values can be controlled. We can decide to bound the
number of zero values per object/attribute or on the whole bi-set (strong density
vs. weak density). We can also look at relative or absolute density, i.e., to take
into account the density w.r.t. the size of the whole bi-set or not. If we use the
weak density, we can obtain bi-sets containing objects or attributes with only
zero values. In this case, these objects (resp. attributes) are never associated
to the bi-set attributes (resp. objects). We decided to use an absolute strong
density constraint that enforces an upper bound for the number of zero values
per object and per attribute. Using strong density enables to get the important
monotonicity property.
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Definition 4. Given (X, Y ) ∈ 2G × 2M and a positive integer value α, (X, Y )
is said dense iff it satisfies the anti-monotonic constraint Cd(α, (X, Y )) ≡ (∀x ∈
X, Zo(x, Y ) ≤ α) and (∀y ∈ Y, Za(y, X) ≤ α).

3.2 Relevant Bi-sets

We want to extract bi-sets (X, Y ) such that the objects of X (resp. the attributes
of Y ) have a larger density of one values on the attributes from Y (resp. on
the objects from X) than on the other attributes, i.e., M \ Y (resp. objects,
i.e., G \ X). It leads to the formalisation of a relevancy constraint where the
parameter δ is used to enforce the difference of zero values inside and outside
the bi-set.

Definition 5. Given (X, Y ) ∈ 2G × 2M , and a positive integer value δ, (X, Y )
is said relevant iff it satisfies the following constraint:

Cr(δ, (X, Y )) ≡ (∀g ∈ G \ X, ∀x ∈ X, Zo(g, Y ) ≥ Zo(x, Y ) + δ)
and (∀m ∈ M \ Y, ∀y ∈ Y, Za(m, X) ≥ Za(y, X) + δ)

3.3 DR-Bi-sets

The bi-sets which satisfy both Cd and Cr constraints are a new type of fault-
tolerant patterns. Dense and relevant bi-sets are indeed a generalisation of formal
concepts (bi-sets with α = 0 and δ = 1). Cd is a straightforward generalisation of
the first equation in Lemma 1. Cr generalizes the second equation in Lemma 1
by enforcing that all outside elements of the bi-set contain at least δ zero values
in addition to the one of every inside element. Parameter α controls the density
of the bi-sets whereas the parameter δ enforces a significant difference with the
outside elements. Cd is anti-monotonic w.r.t. � (see Definition 3) and can give
rise to efficient pruning. Cr is neither monotonic nor anti-monotonic but we
explain in Section 4 how to exploit this constraint efficiently. Fig. 1 shows the
collection of bi-sets in K3 which satisfy Cd ∧ Cr when α = 5 and δ = 1 ordered
w.r.t. �. Each level indicates the maximal number of zero values per object and
per attribute. For instance, if α = 1, a sub-collection containing five bi-sets is

Fig. 1. A formal context K3 and the bi-sets satisfying Cd ∧ Cr with α = 5 and δ = 1
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extracted, four of them being formal concepts (α = 0). Density and relevancy
constraints do not ensure maximality which is a desired property. For instance,
in Fig. 1, if B denotes ({o1, o2, o3}, {a1, a2}), we have ({o1, o2}, {a1, a2}) � B
and ({o1, o2, o3}, {a2}) � B. As a result, to increase bi-set relevancy, we finally
consider the so-called DR-bi-sets which are the maximal dense and relevant
bi-sets.

Definition 6. Let (X, Y ) ∈ 2G × 2M be a dense and relevant bi-set (i.e., satis-
fying Cd ∧Cr). (X, Y ) is called a DR-bi-set iff it is maximal w.r.t. �, i.e. it does
not exist (X ′, Y ′) ∈ 2G×2M s.t. (X ′, Y ′) satisfies Cd ∧Cr and (X, Y ) � (X ′, Y ′).

This collection is denoted DRαδ. For example, DR11 on K3 contains the three
circled bi-sets of Fig. 1. It is important to notice that different threshold values
might be considered on objects/attributes (say α/α′ for the density constraint
and δ/δ′ for the relevancy constraint).

3.4 Properties

Let us first emphasize that the DR-bi-set size increases with parameter α.

Property 1. Given 0 ≤ α1 ≤ α, ∀(X1, Y1) ∈ DRα1δ, ∃(X, Y ) ∈ DRαδ such that
(X1, Y1) � (X, Y ).

Proof. ∀(X, Y ) satisfying Cd(α1, (X, Y )) ∧ Cr(δ, (X, Y )) then (X, Y ) satisfies
Cd(α, (X, Y )) ∧ Cr(δ, (X, Y )). DRαδ contains (X, Y ) or a bi-set (X ′, Y ′) s. t.
(X, Y ) � (X ′, Y ′). �

The larger α is, the more the size of each extracted bi-set from DRαδ increases
while extracted associations with smaller α value are preserved. In practice, an
important reduction on the size of the extracted collections is observed when
the parameters are well chosen (see Section 5). As a result, a zooming effect is
obtained when α is varying. Parameter δ enables to select more relevant patterns.
For example, when δ = 2 and α ≤ 1 the collection in K3 is reduced to the DR-
bi-set ({o1}, {a1, a2, a3, a4}).

The following property ensures that DR-bi-sets are actually a generalisation
of formal concepts, i.e., they are related by two functions.

Property 2. For δ > 0, there exists two functions called ψDR and φDR such that
ψDR : 2G → 2M and φDR : 2M → 2G such that (X, Y ) is a DR-bi-set iff
X = φDR(Y ) and Y = ψDR(X).

Proof. Let (S1, S2), (S1, S3) ∈ DRαδ such that S2 �= S3. Let MaxZa(X, Y ) ≡
maxm∈X Za(m, Y ) and MinZa(X, Y ) ≡ minm∈X Za(m, Y )

As DRαδ contains maximal bi-sets, S2 �⊆ S3 and S3 �⊆ S2. We have

MaxZa(S1, S3) ≤ MinZa(S1, M \ S3) − δ (Cr constraint)
≤ MinZa(S1, S2 \ S3) − δ (set inclusion)
< MinZa(S1, S2 \ S3) (δ > 0) ≤ MaxZa(S1, S2 \ S3)
≤ MaxZa(S1, S2)
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Then, we have MaxZa(S1, S3) < MaxZa(S1, S2) and similarly we can derive
MaxZa(S1, S2) < MaxZa(S1, S3) which leads to a contradiction.

Thus, we have a function between 2G and 2M . The existence of a function
between 2M and 2G can be proved in a similar way. �
These functions are extremely useful to support pattern interpretation: to a set
of objects X corresponds at most one set of attributes. Typically, they were
missing in previous approaches for fault-tolerance extensions of formal concepts
[1,12]. Unfortunately, we do not have an explicit definition of these functions.
This remains an open problem.

4 A Complete Algorithm

The whole collection of bi-sets ordered by � forms a lattice whose bottom is
(⊥G, ⊥M ) = (∅, ∅) and top is (�G, �M ) = (G, M). Let us note by B the
set of sublattices1 of ((∅, ∅), (G, M)), B = {((X1, Y1), (X2, Y2)) s.t. X1, X2 ∈
2G, Y1, Y2 ∈ 2M and X1 ⊆ X2, Y1 ⊆ Y2}, where the first (resp. the second) bi-
set is the bottom (resp. the top) element. The algorithm DR-Miner explores
some of the sublattices of B built by means of three mechanisms: enumeration,
pruning and propagation.

Table 2. DR-Miner pseudo-code

K = (G, M, I) is a formal context, C a conjunction of
monotonic and anti-monotonic constraints on 2G × 2M

and α, δ are positive integer values.
DR-Miner

Generate((∅, ∅), (G, M))
End DR-Miner

Generate(L)
Let L = ((⊥G, ⊥M ), (�G, �M ))
L ← Prop(L)
If Prune(L) then

If (⊥G, ⊥M ) �= (�G, �M ) then
(L1, L2) ← Enum(L,Choose(L))
Generate(L1)
Generate(L2)

Else Store (⊥G, ⊥M )
End if

End if
End Generate

1 X is a sublattice of Y if Y is a lattice, X is a subset of Y and X is a lattice with
the same join and meet operations as Y .
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Fig. 2. Example of DR-Miner execution

DR-Miner starts with the complete lattice ((∅, ∅), (G, M)) and then recursively
propagates the constraints using Prop function, check the consistency of the
obtained sublattice with Prune function and then generates two new sublattices
thanks to Enum function (see Table 2). The Figure 2 shows an example of DR-

Miner execution.

– Enumeration: Let Enum : B × G ∪ M → B2 such that

Enum(((⊥G, ⊥M ), (�G, �M )), e)

=
{

(((⊥G ∪ {e}, ⊥M), (�G, �M )), ((⊥G, ⊥M ), (�G \ {e}, �M))) if e ∈ G
(((⊥G, ⊥M ∪ {e}), (�G, �M )), ((⊥G, ⊥M ), (�G, �M \ {e}))) if e ∈ M

where e ∈ �G \ ⊥G or e ∈ �M \ ⊥M . Enum generates two new sublattices
which are a partition of its input parameter.
Let Choose : B → G ∪ M be a function which returns (one of) the element
e ∈ �G \⊥G ∪�M \⊥M containing the largest number of zero values on �M

if e ∈ G or on �G if e ∈ M . It is an heuristic which tends to increase the
efficiency of propagation mechanisms by reducing the search space as soon
as possible.

– Pruning: We prune a sublattice if we are sure that none of its bi-sets satis-
fies the constraint. Let Prunem

C : B → {true,false} be a function which
returns True iff the monotonic constraint C (w.r.t. �) is satisfied by the top
of the sublattice: Prunem

C ((⊥G, ⊥M ), (�G, �M )) ≡ C(�G, �M )

Let Pruneam
C : B → {true,false} be a function which returns True iff

the anti-monotonic constraint C (w.r.t �) is satisfied by the bottom of the
sublattice: Pruneam

C ((⊥G, ⊥M ), (�G, �M )) ≡ C(⊥G, ⊥M )

Cd is anti-monotonic and thus it can be used as Pruneam
Cd

. Nevertheless,
Cr is neither monotonic nor anti-monotonic. The Cr constraint is adapted
to ensure that the elements which do not belong to the sublattice might
contain more zero values on the top (the elements that can be included in
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the bi-sets) than the inside ones do on the bottom (the elements that belong
to each bi-set). Let PruneCr : B → {true,false} be a function such that

PruneCr ((⊥G, ⊥M ), (�G, �M )) ≡
∀s ∈ G \ �G, ∀t ∈ ⊥G, Zo(s, �M ) ≥ Zo(t, ⊥M ) + δ and
∀s ∈ M \ �M , ∀t ∈ ⊥M , Za(s, �G) ≥ Za(t, ⊥G) + δ

If Prunem
C1

(L) (resp. Pruneam
C2

(L) and PruneCr(L)) is False, then any bi-
set contained in L does not satisfy C1 (resp. C2 and Cr).
In DR-Miner, we use Prune : B → {true,false} which is such that
Prune(L) ≡ Prunem

C1
(L) ∧ Pruneam

C2
(L) ∧ PruneCr(L) ∧ Prunem

Cd
(L)

– Propagation: Cd and Cr can be used to reduce the size of the sublattices by
moving objects of �G \ ⊥G into ⊥G or outside �G. The fonctions Propin :
B → B and Propout : B → B are used to do it as follow:

Propin((⊥G, ⊥M ), (�G, �M )) = {((⊥′
G, ⊥′

M ), (�G, �M )) ∈ B |
⊥′

G = ⊥G ∪ {x ∈ �G \ ⊥G | ∃t ∈ ⊥G, Zo(x, �M ) < Zo(t, ⊥M ) + δ}
⊥′

M = ⊥M ∪ {x ∈ �M \ ⊥M | ∃t ∈ ⊥M , Za(x, �G) < Za(t, ⊥G) + δ}}

Propout((⊥G, ⊥M ), (�G, �M )) = {((⊥G, ⊥M ), (�′
G, �′

M )) ∈ B |
�′

G = �G \ {x ∈ �G \ ⊥G | Zo(x, ⊥M ) > α}
�′

M = �M \ {x ∈ �M \ ⊥M | Za(x, ⊥G) > α}}

Prop : B → B is defined as Prop(L) = Propin(Propout(L)). It is recursively
applied as long as its result changes.

To prove the correctness and completeness of DR-Miner, a sublattice L =
((⊥G, ⊥M ), (�G, �M )) is called a leaf when it contains only one bi-set i.e.,
(⊥G, ⊥M ) = (�G, �M ). DR-bi-sets are these maximal bi-sets. To extract only
maximal dense and relevant ones, we have adapted the Dual-Miner strategy
for pushing maximality constraints [4].

DR-Miner correctness: Every bi-set (X, Y ) belonging to leaf L satisfies Cd∧Cr

according to Pruneam
Cd

and PruneCr .

DR-Miner completeness: Let T1 = ((⊥1
G, ⊥1

M ), (�1
G, �1

G)) and
T2 = ((⊥2

G, ⊥2
M ), (�2

G, �2
G)). Let � be a partial order on B defined as T1 � T2

iff (⊥2
G, ⊥2

M ) � (⊥1
G, ⊥1

M ) and (�1
G, �1

G) � (�2
G, �2

G) (see Definition 3). � is the
partial order used to generate the sublattices.

We show that for each bi-set (X, Y ) satisfying Cd ∧ Cr, it exists a leaf L =
((X, Y ), (X, Y )) which is generated by the algorithm.

Property 3. If F is a sublattice such that L � F then among the two sublattices
obtained by the enumeration of F (Enum(F , Choose(F))) one and only one is
a super-set of L w.r.t. �. This property is conserved by function Prop.
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Proof. Let F = ((⊥G, ⊥M ), (�G, �M )) ∈ B such that L � F . Assume that the
enumeration is done on objects (it is similar on attributes) and that the two
sublattices generated by the enumeration of o ∈ �G \ ⊥G are L1 and L2. If
o ∈ X then L � L1 and L �� L2, otherwise L � L2 and L �� L1.

Let us now show that constraint propagation (function Prop) on any sub-
lattice F = ((⊥G, ⊥M ), (�G, �M )) such that L � F preserves this order. More
precisely, no element of X is removed of �G due to Propout (Case 1) and no
element of G \ X is moved to ⊥G due to Propin (Case 2).

– Case 1: (X, Y ) satisfies Cr then ∀p ∈ �G \ ⊥G s.t. p ∈ G \ X and ∀t ∈
⊥G, we have Zo(p, Y ) ≥ Zo(t, Y ) + δ. But ⊥M ⊆ Y ⊆ �M , and thus
Zo(p, �M ) ≥ Zo(p, Y ) ≥ Zo(t, Y ) + δ ≥ Zo(t, ⊥M ) + δ. Consequently,
Zo(p, �M ) < Zo(t, ⊥M ) + δ is false. Consequently, p is not moved to ⊥G.

– Case 2: (X, Y ) satisfies Cd then ∀p ∈ �G \⊥G s.t. p ∈ X , we have Zo(p, Y ) ≤
α. But ⊥M ⊆ Y , and thus Zo(p, ⊥M ) ≤ Zo(p, Y ) ≤ α. Consequently, p is
not removed from �G. �

Since DR-Miner starts with ((∅, ∅), (G, M)) which is a super-set of L, given
that B is finite and that recursively it exists always a sublattice which is an
super-set of L w.r.t. � even after the propagation has been applied, then we can
affirm that every bi-set satisfying Cd ∧ Cr is extracted by DR-miner.

5 Experimentation

5.1 Robustness on Synthetic Data

Let us first illustrate the added-value of DR-bi-set mining in synthetic data. Our
goal is to show that the extraction of these patterns in noisy data sets enables to
find some originally built-in formal concepts blurred by some random noise. Our
raw synthetic data is a matrix 30 × 15 in which three disjoint formal concepts
of size 10 × 5 hold. Then, we introduced a uniform random noise on the whole
matrix and 5 different data sets have been produced for each level of noise, i.e.,
from 1% to 30% (each zero or one value has a probability of X% to be changed).

To compare the extracted collections with the three original built-in formal
concepts, we used a measure which tests the presence of a subset of the original
pattern collection in the extracted ones. This measure σ associates to each pat-
tern of one collection C1 the closest pattern of the other one C2 (and reciprocally).
It is based on a distance measure taking into account their shared area:

σ(C1, C2) =
ρ(C1, C2) + ρ(C2, C1)

2

ρ(C1, C2) =
1

�C1

∑
(Xi,Yi)∈C1

max
(Xj ,Yj)∈C2

� (Xi ∩ Xj) ∗ � (Yi ∩ Yj)
� (Xi ∪ Xj) ∗ � (Yi ∪ Yj)

when ρ(C1, C2) = 1, each pattern of C1 has an identical instance in C2, and when
σ = 1, the two collections are identical. High values of σ mean that (a) we can
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Fig. 3. Mean and standard deviation of the number of bi-sets (5 trials) (left) and of σ

(right) w.r.t. the percentage of noise

find all the formal concepts of the reference collection within the noised matrix,
and (b) the collection extracted from noised matrices does not contain many
bi-sets that are too different from the reference ones.

Figure 3 presents the mean and the standard deviation of the number of
extracted bi-sets (left) and the mean and standard deviation of σ (right) for each
level of noise. Two collections are represented: one for α = 0 and δ = 1 (i.e.,
the case of formal concepts), and the second one for α = 2 and δ = 3. On both
collections, a minimal size constraint is added which enforces that each pattern
contains at least 3 elements on each dimension (i.e., satisfying Cms(3, 3)). It
avoids the computation of the smallest bi-sets which can indeed be due to noise.

We can observe that when the noise level increases, the number of extracted
formal concepts (i.e., α = 0 and δ = 1) increases drastically, whereas σ decreases
drastically as well. For α = 2 and δ = 3, we observe an important reduction
of the number of extracted DR-bi-sets and an important increase of the DR-
bi-set quality: for 10 % of noise the collection is similar to the built-in formal
concept collection. These graphics emphasize the difference between the use of
formal concepts and DR-bi-sets in noisy data: the first one constitutes a large
collection (tens to hundreds of patterns) of poorly relevant patterns, whereas the
second one is clearly closer to the three built-in patterns. Indeed, we get between
2 and 4 patterns with higher σ values. When the level of noise is very high (say
over 20%), the DR-bi-sets are not relevant any more. Indeed, with such level of
noise, the data turns to be random.

5.2 Impact of Parameters α and δ

To study the influence of the α parameter, we performed several mining tasks
on the UCI data set Internet Advertisements which is large on both dimensions
(matrix 3 279 × 1 555) [3].
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Fig. 4. Number of extracted DR-bi-sets (left) and average increase of bi-set size w.r.t.
formal concepts (right) for several frequency thresholds on both dimensions (�), with
δ = 1 and α ∈ 0..2

We have extracted DR-bi-set collections with a minimal size constraint on
both dimensions varying between 12� and 7�, where δ = 1 and α varying
between 0 and 2. Figure 4 (left) shows the size of DR-bi-set collections. In this
data set, the collection sizes decrease with α. Figure 4 (right) shows the average
number of added objects and attributes of each formal concept. More formally,
if C0 denotes the collection of formal concepts and if Cα denotes the collection
of DR-bi-sets obtained with parameter α, the measure is computed as follow:

1
�C0

∑
(X0,Y0)∈C0

max
(Xα,Yα)∈A(X0,Y0)

�(Xα \ X0) ∗ �(Yα \ Y0)

where A(X0, Y0) = {(X, Y ) ∈ Cα suchthat(X0, Y0) � (X, Y )} and � is the order
of Definition 3. As proved in Property 1, the average sizes of the extracted bi-sets
increase with α. But we can observe that this increase is quite important: for
example, for α = 2 and frequency = 11, one element has been added to each
formal concept in average.

To study the influence of the δ parameter, we have also performed experi-
ments on the UCI data set Mushroom (matrix 8 124 × 128) [3] and on the real
world medical data set Meningitis [5]. Meningitis data have been gathered from
children hospitalized for acute meningitis. The pre-processed Boolean data set
is composed of 329 patients described by 60 Boolean properties.

A straightforward approach to avoid some irrelevant patterns and to re-
duce the pattern collection size is to use size constraints on bi-set components.
For these experiments, we use the constraint Cms(500, 10) on Mushroom and
Cms(10, 5) on Meningitis. Using D-Miner [2], we have computed the collec-
tion of such large enough formal concepts and we got more than 1 000 formal
concepts on Mushroom and more than 300 000 formal concepts on Meningi-
tis (see Table 3). We used different values of δ on G (denoted δ) and on M
(denoted δ′).
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Table 3 gathers the results obtained on the two data sets. For Mushroom, α
is fixed to 0 and δ = δ′ are varying between 2 and 6. We can observe that the
collection sizes drastically decrease with δ and δ′. On Meningitis, α is set to 1
and δ′ is varying between 2 and 6 whereas δ is set to 1. We use different values
for δ and δ′ because the pattern sizes were greater on the object set components
and thus we wanted to enforce the difference with the outside elements on these
components. For this data set, not only the collection sizes, but also the com-
putational times are considerably reduced when δ′ increases. Notice that δ′ = 1
leads to an intractable extraction but, with δ′ = 2, the resulting collection is 80%
smaller than the related formal concept collection. Such decreases are observed
when considering higher δ′ values.

Table 3. DR-bi-set collection sizes and extraction time when δ′ is varying from 1 to 6
on Mushroom and Meningitis

Mushroom (Cms(500, 10), α = 0)
δ = δ′ Concepts 1 2 3 4 5 6
size 1 102 1 102 11 6 2 1 0
time 1.6s 10s 4s 4s 3s 2s 2s

Meningitis (Cms(10, 5), α = 1, δ = 1)
δ′ Concepts 1 2 3 4 5 6

size 354 366 - 75 376 22 882 8 810 4 164 2 021
time 5s - 693s 327s 181s 109s 70s

6 Conclusion

We have considered the challenging problem of computing fault-tolerant bi-sets.
Formal concepts fail to emphasize relevant associations when the data is intrin-
sically noisy. We have formalized a new task, maximal dense and relevant bi-set
mining, within the constraint-based data mining framework. We propose a com-
plete algorithm DR-Miner which computes every DR-bi-set by pushing these
constraints during an enumeration process. Density refers to the bounded num-
ber of zero values and relevancy refers to the specificities of the elements involved
in the extracted bi-sets when considering the whole data set. We experimentally
validated the added-value of this approach on both synthetic and real data. Fix-
ing the various parameters might appear difficult (it is often driven by tractability
issues) but this is balanced by the valuable counterpart of completeness: the user
knows exactly which properties are satisfied by the extracted collections.
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