
Representation and Reasoning on Role-Based

Access Control Policies with Conceptual Graphs

Romuald Thion and Stéphane Coulondre

LIRIS: Lyon Research Center for Images and Intelligent Information Systems,
Bâtiment Blaise Pascal (501), 20, avenue Albert Einstein,

69621 Villeurbanne Cedex, France
prenom.nom@liris.cnrs.fr

Abstract. This paper focused on two aspects of access control: graphi-
cal representation and reasoning. Access control policies describe which
operations on resources are granted to users. Role-based access control
is the model which introduces the concept of role to design user’ per-
missions. Actually, there is a lack of tools allowing security officers to
describe and reason on their policies graphically. Thanks to conceptual
graphs, we can provide a consistent graphical formalism for role-based
access control policies, able to deal with specificities of this model such as
role hierarchy and constraints. Moreover, once a policy modelled within
CGs, graph rules and chainings can be used to reason on it. Thus, al-
lowing SOs to understand why (through wich role assignment) user’ per-
missions are granted and to find constraints violated by assignments.

1 Introduction

Opening our information systems to the world-wide web is really seducing, but
highlights a problem which becomes more and more crucial: security. Nowadays,
every on-line computer must be equipped with security update agent, firewall,
anti-virus software and even anti-spyware, otherwise within a few minutes infor-
mation system can become the target of automated scanning scripts, hackers,
malicious websites, etc.: security is now of main importance. In this paper, we
are dealing with a particular aspect of security process: access control.

1.1 Reasoning on access control policies

Access control denotes the fact of determining whether a user (process, com-
puter, human user, etc.) is able to perform an operation (read, write, execute,
delete, search, etc.) on an ressource (a tuple in a database, a table, an object,
a file, etc.). An operation right on a ressource is called permission. Access con-
trol policies describes define the user’ rights on ressources, in order to enforce
security of an organization.

As a matter of fact, a large part of flaws in information systems are due to
administration mistakes or security misconceptions: number of users is increas-
ing, rules are more and more complex, constraints are introduced to deal with



2

border-line. As policies engineering is considered to be of high pratical impor-
tance [3], we do think there is a need for tools facilitating design and maintenance
of security policies, to avoid mistakes and misconceptions.

Such tools need to meet several requirements:

– have an appropriate graphical interface,
– be able to capture access control model mechanisms and constrainted poli-

cies,
– be able to check consistency of policies,
– be able to answer queries for particular permissions or relation holdings in

the policies,
– have comprehensible inference mechanism, even by non-logicians.

According to [4], we do think that such functionnalities cannot be designed
without a proper formal framework.

1.2 Why conceptual graphs ?

Rather than tailoring a dedicated fragment of first-order logic [7] or using a pure
logic-based approach [4, 3] with traditional resolution methods (such as Robinson
principle), we focused on conceptual graphs (CGs) and their dedicated chaining
of rules.

The CGs framework meets the foresaid requirements in section 1.1:

– CGs is a formal system (using the function Φ allow direct comparison with
logic-based approaches),

– support can model complex structures such as hierarchies,
– individual markers, graph rules are expressive engough to capture authori-

sation mechanisms of access control models,
– chaining allow direct graphical-based inference on graphs.

This paper presents how to use the conceptual graphs framework to design
and infer on role-based access control (RBAC) policies. CGs applied on RBAC
allow graphical representation of policies, can capture underlying authorisation
mechanisms and chaining of graph rules allows inference on policies.

2 Fundamentals

2.1 Role Based-Access Control Policies

Role based access control (RBAC) models constitute a family in which permis-
sions are associated with roles (roles can be seen as collections of permissions),
and users are made members of appropriate roles. The definition of role is quoted
from [12]:

A role is a job function or job title within the organization with some
associated semantics regarding the authority and responsibility conferred
on a member of the role.



3

Figure 1 is common representation of the RBAC model. In this figure, “URA”
is a short for “user-role assignment” and “PRA” for “permission-role assign-
ment”. In the RBAC model, permissions are not directly assigned to users. Thus,
a user is access granted to a ressource if he is assigned to a role which is assigned
to this permission. The role hierarchy is a way to minimize the number of roles
in RBAC policies: a role inheriting another one inherits all its permission.

As the major part of access control decisions is based on the subjects’ func-
tions or job, introducing roles greatly simplifies the management of the sys-
tem. Since roles in an organization are relatively persistent with respect to user
turnover and task reassignment, RBAC provides a powerful mechanism for re-
ducing the complexity, cost, and potential for error in assigning permissions to
users within the organization [1]. RBAC was found to be among the most at-
tractive solutions for providing access control in e-commerce, e-government or
e-health, and is also a very active research field.

Fig. 1. RBAC Model (no specific formalism)

RBAC greatly simplifies the management of access control policies, however,
organization may involve thousands of roles [10] and administration of RBAC
policies can still be complex. Graphical based modelling and reasoning is a step
beyond easy-to-use policy administration interface and better comprehension of
policies.

2.2 Representation and reasoning based on conceptual graphs

!!!!Attention plagiat!!!![11, 6]

A rule R : G1 ⇒ G2 is composed of two CGs G1 and G2, respectively called
hypothesis and conclusion. There may be co-reference links between concepts of
G1 and G2. There are no constraints on types for individual markers common
to G1 and G2: the type considered in operations is the smallest type that can
be associated with the marker.



4

We call a support the structure that represents the ontology for a specific
domain application, it is composed a concept type lattice and a relation type
set. A knowledge base is composed of a support S, a set of simple CGs (facts),
and a set of rules.

Forward chaining is typically used in order to enrich knowledge base with
new facts, implicitly present in the base. It is used to prove a goal graph Ggoal

is implied by a knowledge base KB. Main idea is to calculate the closure of the
set of facts of KB by the set of rules of KB. Basic outline of procedure is:

– chose a rule R from KB,
– let be G a fact from KB. If G fullfills the hypothesis of R, then the conclusion

of R can be added to KB, if it is not already present (to avoid redundant
informations),

– repeat until no new facts can be produced,
– if there exists a projection from Ggoal to facts from KB, then Ggoal is implied

by the knowledge base.

This knowledge addition principle is the graph dual of bottom-up resolution
approach in first-order logic.

Backward chaining is typically used to prove a goal (a request). Whereas
forward chaining acts from facts to goal, backward chaining is top-down: from
conclusion (Ggoal) to hypothesis (the facts from KB). Basic outline of procedure
is:

– find piece,
– produce subgoal,
– repeat until subgoal is empty.

3 Representation and reasonings on RBAC policies with

conceptual graphs

In section 2, we described the role-based access control model and basic outlines
of grph rules chaining. In this section we will present how a knowledge base can
model a RBAC policy. A knowledge base is composed of a support S, a set of
simple CGs (facts), and a set of rules. In this section, sample code are written
in the BCGCT format for CGs.

3.1 Modelling basic concepts of RBAC

The support is composed a concept type lattice. For RBAC security modelling
purposes, this lattice models the role-hierarchy. A user will be assigned to a role
by defining an individual wich concept type is the assigned role. The main idea
is: !!! A ecrire en langage math ? ca fait plus pro ??? :-)



5

– Add a Role concept type inherinting from the universal type,
– for each role defined within the policy (from the least privilegied ones to the

most ones),
– create a concept type in support with same name,
– for each inheritance relation, add the equivalent edge in the concept type

lattice. If no inheritance relation exist, then add an edge between current
concept type and the Role concept type.

Figure 2 is a sample role hierarchy (based on french universities organisa-
tion). For example, a user assigned to role Sr. Lecturer will be granted every
permissions granted to role Lecturer, and every permissions granted to both
roles Teacher and esearcher by transitivity. For sake of readability, the universal
concept and the absurd concept are not present.

Fig. 2. A sample role hierarchy

After modelling role hierarchy, we can model other core elements of the
RBAC model:

– add the concept type Ressource to the support,
– add the concept type Operation to the support,
– add the concept type User to the support,
– add the relation type permitted of arity 3:User,Operation,Ressource.
– for each user ressource the policy, add a conformity relation ressourceid :

Ressource,
– for each operation within the policy, add a conformity relation operationid :

Operation,
– for each user within the policy, add a conformity relation userid : User,

The following sample code is a support modelling a RBAC policy. Role hier-
archy from figure 2 is translated into concept type lattice, three users are defined,
three operations and two ressources:



6

{BCGCT:3}

Begin
Support:RBAC;

TConSet:
ConceptTypes:

Universal;

Role;

User;
Operation;
Ressource;

Student;

Researcher;
Teacher;

PhD_student;
Jr_Lecturer;
Lecturer;

Sr_Lecturer;
EndConceptTypes;

Order:
Student < Role;

Researcher < Role;
Teacher < Role;
PhD_student < Student;

PhD_student < Researcher;
Lecturer < Researcher;

Lecturer < Teacher;
Sr_Lecturer < Lecturer;
Jr_Lecturer < PhD_student;

Jr_Lecturer < Teacher;

Operation < Universal;
Ressource < Universal;

User < Universal;
EndOrder;

EndTConSet;

TRelSet:
RelationTypes:

permitted{Signature:3,User,Operation,Ressource};
EndRelationTypes;

EndTRelSet;

Conf:
romuald, User;

robert, User;
stephane, User;

read, Operation;
write, Operation;
execute, Operation;

examen, Ressource;
projet, Ressource;

EndConf;
EndSupport;
End

3.2 Modelling access control rules

Begin
Rule: rEtudiant;

Hypt: Graph: hypothesis;

Concepts :
cUser=[Student:*];

EndGraph;

Conc: Graph: conclusion;
Concepts :

cUserBis=[Student:*];



7

Fig. 3. A graph rule granting read and exec permission on exams to students

cOperationR=[Operation:read];
cOperationX=[Operation:execute];

cRessource=[Ressource:examen];
Relations :

rPermittedR=(permitted);
rPermittedX=(permitted);

Edges :
rPermittedR,cUserBis ,1;
rPermittedR, cOperationR,2;

rPermittedR, cRessource,3;
rPermittedX,cUserBis ,1;

rPermittedX, cOperationX,2;
rPermittedX, cRessource,3;

EndGraph;

ConnectionPoints:

(cUser,cUserBis);
EndRule;

End;

3.3 Reasoning on policies

Begin

Graph : queryTest;
Nature : fact;
Concepts :

c1=[Universal:*];
c2=[Ressource];

c3=[Operation];
Relations :

rPermit=(permitted);
Edges :

rPermit,c1,1;



8

rPermit,c3,2;

rPermit,c2,3;
EndGraph;

End;

4 Conclusion

4.1 Graphical representation of Role-Based Access Control Policies

4.2 Reasoning on Role-Based Access Control Policies

sacmat

4.3 Representation of constraints

4.4 Requetage flou sur les bases de rles gigantesques

References

1. G.-J. Ahn and R. S. Sandhu. Role-based authorization constraints specification.
ACM Trans. Inf. Syst. Secur., 3(4):207–226, 2000.

2. S. Barker and P. J. Stuckey. Flexible access control policy specification with con-
straint logic programming. ACM Trans. Inf. Syst. Secur., 6(4):501–546, 2003.

3. E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. A logical framework for rea-
soning about access control models. ACM Trans. Inf. Syst. Secur., 6(1):71–127,
2003.

4. P. A. Bonatti and P. Samarati. Logics for authorization and security. In
J. Chomicki, R. van der Meyden, and G. Saake, editors, Logics for Emerging Ap-

plications of Databases, pages 277–323. Springer, 2003.
5. M. Chein and M.-L. Mugnier Représenter des connaissances et raisonner avec des

graphes Revue d’Intelligence Artificielle, 10(1):7–56, 1996.
6. S. Coulondre and E. Salvat. Piece resolution: Towards larger perspectives. In M.-L.

Mugnier and M. Chein, editors, ICCS, volume 1453 of Lecture Notes in Computer

Science, pages 179–193. Springer, 1998.
7. J. Y. Halpern and V. Weissman. Using first-order logic to reason about policies.

In CSFW, pages 187–201. IEEE Computer Society, 2003.
8. S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian. Flexible support

for multiple access control policies. ACM Trans. Database Syst., 26(2):214–260,
2001.

9. M. Koch and F. Parisi-Presicce. Visual specifications of policies and their veri-
fication. In M. Pezzè, editor, FASE, volume 2621 of Lecture Notes in Computer

Science, pages 278–293. Springer, 2003.
10. H. Roeckle, G. Schimpf, and R. Weidinger. Process-oriented approach for role-

finding to implement role-based security administration in a large industrial orga-
nization. In ACM Workshop on Role-Based Access Control, pages 103–110, 2000.

11. E. Salvat and M.-L. Mugnier. Sound and complete forward and backward chaining
of graph rules. In P. W. Eklund, G. Ellis, and G. Mann, editors, ICCS, volume
1115 of Lecture Notes in Computer Science, pages 248–262. Springer, 1996.

12. R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access
control models. IEEE Computer, 29(2):38–47, 1996.



9

13. R. S. Sandhu and Q. Munawer. The arbac99 model for administration of roles. In
ACSAC, pages 229–. IEEE Computer Society, 1999.

14. K. Sohr, G.-J. Ahn, M. Gogolla, and L. Migge. Specification and validation of au-
thorisation constraints using uml and ocl. In S. D. C. di Vimercati, P. F. Syverson,
and D. Gollmann, editors, ESORICS, volume 3679 of Lecture Notes in Computer

Science, pages 64–79. Springer, 2005.


