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Abstract. Solving inductive queries which have to return complete col-
lections of patterns satisfying a given predicate has been studied exten-
sively the last few years. The specific problem of frequent set mining
from potentially huge boolean matrices has given rise to tens of effi-
cient solvers. Frequent sets are indeed useful for many data mining tasks,
including the popular association rule mining task but also feature con-
struction, association-based classification, clustering, etc. The research in
this area has been boosted by the fascinating concept of condensed rep-
resentations w.r.t. frequency queries. Such representations can be used
to support the discovery of every frequent set and its support without
looking back at the data. Interestingly, the size of condensed representa-
tions can be several orders of magnitude smaller than the size of frequent
set collections. Most of the proposals concern exact representations while
it is also possible to consider approximated ones, i.e., to trade compu-
tational complexity with a bounded approximation on the computed
support values. This paper surveys the core concepts used in the recent
works on condensed representation for frequent sets.

1 Introduction

Knowledge Discovery in Databases (KDD) is a complex interactive and itera-
tive process which involves many steps. Within the inductive database (IDB)
framework, the needed data mining tasks are formalized as inductive queries
which can be used to generate (mine), manipulate, and apply patterns [33,24].
The IDB framework is appealing because it employs declarative queries instead
of ad-hoc procedural constructs. Since its introduction in [1], one of the most
studied problems has been frequent itemset mining (FIM) and the popular post-
processing of found itemsets into collections of association rules. Originally, this
task has been dedicated to basket data analysis. Given a database of purchases
or transactions, the association rule mining problem is to find associations be-
tween sets of products. In this context, the frequent itemsets correspond to sets
of products that are often purchased together. Since then, the scope of associ-
ation rule mining applications has been broadened towards many data analysis
problems which are based on boolean or O/1 data (e.g., documents, WWW ses-
sions, or microarray experiments can be considered as transactions whose items
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are respectively descriptors, uploaded resources or gene expression properties).
Finding the frequent itemsets given a user-defined support threshold is not only
the computationally most intensive step of association rule mining, but also it can
be used for many other mining tasks, e.g., feature construction for classification
or clustering methods. As such, the efficient extraction of frequent itemsets di-
rectly leads to significant performance improvements for many interactive KDD
processes. It is indeed widely recognized that mining frequent itemsets should
be one of the main operations supported by an inductive database management
system.

The FIM problem has been studied as an inductive querying problem (see,
e.g., [10]) and it is a prototypical task for which the general idea of condensed
representations introduced in [39] has been proved extremely useful. The simple
model introduced in [40] enables to abstract the semantics of inductive queries.
Given a languageL of patterns, the theory of a databaseD w.r.t. L and a selection
predicate C is the collection Th(D,L, C) = {φ ∈ L | C(φ,D) = true}. The
predicate selection or constraint C indicates whether a pattern φ is interesting or
not. We say that computing Th(D,L, C) is the evaluation for the inductive query
C where C is defined as a boolean expression over some primitive constraints. The
FIM problem concerns inductive queries where the data is a set of transactions
(i.e., a potentially huge boolean matrix), the patterns are itemsets (i.e., sets of
columns of the boolean matrix), and the constraint C is reduced to a minimal
support constraint. In the first years, most of the research on the FIM problem
has concentrated on extracting all frequent sets as efficiently as possible. Level-
wise and depth-first search methods based on the anti-monotonicity of minimal
support, and efficient data structures have been studied. Since the first algorithm
AIS [1], there have been important historical gains on performance such as:
improving pruning (Apriori [2]) and counting (e.g., Partition [48], Sampling [49]),
reducing the number of database scans (e.g., DIC [15]), and avoiding explicit
candidate generation (e.g., FP-Growth [32]). This list is not exhaustive, and it
should also be noticed that these approaches are often based on a mix of several
improvements. Often, however, the number of frequent itemsets is so huge that
their storage and support counting require unrealistic resources. This blow-up
happens, for example, when we set the support threshold too low, or when the
data is heavily correlated. Indeed, in the worst case, the number of frequent
itemsets can be exponential in the number of items. Even though typical basket
data is sparse and weakly correlated, many new applications of FIM have turned
to be computationally too hard.

One solution to this problem relies on the condensed representation principle.
The idea is to compute CR ⊆ L which might be as concise as possible such that
deriving Th(D,L, C) from CR can be performed efficiently. In the context of huge
database mining, efficiently means without any further access to D. Using border
sets [40], e.g., the maximal frequent itemsets for FIM [5], might be considered
as a good solution: all the subsets of the maximal frequent itemsets are frequent
itemsets (i.e., this condensed representation is a proper subset of the theory)
and can be derived without looking at the data. In most of the applications of
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FIM, however, the user wants not only the collection of the frequent patterns but
also their supports (e.g., to compute association rule interestingness measures
like the confidence values). Now, a condensed representation CR must enable to
regenerate not only the patterns, but also the values of an evaluation function
like the support without accessing the data. If the regenerated values are only
approximated, the condensed representation is called approximate. Otherwise,
it is called an exact condensed representation. For a condensed representation,
different characteristics determine its usefulness, depending on the application
area. It is clear that good characteristics are: the size of the representation (the-
oretically and in practice), the efficiency, and the completeness of the algorithms
which compute these representations, the fast and complete generation of useful
information from the representation (e.g., all the frequent itemsets and their
supports, relevant association rules).

Starting from the formalization of ε-adequate representations [39] and its first
concrete application to FIM in [11], many useful condensed representations have
been designed over the last 5 years. The main objective of this survey is to
present, in a synthetic way, the core concepts used in the recent works on con-
densed representation for frequent itemsets, including: Closed Sets [55,43,44,11]
δ-Free Sets [12,13], Disjunction-Free Sets [17,18], Generalized Disjunction-Free
Sets [37], Non-Derivable Itemsets [20], and the unified framework presented
in [21].

The organization of the paper is as follows. In the next section, we recall
some preliminary definitions. Then, we present several condensed representations
in Sections 3 to 6. Section 7 concerns a recent framework which provides a
unified view of most of these representations. Section 8 provides pointers to
representative algorithms for computing condensed representations. Section 9
gives complementary bibliographic information concerning applications. Finally,
Section 10 is a short conclusion.

2 Preliminary Definitions

The FIM problem is by now well known [1]. We are given a set of items I and a
database D of subsets of I (to allow duplicates, D can be defined as a multi-set).
The elements of D are called transactions. An itemset I ⊆ I is a set of items; its
support in D, denoted supp(I,D), is defined as the number of transactions in D
that contain all items of I. An itemset is called σ-frequent in D if its support in
D exceeds σ. The goal is now, given a minimal support threshold and a database,
to compute the collection F(D, σ) of all frequent itemsets and their supports.
We denote itemsets by strings, e.g., abcd denotes the set {a, b, c, d}.

The presentation of most of the condensed representations needs for the con-
cept of negative border introduced in [40]. The negative border of a collection
of itemsets J , denoted Bd−(J ) is the collection {X |X ⊆ I ∧ X �∈ J ∧ (∀Y ⊂
X, Y ∈ J )}. Intuitively, Bd−(J ) contains the smallest itemsets not in J . For in-
stance, Bd−(F(D, σ)) denotes the collection of the smallest (w.r.t. set inclusion)
infrequent itemsets.
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The last notion that we recall in this section, is anti-monotonicity. It is a
commonly used property leading to safe pruning criteria and efficient pattern
mining (e.g., [40]). A property ρ is anti-monotonic if and only if for all itemsets
X and Y , ρ(X) and Y ⊆ X implies ρ(Y ). Clearly, the minimal support property
is anti-monotonic.

3 Closed Sets

This representation is based on the notion of closed set used in formal concept
analysis [51,28], a branch of lattice theory dedicated to the study of the lattice
structure induced by a binary relation (structure called Galois lattice or concept
lattice).

The application of this theory to frequent itemset mining has been proposed
independently by Pasquier et al. in [43,44] and by Zaki and Ogihara in [55].

In this context, an itemset I is said to be closed in D if and only if no proper
superset of I has the same support than I in D. The closure of an itemset I in D,
denoted cl(I), is the unique maximal superset of I having the same support than
I and a closed itemset is equal to its closure. One elegant alternative definition is
to consider the equivalence classes of the itemsets appearing in the same sets of
transactions, i.e., the equivalence classes of the relation “has the same closure”:
closed itemsets are the unique maximal elements of each equivalence class [4].

For a given support threshold, it is thus sufficient to know the collection of
all frequent closed itemsets (denoted FreqClosed) and their supports, to be able
to generate all the frequent itemsets and their supports, i.e., F . For example,
consider an itemset X , if X has no superset in FreqClosed , this means that cl(X)
is not frequent, and thus X can not be frequent. If X has at least one superset in
FreqClosed , then supp(X) = supp(Y ) where Y = cl(X) is the smallest superset
of X in FreqClosed .

Let us consider the database containing the following transactions: two trans-
actions {a, b}, two transactions {a, b, c, d} two transactions {a, b, c, d, e} and one
transaction {a, b, c, d, e, f} (see Table 1).

In such a database, for example, the itemset abc is not closed, since it has
the same support (i.e., 5 transactions) than abcd, one of its proper supersets.

Table 1. A toy database

Items

Trans. a b c d e f

t1 1 1 0 0 0 0
t2 1 1 0 0 0 0
t3 1 1 1 1 0 0
t4 1 1 1 1 0 0
t5 1 1 1 1 1 0
t6 1 1 1 1 1 0
t7 1 1 1 1 1 1
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The itemset abcd is the maximal superset of abc having the same support, and
thus is the closure of abc. If we choose a support threshold of 2 transactions,
then the frequent closed sets are ab, abcd, abcde and their respective supports
are 7, 5 and 3. Having only at hand these frequent closed sets, to generate the
support of abc we consider the smallest frequent closed set that is a superset of
abc. This frequent closed set is abcd and its support (i.e., 5 transactions) gives
us the support of abc.

4 Free Sets

The free sets (also termed δ-free sets) have been introduced in [12,13] and are
based on the notion of δ-strong rule1. Informally, a δ-strong rule is an association
rule of the form X ⇒δ a, where X ⊆ I, a ∈ I \ X , and δ is a natural number.
This rule is valid in a database if supp(X) − supp(X ∪ {a}) ≤ δ, i.e., the rule is
violated in no more than δ transactions. Since δ is supposed to be small w.r.t.
|D|, δ-strong rules have a high confidence (in particular confidence 1 when δ = 0).

An itemset Y ⊆ I is a δ-free set if and only if there is no valid δ-strong rule
X ⇒δ a such that X ⊂ Y , a ∈ Y and where by definition a �∈ X .

The set of all frequent δ-free sets, denoted FreqFreeδ, and their supports en-
ables to approximate the support of the frequent non-δ-free sets. Let us consider
Y a frequent non-δ-free set. Then, there exists a valid δ-strong rule X ⇒δ a
such that X ⊂ Y and a ∈ Y . Moreover, Y \ {a} ⇒δ a is also valid. Thus the
support of Y can be approximated by the support of the frequent set Y \ {a}
(more precisely, this support is an upper bound of supp(Y )). If Y \ {a} is a
free-set then we have its support, if not, it can be in turn approximated by the
support of a smaller itemset. This recursive process gives an approximation of
the support of Y . Using this principle, the best approximation is the lowest up-
per bound. Thus, in practice, the support of Y is approximated by the minimal
support value of the frequent δ-free sets that are subsets of Y . The error made
has been formalized using the framework of an ε-adequate representation [39],
and is small on common real datasets [13].

When δ = 0, the support of all frequent non-δ-free sets can be determined ex-
actly. In fact, the 0-free sets corresponds to the key patterns (also called generators)
developed independently in [4], and also used in other works, such as [36]. The fol-
lowing property mentioned by several authors (e.g., [4]) establishes a direct link
between 0-free sets and closed sets: any frequent closed sets is the closure of at least
one frequent 0-free sets. As a result, when considering each (frequent) 0-free set
X , cl(X) is a (frequent) closed set but also X ⇒ cl(X) \ X is an association rule
with confidence 1. In fact, 0-free sets are the minimal elements of the already men-
tioned equivalence classes. Since several minimal elements are possible, collections
of 0-free sets are generally larger than collections of closed sets. In our toy example
from Table 1, the 2-frequent 0-free sets are ∅, c, d and e.

Even though the frequent δ-free sets are sufficient to approximate the support
of all frequent non-δ-free sets (or to determine this support exactly when δ = 0),
1 Stemming from the notion of strong rule of [46].
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they are not sufficient to decide whether an itemset is frequent or not. For this
purpose, the collection of frequent δ-free sets is completed by the collection of
minimal infrequent δ-free itemsets, that can be defined as Bd−(FreqFreeδ)∩Freeδ,
where Freeδ is the collection of δ-free sets. Now, given any itemset Y , if there
exists Z ⊆ Y , such that Z is a minimal infrequent δ-free itemsets, then we know
that Y is not frequent. In the other case, the support of Y can be approximated
as described above.

5 Disjunction-Free Sets

5.1 Simple Disjunction-Free Sets

This representation has been proposed in [17,18] as a generalization of 0-free
sets. It is based on disjunctive rules of the form X ⇒ a ∨ b, where X ⊆ I and
a, b ∈ I \ X . Such a rule is said to be valid if any transaction containing X
contains also a or b (maybe both).

Thus the support of X is equal to the sum of supp(X∪{a}) and supp(X∪{b})
minus supp(X ∪ {a, b}) since the transactions containing X ∪ {a, b} have been
counted both in supp(X ∪ {a}) and supp(X ∪ {b}). So, we have the relation
supp(X∪{a, b}) = supp(X∪{a})+supp(X∪{b})−supp(X) and the satisfaction
of this relation is equivalent to the validity of the rule X ⇒ a ∨ b.

Similarly to δ-free sets, an itemset Y ⊆ I is a disjunction-free set if and only
if there is no valid disjunctive rule X ⇒ a ∨ b, such that X ⊂ Y , a, b ∈ Y and
where by definition a �∈ X and b �∈ X . In the following, the collection of all
frequent disjunction-free sets is denoted FreqDFree.

Knowing all elements in FreqDFree and their supports is not sufficient to de-
termine the support of all frequent itemsets. For that purpose the representation
can be completed in different ways. The representation based on disjunction-free
sets proposed in [17] has been revisited in [36] and [18], leading to reduce the
size of this border2.

Intuitively, FreqDFree must be completed with the collection of all the valid
rules of the form X ⇒ a ∨ b, where X ∈ FreqDFree and X ∪ {a, b} is frequent.
This can be illustrated inductively as follows. Suppose that using FreqDFree (and
the supports of its elements) and the collection of rules defined above, we are
able to compute the support of any itemset having a size lesser or equal to k.
Let us consider a frequent itemset Y such that |Y | = k + 1. If Y is disjunction-
free then Y ∈ FreqDFree and we know its support. If Y is not disjunction-free,
then there exists a valid rule X ⇒ a ∨ b such that X ⊂ Y and a, b ∈ Y . By
definition of a valid rule, Y \ {a, b} ⇒ a ∨ b is also valid. Hence the relation
supp(Y ) = supp(Y \ {b}) + supp(Y \ {a}) − supp(Y \ {a, b}) holds. Since Y is
frequent, the itemsets Y \{b}, Y \{a} and Y \{a, b} are also frequent. Moreover,
these three sets have a size strictly lesser than k + 1. Thus, by hypothesis, we
can determine their supports, and then compute supp(Y ).

2 The core part of the representation, i.e. the frequent disjunction-free sets (called
frequent disjunction-free generators in [36]), remains the same.
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5.2 Generalized Disjunction-Free Sets

The generalization of disjunction-free sets towards rules of the form X ⇒ a1 ∨
. . . ∨ ai ∨ . . . ∨ an, has been suggested in [17,18], and explored in [37]. In this
context, an itemset X is a generalized disjunction-free set if and only if for any
value of n > 0, there is no valid rule X \ {a1, . . . , ai, . . . , an} ⇒ a1 ∨ . . . ∨ ai ∨
. . . ∨ an, where {a1, . . . , ai, . . . , an} ⊆ X .

6 Non-derivable Itemsets

In [20], the non-derivable itemsets (NDIs) were introduced as a new condensed
representation. The NDIs rely on a complete set of deduction rules that de-
rive bounds on the support of an itemset. In this section, we first discuss the
deduction rules, and then introduce the representation based on these rules.

6.1 Deduction Rules

In [20], formulas to bound the support of an itemset I, based on the supports of
its subsets were introduced. For all X ⊆ I, the following rule holds:

supp(I) ≤
∑

X⊆J⊂I

(−1)|I\J|+1supp(J) if |I \ X | odd

supp(I) ≥
∑

X⊆J⊂I

(−1)|I\J|+1supp(J) if |I \ X | even

This rule is denoted RX(I). The rules are based on the inclusion-exclusion prin-
ciple [27]. For a proof of the rules, see [19]. Depending on the subset X of I,
the bound is a lower or an upper bound. If |I \ X | is odd, RI(X) is an upper
bound, otherwise it is a lower bound. Thus, given the supports of all subsets of
an itemset I, we can derive lower and upper bounds on the support of I with
the rules RI(X) for all X ⊆ I.

Notice that these rules reflect the monotonicity principle. Let i ∈ I, then
RI\{i}(I) is the following rule:

supp(I) ≤ supp(I \ {i}) .

In Figure 1, all rules RX(I), for I = abcd and X ⊆ I are given.
We denote the greatest lower bound on I by LB(I) and the least upper bound

by UB(I). In practice it occurs often that LB(I) = UB(I). Such a set I is called
a derivable itemset (DI), since we know without counting its support in the
database, that supp(I) = LB(I) = UB(I). In [20] it was shown that derivability
is monotonic. Hence, if a set I is derivable, then are all its supersets.

Another interesting property proven in [20] is that for a non-derivable itemset,
the interval width, that is, w(I) := UB(I) − LB(I), decreases exponentially in
|I|. Thus, w(I ∪ {j}) ≤ w(I)/2, for every itemset I and item j not in I. This
property guarantees that non-derivable itemsets cannot be very large, because
the intervals can only be halved a logarithmic number of times.
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supp(abcd) ≥ supp(abc) + supp(abd) + supp(acd) + supp(bcd)
−supp(ab) − supp(ac) − supp(ad) − supp(bc) R∅(abcd)
−supp(bd) − supp(cd) + supp(a) + supp(b)
+supp(c) + supp(d) − supp(∅)

supp(abcd) ≤ supp(a) − supp(ab) − supp(ac) − supp(ad) Ra(abcd)
+supp(abc) + supp(abd) + supp(acd)

supp(abcd) ≤ supp(b) − supp(ab) − supp(bc) − supp(bd) Rb(abcd)
+supp(abc) + supp(abd) + supp(bcd)

supp(abcd) ≤ supp(c) − supp(ac) − supp(bc) − supp(cd) Rc(abcd)
+supp(abc) + supp(acd) + supp(bcd)

supp(abcd) ≤ supp(d) − supp(ad) − supp(bd) − supp(cd) Rd(abcd)
+supp(abd) + supp(acd) + supp(bcd)

supp(abcd) ≥ supp(abc) + supp(abd) − supp(ab) Rab(abcd)
supp(abcd) ≥ supp(abc) + supp(acd) − supp(ac) Rac(abcd)
supp(abcd) ≥ supp(abd) + supp(acd) − supp(ad) Rad(abcd)
supp(abcd) ≥ supp(abc) + supp(bcd) − supp(bc) Rbc(abcd)
supp(abcd) ≥ supp(abd) + supp(bcd) − supp(bd) Rbd(abcd)
supp(abcd) ≥ supp(acd) + supp(bcd) − supp(cd) Rcd(abcd)
supp(abcd) ≤ supp(abc) Rabc(abcd)
supp(abcd) ≤ supp(abd) Rabd(abcd)
supp(abcd) ≤ supp(acd) Racd(abcd)
supp(abcd) ≤ supp(bcd) Rbcd(abcd)
supp(abcd) ≥ 0 Rabcd(abcd)

Fig. 1. Tight bounds on supp(abcd)

The size of the rules RI(X) increases exponentially with the cardinality of
I \X . The number |I \X | is called the depth of rule RI(X). Since calculating all
rules may require a lot of resources, in practise only rules of limited depth are
used. The greatest lower and least upper bounds on the support of I resulting
from evaluation of rules up to depth k are denoted LBk(I) and UBk(I). Hence,
the interval [LBk(I), UBk(I)] is formed by the bounds calculated by the rules
{RX(I) | X ⊆ I, |I \ X | ≤ k}.
Example 1. Consider the following database:

TID Items
1 a
2 b
3 c
4 a, b
5 a, c
6 b, c
7 a, b, c

supp(abc) ≥ 0
≤ supp(ab) = 2
≤ supp(ac) = 2
≤ supp(bc) = 2
≥ supp(ab) + supp(ac) − supp(a) = 0
≥ supp(ab) + supp(bc) − supp(b) = 0
≥ supp(ac) + supp(bc) − supp(c) = 0
≤ supp(ab) + supp(ac) + supp(bc)

−supp(a) − supp(b) − supp(c) + supp(∅) = 1

These rules are Rabc(X) when X is respectively abc, ab, ac, bc, a, b, c, and ∅. The
first rule has depth 0, the following three rules depth 1, the next three rules depth
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2, and the last rule has depth 3. Hence, LB0(abc) = 0, LB2(abc) = 0, UB1(abc) =
2, UB3(abc) = 1. The interval width for abc is UB(abc) − LB(abc) = 1.

For ab, we have the following rules:

supp(ab) ≥ 0 supp(ab) ≤ supp(a) = 4
supp(ab) ≥ supp(a) + supp(b) − supp(∅) = 1 supp(ab) ≤ supp(b) = 4

Therefore, LB(ab) = 1, and UB(ab) = 4. The interval width for ab is 3. Notice
that the interval width for abc is indeed less than half of the interval width for
ab.

6.2 Representation Based on Deduction Rules

In [20], the NDI representation was introduced, based on the deduction rules.
The NDI-representation is defined as follows:

NDIRep(D, σ) := {(I, supp(I,D)) | supp(I,D) ≥ σ,LB(I) �= UB(I)}

From NDIRep, for every set I it can be decided whether or not it is frequent,
and if it is frequent, its support can be derived. This can be seen as follows: every
itemset I that is not in NDIRep is either infrequent, or derivable (or both). We
calculate and compare the bounds LB(I) and UB(I). If they are not equal, I
must be infrequent (otherwise I would have been in NDIRep). If they are equal,
then we know supp(I) = LB(I) = UB(I). In order to calculate the bounds on
the support of I, however, we need to know the support of all subsets of I. This
can be done in an iterative way; first we calculate the bounds on the subsets
of I that are in the border of NDIRep. For these subsets, the bounds can be
calculated. If one of them is infrequent, I must be infrequent as well. Otherwise,
we know the supports of all subsets of I in the border of NDIRep. Subsequently,
we can calculate bounds on the subsets of I that are just above the border, and
so on, until either the supports of all subsets of I are known and we can calculate
the bounds for I, or one of the subsets turned out to be infrequent.

7 Unified View

In [21], a unified view of 0-freeness, disjunction-freeness and non-derivability was
given. In this framework, the notion of a k-free3 set is central, as it captures dif-
ferent properties in several previously studied exact condensed representations.
It was shown that the different representations can be described as a main com-
ponent, that is based on frequent k-free, and a border. We now describe the
main ideas of this unified view.

7.1 k-Free Sets

The k-free sets are a key tool in the unified framework.
3 Notice that the k-free sets are different from the δ-free sets of Section 5.
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Definition 1.
A set I is said to be k-free, if supp(I) �= LBk(I) and supp(I) �= UBk(I).
A set I is said to be ∞-free, if supp(I) �= LB(I), and supp(I) �= UB(I).
The set of all k-free (∞-free) sets is denoted Freek (Free∞).

As the next property states, these definitions cover freeness, disjunction-freeness,
and generalized disjunction-freeness.

Property 1. [21] Let I be a frequent itemset.

– I is free (δ-free with δ = 0) if and only if I is 1-free
– I is disjunction free if and only if I is 2-free.
– I is generalized disjunction-free if and only if I is ∞-free.

The next property forms the basis of the representations based on k-free sets.

Property 2. k-freeness is anti-monotonic; if a set I is k-free, then all its subsets
are k-free as well. Moreover, if supp(J) = LBk(J) (resp. supp(J) = UBk(J)),
then also supp(I) = LBk(I) (resp. supp(I) = UBk(I)), for all J ⊆ I.

The frequent k-free sets together with the border, that is, the collection

{(I, supp(I)) | I ∈ FFreek} ∪ {(J, supp(J)) | ∀j ∈ J : J \ {j} ∈ FFreek} ,

forms a condensed representation. It can be shown by induction that for every
itemset I, we can derive whether or not it is frequent, and if it is frequent, we
can find its support. For the sets that are frequent and k-free or that are in the
border, the support is known because they are in the representation. Next, let
I be a set such that all its subsets are in the representation. Then the support
of all subsets of I is known, as they are all in the representation. Also, I has
at least one subset J in the border of the k-free sets (otherwise I would have
been in the border itself, and thus in the representation). If J is infrequent,
then I is as well. Otherwise, supp(J) is either LBk(J) or UBk(J). Suppose that
supp(J) = LBk(J). Then we know from Property 2 that also supp(I) = LBk(I).
Since the support of all subsets of I are known, we can calculate LBk(I), and
thus we can derive the support of I. Hence, for all itemsets that contain only
one more item than the sets in the representation, we can find the support. We
can now iteratively repeat this procedure to find the sets that contain two more
items, three more items, and so on, until we have found all frequent itemsets.

7.2 Groups in the Border

Let us recall from Section 5 that frequent free sets alone do not form a condensed
representation. In order to have a condensed representation, part of the border
need to be stored as well. For disjunction-free and generalized disjunction-free
sets, parts of the border are needed as well. The reason that some of the sets of
the border are needed is because otherwise it is impossible to tell why the sets
are not in the representation. For example, for the disjunction-free sets, were



74 T. Calders, C. Rigotti, and J.-F. Boulicaut

they left out because the were infrequent, or because they were not disjunction-
free? And if they are not disjunction-free, what rule should be used to derive the
support? Because of the anti-monotonicity of both frequency and disjunction-
freeness, it suffices to store only the sets on the border; if we know them, we
know the rest as well; either the set on the border is infrequent, and then are all
its supersets as well, or it is not disjunction-free with a certain rule, and in that
case, its supersets are not disjunction-free as well, because of the same rule.

In general, as we illustrated in the previous subsection, this situation applies
for k-free sets as well. Again, some elements of the border are needed to have a
condensed representation.

In [21], a systematic study of which parts of the border are really needed was
made. The border of the frequent k-free sets can be divided into different parts,
based on the deduction rules. For example: the group of infrequent sets in the
border, the group of sets I with supp(I) �= LB1(I), or the group of frequent
sets with supp(I) = LB∞(I). In this way the existing representations could be
improved by storing a smaller part of the border.

7.3 Relations Between the Different Representations

From the unified view of the different representations, many relations between
the representations can be derived. In fact, the k-free based representations form
an interesting hierarchy. The higher k is, the more complex the representation
becomes, but at the same time, the more concise. For example, the disjunction-
free sets are based on the 2-free sets, while the non-derivable itemsets are based
on the ∞-free sets. Henceforth, on the one hand, the NDI-representation is more
concise than the disjunction-free representation, but on the other hand, it can
be far more costly to compute it and to derive the support of the sets which are
not in the collection [21].

8 Algorithms

Many algorithms and variants have been proposed to extract condensed repre-
sentations for frequent itemsets. The main principles are similar to the ones that
have been proposed for the extraction of frequent itemsets. This includes two
main aspects, firstly the strategy used to explore the pattern space and secondly
the representation of the database used to count the support of the patterns.

Nearly all algorithms start the exploration from the empty itemset and go
towards larger ones. This is performed either in a levelwise way (i.e., considering
all patterns of size n and then all patterns of size n + 1) or using a depth-first
approach. For the counting steps, three main representations have been adopted.
The first one called horizontal database layout is a very natural one, in which
the database is handle as a list of transactions. The second is based on a vertical
database layout representation, so that for each pattern the algorithms store
the identifiers of the transactions in which this pattern occur. Such a list, called
occurrence list or tid-list, are used to count the support of the pattern and also to
generate the occurrence lists of longer patterns. And finally, the third approach
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that relies on projected databases, which contain in a compact way, subsets of
the data needed to explore sub-spaces of the whole pattern space.

The main representative algorithms are a combination of these exploration
strategies and database representations. The levelwise strategy is used together
with an horizontal database layout to extract the closed sets by the algorithms
Close [44] and Pascal [4], and also to mine the δ-free sets [12,13], the disjunction-
free sets [17,18] (algorithm HLinHex) and the NDIs [20]. The depth-first strategy
and a projected database approach are combined in the Closet [45] and VLin-
Hex [17,18] algorithms to find respectively closed itemsets and disjunction-free
sets. The vertical database layout has been used conjointly to a depth first ex-
ploration in the Charm [54] and the dfNDI [22] algorithms.

Beyond the usual pruning based on support, the various algorithms used
pruning conditions stemming from properties of the different condensed repre-
sentations (e.g., anti-monotonicity of freeness) to reduce the search space. It
should be noticed that a major effort has been made to obtain efficient imple-
mentations (see, e.g., the first and second Workshop on Frequent Itemset Mining
Implementations [31,6]).

9 Applications

Our goal is not to provide an exhaustive list of applications of condensed repre-
sentations of frequent sets. Instead, we want to point out some typical examples
of such works.

It is obvious that condensed representations of frequent sets can be used
for any application of frequent sets: frequent sets and their supports are just
computed faster from dense and/or correlated data. It is however important to
notice that, when condensed representations enable a high condensation, the re-
generation process might fail due to the size of the complete collection of the
frequent sets. Therefore, it makes sense either to use condensed representations
as cache mechanisms and/or to derive relevant patterns directly from the con-
densed representations. For instance, it is possible to provide summaries or even
covers of large collections of association rules [53,3,30]. One typical application
has been considered in [7] where 0-free sets and their closures are computed from
a boolean gene expression data set. One can also point out the generation of a
synthetic view of rule confidence variations from disjunction-free sets [16]. The
recent Ph.D thesis [41] studies summarization techniques for large collections of
patterns and thus many applications of condensed representations. Association-
based classification (see, e.g., [38]) can also benefit from condensed representa-
tions. For instance, using δ-strong association rules built on δ-free itemsets and
their closures has been proved useful in this context [23]. It is also possible to
exploit condensed representations as patterns for themselves, e.g., closed sets in
boolean gene expression data sets correspond to putative synexpression groups
or transcription modules [8].

Condensed representations can be used for optimizing not only one inductive
query on sets but also sequences of queries on set patterns [34,29]. One condensed
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representation can also be used as an intermediate representation to mine effi-
ciently another one (see, e.g., the generation of closed sets from disjunction-free
sets [18]). Related to inductive querying on sets, one interesting issue concerns
condensed representation mining when the minimal support constraint is not
the only constraint. This has been considered, e.g., for free sets in [14] and for
closed sets in [9].

Finally, we have removed maximal frequent itemsets from consideration while
it can be useful for some applications where the support of every frequent itemset
is not needed, e.g., feature construction. Indeed, border sets have many appli-
cations. For instance, border sets have been studied extensively in the context
of conjunctions of minimal support and maximal support constraints (see, e.g.,
[25]).

10 Conclusion and Perspectives

This paper has surveyed the core concepts used in the recent works on condensed
representations for frequent sets. These concepts have been proved extremely
useful not only for an algorithmic breakthrough concerning the many applica-
tions of frequent set mining but also for deriving more useful patterns, e.g.,
covers of association rules. An important direction of work, is the detailed com-
parison of practical pros and cons of the different representations. This includes
fair experiments on representative real data sets, to compare (1) the representa-
tion sizes (in number of patterns, and also their true sizes in bytes) and (2) their
related time costs, (not only for their extractions, but also for the generation
of patterns like frequent itemsets, rule covers, and for the derivation of other
condensed representations). All the condensed representations mentioned in this
paper are based on equality or inequality relations on itemset supports. Similar
relation on support have been used by other authors in different contexts, e.g.,
for the approximation of the support of itemsets with negation in [39]. It might
be interesting to consider whether the state-of-the-art in condensed representa-
tions enables or not to consider new data mining tasks based on, e.g., association
rule with negated items.

The condensed representation principle can be applied for many other pattern
domains and more sophisticated types of inductive queries. For instance, a similar
concept of freeness has been studied for functional dependency discovery [42]
and various condensed representations have been studied recently for frequent
sequences, trees or graphs (see, e.g., [50,47,52]). It can be also studied w.r.t. quite
general forms of inductive queries which are arbitrary boolean combinations of
some primitive constraints. The results on using collections of version spaces
as condensed representations for queries that involve arbitrary combinations of
monotonic and anti-monotonic constraints provides an interesting starting point
[26]. Also, the relationship between condensed representations and witnesses [35]
might be explored.

As a conclusion, starting from efficient solutions to the Frequent Itemset Min-
ing problem, the notion of condensed representation has been identified as a core
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concept for inductive query optimization and its interest goes far beyond simple
KDD processes based on itemsets, say standard association rule mining. We are
pretty confident that this will become one major topic for research in the next
few years, either for innovative applications of frequent pattern mining or for
new pattern domains.
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