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Abstract. Thanks to an important research effort during the last few
years, inductive queries on local patterns (e.g., set patterns) and their as-
sociated complete solvers have been proved extremely useful to support
knowledge discovery. The more we use such queries on real-life data, e.g.,
biological data, the more we are convinced that inductive queries should
return fault-tolerant patterns. This is obviously the case when consider-
ing formal concept discovery from noisy datasets. Therefore, we study
various extensions of this kind of bi-set towards fault-tolerance. We com-
pare three declarative specifications of fault-tolerant bi-sets by means
of a constraint-based mining approach. Our framework enables a bet-
ter understanding of the needed trade-off between extraction feasibility,
completeness, relevance, and ease of interpretation of these fault-tolerant
patterns. An original empirical evaluation on both synthetic and real-life
medical data is given. It enables a comparison of the various proposals
and it motivates further directions of research.

1 Introduction

According to the inductive database approach, mining queries can be expressed
declaratively in terms of constraints on the desired patterns or models [16, 10, 6].
Thanks to an important research effort the last few years, inductive queries on lo-
cal patterns (e.g., set or sequential patterns) and complete solvers which can eval-
uate them on large datasets (Boolean or sequence databases) have been proved
extremely useful. Properties of constraints have been studied in depth (e.g.,
monotonicity, succinctness, convertibility) and sophisticated pruning strategies
enable to compute complete answer sets for many constraints (i.e., Boolean com-
bination of primitive constraints) of practical interest. However, the more we use
these techniques on intrinsically dirty and noisy real-life data, e.g., biological
or medical data, the more we are convinced that inductive queries should re-
turn fault-tolerant patterns. One interesting direction of research is to introduce
softness w.r.t. constraint satisfaction [1, 5]. We consider in this paper another
direction leading to crispy constraints in which fault-tolerance is declaratively
specified.
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Table 1. A Boolean context r1

g1 g2 g3 g4 g5 g6 g7

t1 1 0 1 0 1 0 0
t2 1 1 1 1 0 1 0
t3 0 1 1 1 1 1 1
t4 0 0 0 1 1 1 0
t5 1 0 0 0 0 1 0
t6 1 1 1 1 1 0 0
t7 1 1 1 1 1 0 0

Our starting point is the fundamental limitation of formal concept (i.e., con-
nected closed sets) discovery from noisy data. Formal concept analysis has been
developed for more than two decades [24] as a way to extract knowledge from
Boolean datasets. Informally, formal concepts are maximal bi-sets/rectangles of
true values1. For instance, Table 1 is a toy example dataset r1 and the bi-set
({t6, t7}, {g1, g2, g3, g4, g5}) is a formal concept in r1.

Some algorithms are dedicated to the computation of complete collections of
formal concepts [17]. Since, by construction, formal concepts are built on closed
sets, the extensive research on (frequent) closed set computation (see [15] for a
survey) has obviously opened new application domains for formal concept dis-
covery. When considering very large and/or dense Boolean matrices, constraint-
based mining of formal concepts has been studied [23, 4]: every formal concept
which furthermore satisfies some other user-defined constraints is computed. For
example, we can extract formal concepts with minimal size constraints for both
set components. Given our previous example, if we want formal concepts with
at least 3 elements in each set, the formal concept ({t3, t6, t7}, {g2, g3, g4, g5})
satisfies the constraint whereas ({t6, t7}, {g1, g2, g3, g4, g5}) does not.

A formal concept associates a maximal set of objects to a maximal set of
properties which are all in relation. Such an association is often too strong in real-
world data. Even though the extraction might remain tractable, the needed post-
processing and interpretation phases turn out to be tedious or even impossible.
Indeed, in noisy data, not only the number of formal concepts explodes but
also many of them are not relevant enough. It has motivated new directions
of research where interesting bi-sets are considered as dense rectangles of true
values [2, 14, 13, 3, 19].

In this paper, we consider a constraint-based mining approach for relevant
fault-tolerant formal concept mining. We decided to look for an adequate for-
malization for three of our recent proposals (i.e., CBS [2], FBS [19], and DRBS

[3]) which have been motivated by a declarative specification for fault-tolerance.
We do not provide the algorithms which have been recently published for solving
inductive queries on such patterns [2, 19, 3]. The contribution of this paper is to
propose a simple framework to support a better understanding of the needed

1 We might say combinatorial rectangles since it is up to arbitrary permutations of
rows and columns in the Boolean matrix.
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trade-off between extraction feasibility, completeness, relevance, and ease of in-
terpretation of these various pattern types. This formalization enables to predict
part of the behavior of the associated solvers and some formal properties can
be established. An original empirical evaluation on both synthetic and real-life
medical data is given. It enables to compare the pros and cons of each proposal.
An outcome of these experiments is that fault-tolerant bi-set mining is possible.
Used in conjunction with other user-defined constraints, it should support the
dissemination of relevant local set pattern discovery techniques for intrinsically
noisy data.

Section 2 provides the needed definitions. Section 3 presents a discussion on
some important properties that fault-tolerant bi-set mining should satisfy. Sec-
tion 4 provides not only experimental results on synthetic data when various
levels of noise are added but also experiments on a real-life medical dataset.
Section 5 is a short conclusion.

2 Pattern Domains

We now define the different classes of patterns to be studied in this paper.
Assume a set of objects O = {t1, . . . , tm} and a set of Boolean properties P =
{g1, . . . , gn}. The Boolean context to be mined is r ⊆ O × P, where rij = 1 if
property gj is satisfied by object ti, 0 otherwise. Formally, a bi-set is an element
(X,Y ) where X ⊆ O and Y ⊆ P. L = 2O × 2P denotes the search space for
bi-sets. We say that a bi-set (X,Y ) is included in a bi-set (X ′, Y ′) (denoted
(X,Y ) ⊆ (X ′, Y ′)) iff (X ⊆ X ′ ∧ Y ⊆ Y ′).

Definition 1. Let us denote by Zl(x, Y ) the number of false values of a row x on
the columns in Y : Zl(x, Y ) = �{y ∈ Y |(x, y) �∈ r} where � denotes the cardinality
of a set. Similarly, Zc(y,X) = �{x ∈ X|(x, y) �∈ r} denotes the number of false
values of a column y on the rows in X.

Let us now give an original definition of formal concepts (see, e.g., [24] for a
classical one). Sub-constraint 2.1 expresses that a formal concept contains only
true values. Sub-constraint 2.2 denotes that formal concept relevancy is enhanced
by a maximality property.

Definition 2 (FC). A bi-set (X,Y ) ∈ L is a formal concept in r iff
(2.1) ∀x ∈ X, Zl(x, Y ) = 0 ∧ ∀y ∈ Y, Zc(y,X) = 0
(2.2) ∀x ∈ O \ X, Zl(x, Y ) ≥ 1 ∧ ∀y ∈ P \ Y, Zc(y,X) ≥ 1.

Example 1. Given r1, we have Zl(t6, {g4, g5, g6}) = 1 and Zc(g5,O) = 2.
({t3, t4, t6, t7}, {g4, g5}) and ({t3, t4}, {g4, g5, g6}) are FC patterns (see Table 2).

Let us now define the so-called DRBS, CBS and FBS fault tolerant patterns.

Definition 3 (DRBS [3]). Given integer parameters δ and ε, a bi-set (X,Y ) ∈
L is called a DRBS pattern (Dense and Relevant Bi-Set) in r iff
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Table 2. A row permutation on r1 to illustrate Example 1

g1 g2 g3 g4 g5 g6 g7

t3 0 1 1 1 1 1 1
t4 0 0 0 1 1 1 0
t6 1 1 1 1 1 0 0
t7 1 1 1 1 1 0 0
t1 1 0 1 0 1 0 0
t2 1 1 1 1 0 1 0
t5 1 0 0 0 0 1 0

(3.1) ∀x ∈ X, Zl(x, Y ) ≤ δ ∧ ∀y ∈ Y, Zc(y,X) ≤ δ
(3.2) ∀e ∈ O \ X, ∀x ∈ X, Zl(e, Y ) ≥ Zl(x, Y ) + ε

∧ ∀e′ ∈ P \ Y, ∀y ∈ Y, Zc(e′,X) ≥ Zc(y,X) + ε
(3.3) It is maximal, i.e., �(X ′, Y ′) ∈ L s.t. (X ′, Y ′) is a DRBS pattern and
(X,Y ) ⊆ (X ′, Y ′).

DRBS patterns have at most δ false values per row and per column (Sub-
constraint 3.1) and are such that each outside row (resp. column) has at least
ε false values plus the maximal number of false values on the inside rows (resp.
columns) according to Sub-constraint 3.2. The size of a DRBS pattern increases
with δ such that when δ > 0, it happens that several bi-sets are included in each
other. Only maximal bi-sets are kept (Sub-constraint 3.3). Notice that δ and ε
can take different values on rows and on columns.

Property 1. When δ = 0 and ε = 1, DRBS ≡ FC.

Example 2. If δ = ε = 1, (X,Y ) = ({t1, t2, t3, t4, t6, t7}, {g3, g4, g5}) is a
DRBS pattern in r1. Columns g1, g2, g6 and g7 contain at least two false values
on X, and t5 contains three false values on Y (see Table 3).

Table 3. A row permutation on r1 to illustrate Example 2

g1 g2 g3 g4 g5 g6 g7

t1 1 0 1 0 1 0 0
t2 1 1 1 1 0 1 0
t3 0 1 1 1 1 1 1
t4 0 0 0 1 1 1 0
t6 1 1 1 1 1 0 0
t7 1 1 1 1 1 0 0
t5 1 0 0 0 0 1 0

The whole collection of DRBS can be computed (in rather small datasets) by
using the correct and complete algorithm DR-Miner described in [3]. It is a
generic algorithm for bi-set constraint-based mining which is an adaptation of
Dual-Miner [9]. It is based on an enumeration strategy of bi-sets which enables
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efficient anti-monotonic and monotonic pruning (Sub-constraint 3.1 in conjunc-
tion with other user-defined constraints which have monotonicity properties),
and partial pruning for Sub-constraint 3.2. Sub-constraint 3.3 is checked in a
post-processing phase.

We now consider a preliminary approach for specifying symmetrical fault-
tolerant formal concepts. Indeed, DRBS class has been designed afterwards.

Definition 4 (CBS [2]). Given an integer parameter δ, a bi-set (X,Y ) ∈ L is
called a CBS pattern (Consistent Bi-Set) iff
(4.1) ∀x ∈ X, Zl(x, Y ) ≤ δ ∧ ∀y ∈ Y, Zc(y,X) ≤ δ
(4.2) No row (resp. column) outside (X,Y ) is identical to a row (resp. column)
inside (X,Y )
(4.3) It is maximal, i.e., �(X ′, Y ′) ∈ L s.t. (X ′, Y ′) is a CBS pattern and
(X,Y ) ⊆ (X ′, Y ′).

Notice that again, parameter δ can be chosen with different values on rows and
on columns.

Example 3. If δ = 1, (X,Y ) = ({t1, t2, t3, t6, t7}, {g1, g3, g5}) is a CBS pattern
in r1. Columns g6 and g7 contain more than one false value on X, t4 and t5
contain more than one false value on Y . g2 and g4 contain only one false value,
but as they are identical on X, either we add both or they are both excluded. As
there are two false values on t1, we do not add them (see Table 4).

Table 4. A row and column permutation on r1 to illustrate Example 3

g1 g3 g5 g2 g4 g6 g7

t1 1 1 1 0 0 0 0
t2 1 1 0 1 1 1 0
t3 0 1 1 1 1 1 1
t6 1 1 1 1 1 0 0
t7 1 1 1 1 1 0 0
t4 0 0 1 0 1 1 0
t5 1 0 0 0 0 1 0

Property 2. When δ = 0, CBS ≡ FC. Furthermore, when ε = 1, each DRBS

pattern is included in one of the CBS patterns.

In [2], the authors propose an algorithm for computing CBS patterns by merging
formal concepts which have been extracted beforehand. The obtained bi-sets are
then processed to keep only the maximal ones having less than δ false values per
row and per column. This principle is however incomplete: every bi-set which
satisfies the above constraints can not be extracted by this principle. In other
terms, some CBS patterns can not be obtained as a merge between two formal
concepts. CBS patterns might be extracted by a straightforward adaptation of
the DR-Miner generic algorithm but the price to pay for completeness would
be too expensive.
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Let us finally consider another extension of formal concepts which is not
symmetrical. It has been designed thanks to some previous work on one of the
few approximate condensed representations of frequent sets, the so-called δ-free
sets [7, 8]. δ-free sets are well-specified sets whose counted frequencies enable
to infer the frequency of many sets (sets included in their so-called δ-closures)
without further counting but with a bounded error. When δ = 0, the 0-closure on
a 0-free set X is the classical closure and it provides a closed set. The idea is to
consider bi-sets built on δ-free sets with the intuition that it will provide strong
associations between sets of rows and sets of columns. It has been introduced for
the first time in [19] as a potentially interesting local pattern type for bi-cluster
characterization.

Providing details on δ-freeness and δ-closures is beyond the objective of this
paper (see [7, 8] for details). We just give here an intuitive definition of these
notions. A set Y ⊆ P is δ-free for a positive integer δ if its absolute frequency
in r differs from the frequency of all its strict subsets by at least δ + 1. For
instance, in r1, {g2} is a 1-free set. The δ-closure of a set Y ⊆ P is the superset
Z of Y such that every added property (∈ Z \ Y ) is almost always true for the
objects which satisfy the properties from Y : at most δ false values are enabled.
For instance, the 1-closure of {g2} is {g1, g2, g3, g4, g5}. It is possible to consider
bi-sets which can be built on δ-free sets and their δ-closures on one hand, on the
sets of objects which support the δ-free set on the properties on the other hand.

Definition 5 (FBS). A bi-set (X,Y ) ∈ L is a FBS pattern (Free-set based
Bi-Set) iff Y can be decomposed into Y = K ∪ C such that K is a δ-free set
in r, C is its associated δ-closure and X = {t ∈ O | ∀k ∈ K, (t, k) ∈ r}. By
construction, ∀y ∈ Y, Zc(y,X) ≤ δ and ∀y ∈ K,Zc(y,X) = 0.

Property 3. When δ = 0, FBS ≡ FC.

Example 4. If δ = 1, {g2} is a δ-free set and ({t2, t3, t6, t7}, {g1, g2, g3, g4, g5})
is a FBS pattern in r1. Another one is ({t3, t4}, {g2, g3, g4, g5, g6, g7}). Notice
that we get at most one false value per column but we have three false values on
t4 (see Table 5).

Table 5. A row permutation on r1 to illustrate Example 4

g1 g2 g3 g4 g5 g6 g7

t2 1 1 1 1 0 1 0
t3 0 1 1 1 1 1 1
t6 1 1 1 1 1 0 0
t7 1 1 1 1 1 0 0
t1 1 0 1 0 1 0 0
t4 0 0 0 1 1 1 0
t5 1 0 0 0 0 1 0

The extraction of FBS can be extremely efficient thanks to δ-freeness anti-
monotonicity. The implementation described in [8] can be straightforwardly ex-
tended to output FBS patterns. Notice that FBS patterns are bi-sets with a
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bounded number of exception per column but every bi-set with a bounded num-
ber of exception per column is not necessarily a FBS pattern. An example of a
bi-set with at most 1 false value per column which is not a FBS pattern in r1 is
({t1, t2, t3, t4, t6, t7}, {g3, g4, g5}).

3 Discussion

This section discusses the desired properties for formal concept extensions to-
wards fault-tolerant patterns. It enables to consider the pros and the cons of the
available proposals and to better understand related open problems.

• Fault tolerance: Can we control the number of false values inside the bi-sets?
• Relevancy: Are they consistent w.r.t. the outside rows and columns? At least
two views on consistency exist. We might say that a bi-set B is weakly consistent
if it is maximal and if we have no row (resp. column) outside B identical to one
row (resp. column) inside B. B is called strongly consistent if we have no row
(resp. column) outside B with at most the same number of false values than one
row (resp. column) of B.
• Ease of interpretation: For each bi-set (X,Y ), does it exist a function which
associates X and Y or even better a Galois connection? If a function exists which
associates to each set X (resp. Y ) at most a unique set Y (resp. X), the inter-
pretation of each bi-set is much easier. Furthermore, it is interesting that such
functions are monotonically decreasing, i.e., when the size of X (resp. Y ) in-
creases, the size of its associated set Y (resp. X) decreases. Such a property is
meaningful: the more we have rows inside a bi-set, the less there are columns
that can be associated to describe them (or vice versa). One of the appreci-
ated properties of formal concepts is clearly the existence of such functions. If
f1(X, r) = {g ∈ P | ∀t ∈ X, (t, g) ∈ r} and f2(Y, r) = {t ∈ O | ∀g ∈ Y, (t, g) ∈ r},
(f1, f2) is a Galois connection between O and P: f1 and f2 are decreasing func-
tions w.r.t. set inclusion.
• Completeness and efficiency: Can we compute the whole collection of spec-
ified bi-sets, i.e., can we ensure a completeness w.r.t. the specified constraints?
Is it tractable in practice?

The formal concepts satisfy these properties except the first one. Indeed, we
have an explicit Galois connection which enables to compute the complete col-
lection in many datasets of interest. These bi-sets are maximal and consistent
but they are not fault-tolerant.

In a FBS pattern, the number of false values are only bounded on columns.
The definition of this pattern is not symmetrical. They are not strongly con-
sistent because we can have rows outside the bi-set with the same number of
false values than a row inside (one of this false value must be on the δ-free set
supporting set). On the columns, the property is satisfied. These bi-sets are how-
ever weakly consistent. There is no function from column to row sets (e.g., using
δ = 1 in r1, ({t2, t6, t7}, {g1, g2, g3, g4, g5}) and ({t1, t6, t7}, {g1, g2, g3, g4, g5})
are two FBS with the same set of columns, see Table 6 left). However, we have
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Table 6. Illustration of the lack of function for FBS (left) and CBS (right)

g1 g2 g3 g4 g5 g6 g7

t1 1 0 1 0 1 0 0
t6 1 1 1 1 1 0 0
t7 1 1 1 1 1 0 0
t2 1 1 1 1 0 1 0
t3 0 1 1 1 1 1 1
t4 0 0 0 1 1 1 0
t5 1 0 0 0 0 1 0

g2 g3 g4 g1

t1 0 1 0 1
t2 1 1 1 1
t3 1 1 1 0
t4 0 0 1 0

a function between 2O to 2P . In many datasets, including huge and dense ones,
complete collections of FBS can be extracted efficiently. Further research is
needed for a better characterization of more relevant FBS patterns which might
remain easy to extract from huge databases, e.g., what is the impact of different
δ-thresholds for the δ-free-set part and the δ-closure computation? how can we
avoid an unfortunate distribution of the false values among the same rows?

CBS are symmetrical on rows and columns. Indeed, the number of exceptions
is bounded on rows and on columns. CBS are weakly consistent but not strongly
consistent (see Example 3). There are neither a function from 2O to 2P nor from
2P to 2O (e.g., ({t1, t2, t3, t4}, {g1, g3, g4}) and ({t1, t2, t3, t4}, {g2, g3, g4}) are
two CBS with δ = 2 having the same set of rows in Table 6 right). According
to the implementation in [2], extracting these patterns can be untractable even
in rather small datasets and this extraction strategy is not complete w.r.t. the
specified constraints.

By definition, a DRBS has a bounded number of exceptions per row and per
column and they are strongly consistent. Two new properties can be considered.

Property 4 (Existence of functions φ and ψ on DRBS (ε > 0)). For
ε > 0, DRBS patterns are embedded by two functions φ (resp. ψ) which associate
to X (resp. Y ) a unique set Y (resp. X).

Property 5 (Monotonicity of φ and ψ on DRBS (δ fixed)). Let Lδ,ε the
collection of DRBS patterns and L′

ττ ′ the subset of Lδ,ε s.t. (X,Y ) ∈ L′
ττ ′ iff

(X,Y ) contains at least a row (resp. column) with τ (resp. τ ′) false values in Y
(resp. X), and such that no row (resp. column) contains more. Then, φ and ψ
are decreasing functions on L′

ττ ′ .

Unfortunately, the functions loose this property on the whole DRBS collection.
Furthermore, we did not identified yet an intensional definition of these functions.
As a result, it leads to a quite expensive computation of the complete collec-
tion. Looking for such functions is clearly one of the main challenges for further
work.

4 Related Work

There are only few papers which propose definitions of set patterns with excep-
tions. To the best of our knowledge, most of the related work has concerned
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mono-dimensional patterns and/or the use of heuristic techniques. In [25], the
frequent set mining task is extended towards fault-tolerance: given a threshold ε,
an itemset P holds in a transaction X iff �(X∩P ) ≥ (1−ε)�P , where �X denotes
the size of X. A level-wise algorithm is proposed but their fault-tolerant prop-
erty is not anti-monotonic while this is crucially needed to achieve tractability.
Therefore, [25] provides a greedy algorithm leading to an incomplete computa-
tion. [22] revisits this work and it looks for an anti-monotonic constraint such
that a level-wise algorithm can provide every set whose density of 1 values is
greater than δ in at least σ situations. Anti-monotonicity is obtained by en-
forcing that every subset of extracted sets satisfies the constraint as well. The
extension of such dense sets to dense bi-sets is difficult: the connection which
associates objects to properties and vice-versa is not decreasing while this is an
appreciated property of formal concepts.

Instead of using a relative density definition, [18] considers an absolute thresh-
old to define fault-tolerant frequent patterns: given a threshold δ, a set of columns
P , such that �P > δ, holds in a row X iff �(X ∩ P ) ≥ �P − δ. To ensure that the
support is significant for each column, they use a minimum support threshold
per column beside the classical minimum support. Thus, each row of an ex-
tracted pattern contains less than δ false values and each column contains more
true values than the given minimum support for each column. This definition is
not symmetrical and the more the support increases, the less the patterns are
relevant.

In [14], the authors are interested in geometrical tiles (i.e., dense bi-sets which
involve contiguous elements given predefined orders on both dimensions). To ex-
tract them, they propose a local optimization algorithm which is not determinis-
tic and thus can not guarantee the global quality of the extracted patterns. The
hypothesis on built-in orders can not be accepted on many Boolean datasets.

Co-clustering (or bi-clustering) can be also applied to extract fault-tolerant
bi-clusters [11, 20] from boolean data. It provides linked partitions on both
dimensions and tend to compute rectangles with mainly true (resp. false) val-
ues. Heuristic techniques (i.e., local optimization) enable to compute one bi-
partition, i.e., a quite restrictive collection of dense bi-sets. In fact, bi-clustering
provides a global structure over the data while fault-tolerant formal concepts
are typical local patterns. In other terms, these bi-sets are relevant but they
constitute a quite restrictive collection of dense bi-sets which lack from formal
properties.

5 Empirical Evaluation

In this section we investigate on the added-value of fault-tolerant pattern mining
by considering experiments on both synthetic and “real world” data. For each
experiment, we compare the formal concept mining algorithm output with the
fault-tolerant approaches. The goal is not to assess the supremacy of a single class
over the other ones, but to present an overview of the principal pros and cons
of each approach in practical applications. First, we process artificially noised
datasets to extract formal concepts and the three types of fault-tolerant bi-sets.
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Then, we mine a “real world” medical dataset to get various collections of bi-sets
for different parameters. Besides evaluating the performances and the size of the
collections, we analyze the relevancy of the extracted bi-sets.

5.1 Experiments on Artificially Noised Data

Let us first discuss the evaluation method. We call r2 a reference data set, i.e.,
a dataset which is supposed to be noise free and contains built-in patterns.
Then, we derive various datasets from it by adding some quantity of uniform
random noise (i.e., for a X% noise level, each value is randomly changed with
a probability of X%). Our goal is to compare the collection of formal concepts
holding in the reference dataset with several collections of fault-tolerant formal
concepts extracted from the noised matrices.

To measure the relevancy of each extracted collection (Ce) w.r.t the reference
one (Cr), we test the presence of a subset of the reference collection in each
of them. Since both sets of objects and properties of each formal concept can
be changed when noise is introduced, we identify those having the largest area
in common with the reference. Our measure, called σ, takes into account the
common area and is defined as follows:

σ(Cr, Ce) =
ρ(Cr, Ce) + ρ(Ce, Cr)

2

where ρ is computed as follows:

ρ(C1, C2) =
1

�C1

∑

(Xi,Yi)∈C1

max
(Xj ,Yj)∈C2

�(Xi ∩ Xj) + �(Yi ∩ Yj)
�(Xi ∪ Xj) + �(Yi ∪ Yj)

Here, Cr is the collection of formal concepts computed on the reference dataset,
Ce is a collection of patterns in a noised dataset. When ρ(Cr, Ce) = 1, all the
bi-sets belonging to Cr have identical instances in the collection Ce. Analogously,
when ρ(Ce, Cr) = 1, all the bi-sets belonging to Ce have identical instances in the
collection Cr. Indeed, when σ = 1, the two collections are identical. High values
of σ, mean not only that we can find all the formal concepts of the reference
collection in the noised matrix, but also that the noised collection does not
contain many bi-sets that are too different from the reference ones.

In this experiment, r2 concerns 30 objects (rows) and 15 properties (columns)
and it contains 3 formal concepts of the same size which are pair-wise dis-
joint. In other terms, the formal concepts in r2 are ({t1, . . . , t10}, {g1, . . . , g5}),
({t11, . . . , t20}, {g6, . . . , g10}), and ({t21, . . . , t30}, {g11, . . . , g15}). Then, we gen-
erated 40 different datasets by adding to r2 increasing quantities of noise (from
1% to 40% of the matrix). A robust technique should be able to capture the
three formal concepts even in presence of noise. Therefore, for each dataset, we
have extracted a collection of formal concepts and different collections of fault-
tolerant patterns with different parameters. For FBS collection, we considered
δ values between 1 and 6. Then we extracted two groups of CBS collections
given parameter δ (resp. δ′) for the maximum number of false values per row
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Fig. 1. Size of different collections of bi-sets and related values of σ w.r.t. noise level
for all types of bi-sets

(resp. per column): one with δ = 1 and δ′ = 1 . . . 3 and the second with δ′ = 1
and δ = 1 . . . 3. Finally we extracted DRBS collections for each combination of
δ = 1 . . . 3 and ε = 1 . . . 3.

In Fig. 1, we only report the best results w.r.t. σ for each class of patterns.
Fig. 1A provides the number of extracted patterns in each collection. Fault-
tolerant bi-set collections contain almost always less patterns than the collection
of formal concepts. The only exception is the CBS class when δ = 1. The DRBS

class performs better than the other ones. The size of its collections is almost
constant, even for rather high levels of noise. The discriminant parameter is ε.
In Fig. 1B, the values of the σ measure for DRBS collections obviously decrease
when the noise ratio increases. In general, every class of fault-tolerant bi-set
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Fig. 2. Size of different collections of bi-sets and related values of σ w.r.t. noise level
for different instances of DRBS collections

performs better than the formal concept one. In terms of relevancy, the DRBS

pattern class gives the best results as well. Notice that the results for FBS and
CBS classes are not significantly different when their parameters change. The
parameter that has the greatest impact on σ value for the DRBS patterns is ε.
For reasonable levels of noise (< 15%), it makes sense to use DRBS. For higher
levels, CBS and FBS perform slightly better.

In Fig. 2, we report the experiments on the extraction of DRBS collections
with δ = 3 and ε = 1 . . . 3. Fig. 2A shows the number of extracted patterns. The
size of the collections is drastically reduced when ε grows. Fig. 2B provides the
σ measure for these collections. Using a higher ε value improves the quality of
the results because less patterns are produced. When the noise level is smaller
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than 5%, the collection of DRBS, with ε = 2..3, is the same as the three formal
concepts holding in r2. This experiment confirms that fault-tolerant bi-sets are
more robust to noise than formal concepts, and that the provided collection for
the crucially needed expert-driven interpretation is considerably reduced.

5.2 Experiments on a Medical Dataset

It is important to get a qualitative feedback about fault-tolerant pattern rel-
evancy in a real dataset. For this purpose, we have considered the real world
medical dataset meningitis [12]. These data have been gathered from children
hospitalized for acute meningitis over a period of 4 years. The pre-processed
Boolean dataset is composed of 329 patients described by 60 Boolean properties
encoding clinical signs (e.g., consciousness troubles), cytochemical analysis of the
cerebrospinal fluid (e.g., C.S.F proteins) and blood analysis (e.g., sedimentation
rate). The majority of the cases are viral infections, whereas about one quarter
of the cases are caused by bacteria. It is interesting to look at the bacterial cases
since they need treatment with suitable antibiotics, while for the viral cases a
simple medical supervision is sufficient. A certain number of attribute-variable
pairs have been identified as being characteristic of the bacterial form of menin-
gitis [12, 21]. In other terms, the quality of the fault-tolerant patterns can be
evaluated w.r.t. available medical knowledge. Our idea is that by looking for
rather large fault-tolerant bi-sets, the algorithms will provide some new asso-
ciations between attribute-value pairs (Boolean properties) and objects. If the
whole sets of objects and properties within bi-sets are compatible (e.g., all the
objects are of bacterial type, and all the properties are compatible with bacterial
meningitis), then we can argue that we got new relevant information.

A straightforward approach to avoid some irrelevant patterns and to reduce
the pattern collection size is to use size constraints on bi-set components. For
this experiment, we enforce a minimal size of 10 for sets of objects and 5 for
sets of properties. Using D-Miner [4], we computed the collection of such large
enough formal concepts and we got more than 300 000 formal concepts in a

Table 7. Size and extraction time for FBS and DRBS in meningitis

Formal Concepts
size 354 366
time 5s

FBS
δ 1 2 3 4 5 6

size 141 983 67 898 39 536 25 851 18 035 13 382
time 19s 10s 6s 4s 3s 2s

DRBS (δ=1)
ε 1 2 3 4 5 6

size - 75 378 22 882 8 810 4 164 2 021
time - 1507s 857s 424s 233s 140s
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relatively short time (see Table 7). It is obviously hard to exploit such a quantity
of patterns. For instance, we were not able to post-process this collection to
produce CBS patterns according to [2].

Then,we tried to extract different collections ofFBS andDRBS. ForFBS, with
δ = 1 (at most one exception per column), we got a 60% reduction on the size of
the computed bi-sets. Using values of δ between 2 and 6, this size is reduced at each
step by a coefficient between 0.5 and 0.3. Finally, we used DR-Miner to extract
different collections of DRBS. The δ parameter was set to 1 (at most one exception
per row and per column) and we used the parameter ε to further reduce the size
of the computed collection. Setting ε = 1 leads to an untractable extraction but,
with ε = 2, the resulting collection is 80% smaller than the related formal concept
collection. Moreover, with δ = 1 and ε = 2 the size of the DRBS collection is much
smaller than the computed FBS collection for the same constraint (i.e., δ = 1). On
the other hand, computational times are sensibly higher.

We now consider relevancy issues. We have been looking for bi-sets containing
the property “presence of bacteria detected in C.S.F. bacteriological analysis”
with at least one exception. This property is typically true in the bacterial type
of meningitis [12, 21]. By looking for bi-sets satisfying such a constraint, we ex-
pect to obtain associations between bacterial meningitis objects and properties
characterizing this class of meningitis. We analyzed the collection of FBS when
δ = 1. We got 763 FBS that satisfy the chosen constraint. Among these, 124
FBS contain only one viral meningitis object. We got no FBS containing more
than one viral object. Properties belonging to these FBS are either characteris-
tic features of the bacterial cases or non discriminant (but compatible) features
such as the age and sex of the patient. When δ = 2, the number of FBS satis-
fying the constraint is 925. Among them, 260 contain at least one viral case of
meningitis, and about 25 FBS contain more than one viral case. For δ = 5 the
obtained bi-sets are no longer relevant, i.e., the exceptions include contradictory
Boolean properties (e.g., presence and absence of bacteria). We performed the
same analysis on DRBS for ε = 2. We found 24 rather large DRBS. Among
them, 2 contain also one viral object. Only one DRBS seems irrelevant: it con-
tains 3 viral and 8 bacterial cases. Looking at its Boolean properties, we noticed
that they were not known as discriminant w.r.t. the bacterial meningitis. If we
analyze the collection obtained for ε = 3, there is only one DRBS satisfying
the constraint. It is a rather large bi-set involving 11 Boolean properties and 14
objects. All the 14 objects belong to the bacterial class and the 11 properties
are compatible with the bacterial condition of meningitis. It appears that using
DRBS instead of FBS leads to a smaller number of relevant bi-sets for our anal-
ysis task (24 against 763). Notice however that DRBS are larger than FBS (for
an identical number of exceptions): it means that the information provided by
several FBS patterns might be incorporated in only one DRBS pattern. More-
over we got no DRBS pattern whose set of properties is included in the set of
properties of another one. This is not the case for FBS.

To summarize this experiment, let us first note that using size constraints to
reduce the size of the collection is not always sufficient. meningitis is a rather



Constraint-Based Mining of Fault-Tolerant Patterns from Boolean Data 69

small dataset which leads to the extraction of several hundreds of thousands of
formal concepts (about 700 000 if no constraint is given). By extracting fault-
tolerant bi-sets, we reduce the size of the collection to be interpreted and this is
crucial for the targeted exploratory knowledge discovery processes. In particular,
for DRBS, the ε parameter is more stringent than the δ parameter. Then, the
relevancy of the extracted patterns can be improved if a reasonable number of
exceptions is allowed. For instance, extracting FBS with a low δ (1 or 2) leads
to relevant associations while a high δ (e.g., 5) introduces too many irrelevant
bi-sets. From this point of view, the DRBS class leads to the most interesting
results and their quality can be improved by tuning the ε parameter. On the
other hand, FBS are easier to compute, even in rather hard contexts, while
computing DRBS remains untractable in many cases.

5.3 Post-experiment Discussion

Both experiments have shown the advantages of using a fault-tolerant bi-set
mining technique in noisy data. Let us emphasize that adding minimal size
constraints on both dimensions to fault-tolerance constraints is useful: it ensures
that the number of false values is quite small w.r.t. the bi-set size. It enables to
speed up the mining process as well because such constraints can be exploited
for efficient search space pruning.

Using CBS might be a good choice when a relatively small collection of formal
concepts is already available. When data are dense or significantly correlated,
such as in meningitis, CBS mining fails even in relatively small matrices. In this
case, we can use either FBS or DRBS. Experiments have shown that the second
class gives more relevant results and that DRBS pattern collection sizes tend
to be significantly smaller. Trigging the ε parameter enables to further reduce
the collection size while preserving relevancy. The problem is however that this
task turns out to be untractable for large matrices. On the other hand, FBS can
be rather easily extracted but their semantics is not symmetrical and it affects
their relevancy. A post-processing step might be used to eliminate all the bi-sets
which do not satisfy the maximum error constraint on rows.

6 Conclusion

We have discussed a fundamental limitation of formal concept mining to cap-
ture strong associations between sets of objects and sets of properties in pos-
sibly large and noisy Boolean datasets. Relevancy issues are crucial to avoid
too many irrelevant patterns during the targeted data mining processes. It is
challenging to alleviate the expensive interpretation phases while still promot-
ing unexpectedness of the discovered (local) patterns. The lack of consensual
extensions of formal concepts towards fault-tolerance has given rise to several
ad-hoc proposals. Considering three recent proposals, we have formalized fault-
tolerant bi-dimensional pattern mining within a constraint-based approach. It
has been useful for a better understanding of the needed trade-off between
extraction feasibility, completeness, relevancy, and ease of interpretation. An
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empirical evaluation on both synthetic and real-life medical data has been given.
It shows that fault-tolerant formal concept mining is possible and this should
have an impact on the dissemination of local set pattern discovery techniques in
intrinsically noisy Boolean data. DRBS pattern class appears as a well-designed
class but the price to pay is computational complexity. The good news are that
(a) the submitted inductive queries on DRBS patterns might involve further
user-defined constraints which can be used for efficient pruning, and (b) one can
look for more efficient data structures and thus a more efficient implementation
of the DR-Miner generic algorithm. A pragmatic usage of available algorithms
is indeed to extract some bi-sets, e.g., formal concepts, and then select some of
them (say B = (X,Y )) for further extensions towards fault-tolerant patterns:
it becomes, e.g., the computation of a DRBS pattern (say B′ = (X ′, Y ′) such
that the constraint B ⊆ B′ is enforced. Also, a better characterization of FBS

pattern class might be useful for huge database processing.
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