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Abstract. One of the exciting scientific challenges in functional ge-
nomics concerns the discovery of biologically relevant patterns from gene
expression data. For instance, it is extremely useful to provide putative
synexpression groups or transcription modules to molecular biologists.
We propose a methodology that has been proved useful in real cases.
It is described as a prototypical KDD scenario which starts from raw
expression data selection until useful patterns are delivered. It has been
validated on real data sets. Our conceptual contribution is (a) to em-
phasize how to take the most from recent progress in constraint-based
mining of set patterns, and (b) to propose a generic approach for gene
expression data enrichment. Doing so, we survey our algorithmic break-
through which has been the core of our contribution to the IST FET
cInQ project.

1 Introduction

Thanks to a huge research and technological effort, one of the challenges for
molecular biologists is to discover knowledge from data generated at very high
throughput. Indeed, different techniques (including microarray [1] and SAGE [2])
enable to study the simultaneous expression of (tens of) thousands of genes in
various biological situations or experiments. Such data can be seen as expression
matrices in which the expression level of genes (the attributes or columns) are
recorded in various biological situations (the objects or rows). A toy example of
a gene expression matrix is in Fig. 1a. Exploratory data mining techniques are
needed that can, roughly speaking, be considered as the search for interesting
bi-sets, i.e., sets of biological situations and sets of genes which are associated in
some way. Indeed, it is interesting to look for groups of co-regulated genes, also
known as synexpression groups [3], for which a reasonable assumption is that
they participate in a common function within the cell. The association between
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a set of co-regulated genes and the set of biological situations that gives rise to
this co-regulation is called a transcription module and their discovery is a major
goal in functional genomics since it paves the way to a better understanding of
gene regulation networks.

The use of hierarchical clustering (see, e.g., [4]) is quite popular among practi-
tioners. Genes are grouped together according to similar expression profiles. The
same can be done on biological situations. Thanks to the appreciated vizualiza-
tion component introduced with [4], biologists can identify sets of genes that are
co-regulated in some sets of situations. Global patterns like partitions provide
an a priori interesting “global picture” of similarity structures in the whole data.
The results of most of the clustering algorithms are non overlapping groups of
genes. It means that a given gene belongs to one and only one cluster while
we already know genes which clearly participate to various biological functions.
Furthermore, their heuristic nature can lead to different results. Co-clustering or
bi-clustering techniques do not change fundamentally the problem: the benefit
comes from an assessment of the association between both partitions, i.e., sets of
genes and sets of situations but we still get non overlapping partitions based on
a local optimization process [5,6]. In other terms, we get a global pattern which
capture some more or less expected phenomena.

A complementary approach is to look for collections of local patterns in the
gene expression data. Heuristic statistical methods have been proposed to iden-
tify a priori interesting bi-sets from raw numerical data (see, e.g., [7,8]). A
promising direction of research is to consider complete constraint-based mining
techniques on boolean gene expression data sets. The completeness assumption
means that every pattern from the pattern language which satisfies the defined
constraints has to be returned (e.g., every frequent set, every closed set) and,
in this case, we use non heuristic methods. In these data sets, boolean gene
expression properties are encoded, e.g., over-expression, strong variation, co-
regulation. We get boolean data sets which are also called in some application
domains transactional data sets.

Let O denotes a set of objects or rows (e.g., biological situations) and P
denotes a set of properties or columns (e.g., genes). For instance, expression
properties can be encoded into a boolean matrix r ⊆ O×P . (oi, gj) ∈ r denotes
that gene j has the encoded expression property in situation i. For deriving a
boolean context from raw gene expression data, we generally apply discretization
operators that, depending of the chosen expression property, compute thresholds
from which it is possible to decide between wether the true or the false value must
be assigned. On our toy example in Fig. 1, O = {h1, h2, h3, h4, d1, d2, d3, d4} and
P = {g1, g2, . . . , g8}. A value “1” for a biological situation and a gene means
that the gene is up (greater than |t|) or down (lower than −|t|) regulated in this
situation. Using threshold t = 0.4 for Fig. 1a leads to the boolean matrix in
Fig. 1b.

Local pattern discovery tasks can be performed when searching for puta-
tive synexpression groups or transcription modules. To compute synexpression
groups, we can extract the so-called frequent itemsets (sets of genes) from the de-
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rived boolean contexts. Notice that sets of genes that are frequently co-regulated
can be post-processed into association rules [9,10].

In our boolean toy example (Fig. 1), the genes from {g2, g5} are in relation
with {h1, h2, h4, d3}.

The relevancy of the extracted patterns can be improved by considering the
frequent closed itemsets which are the frequent maximal sets of genes whose
encoded expression properties are shared by a same set of biological situations.
For instance, {g2, g4, g5, g7} is a closed itemset because g4 and g7 are the other
genes which are in relation with each element from {h1, h2, h4, d3}. Formally
these local patterns are the set components of formal concepts [11]. A formal
concept is a maximal set of genes associated to a maximal set of situations,
e.g., ({h1, h2, h4, d3}, {g2, g4, g5, g7}) in the data from Fig. 1b. Such patterns can
indeed be considered as putative transcription modules [12,13,14].

Genes

Sit. g1 g2 g3 g4 g5 g6 g7 g8

h1 0.1 -0.5 0.3 0.7 3 0.2 6.1 -0.1
h2 0.2 -0.6 0.4 0.5 1.2 0.1 4.2 -0.5
h3 0.2 -0.3 0.9 0.1 0.4 5 0.5 -0.1
h4 2.1 -0.7 -0.2 0.6 4.1 0.3 5.3 -0.3
d1 0.2 -0.8 0.2 -0.5 0.4 6.3 0.4 -0.6
d2 2.3 -0.4 0.1 0.7 -5.1 0.4 5.8 -0.2
d3 1.2 -0.6 0.1 0.6 3.6 0.3 6.2 -0.1
d4 1.6 0.1 0.3 0.6 2.8 0.4 4.9 0.1

Genes

Sit. g1 g2 g3 g4 g5 g6 g7 g8

h1 0 1 0 1 1 0 1 0
h2 0 1 0 1 1 0 1 1
h3 0 0 1 0 0 1 1 0
h4 1 1 0 1 1 0 1 0
d1 0 1 0 1 0 1 0 1
d2 1 0 0 1 1 0 1 0
d3 1 1 0 1 1 0 1 0
d4 1 0 0 1 1 0 1 0

(a) (b)

Fig. 1. A gene expression matrix (a) and a derived boolean context (b)

This paper is a methodological paper. It abstracts our practice in several real-
life gene expression data analysis projects to disseminate a promising practice
within the scientific community. Our methodology covers the whole KDD process
and not just the mining phase. Starting from raw gene expression data, it sup-
ports the analysis and the discovery of transcription modules via a constraint-
based bi-set mining approach from computed boolean data sets. The generic
process is described within the framework of inductive databases, i.e., each step
of the process can be formalized as a query on data and/or patterns that satisfy
some constraints [15,16]. It leads us to a formalization of boolean gene expression
data enrichment. We already experimented a couple of practical instances of this
approach and it has turned to be crucial for increasing the biological relevancy
of the extracted patterns.

Details about each step of the method and the algorithms or solvers which
have been developed in the context of the cInQ project have been already pub-
lished. Therefore, we avoid most of the technical details, just emphasizing the
main algorithmic principles and the methodological added-value of our “in silico”
approach for transcription module discovery.
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The main publications which are associated to this method are:

– Preprocessing numerical gene expression data to encode boolean gene ex-
pression properties [9,17].

– Using AC-Miner [18] for computing frequent closed sets and interesting
association rules between boolean gene expression properties [9];

– Computing putative transcription modules as formal concepts with a AC-
Miner-like algorithm [12,13];

– Using D-Miner for computing putative transcription modules as formal
concepts under monotonic constraints [19,14];

– Boolean gene expression data enrichment [20,14].
– Post-processing putative transcription modules [21].

2 Classical Approaches in Gene Expression Data Analysis

From a technical point of view, traditional gene expression data analysis is based
on similarities between expression profiles. The expression profile of a gene, is the
sequence of its expression values in different biological situations. For example,
in the drosophila melanogaster data set (see [22]), the expression levels of about
4 000 genes are measured for a number of time points during the drosophila
life cycle. Studying the expression profile of each gene, it is possible to observe
the behavior of such a gene during the whole life cycle. A typical analysis task,
is to compare expression profiles two by two, noticing the principal differences
and similarities between two expression profiles. This is clearly not feasible when
thousands of genes are involved. An important contribution to gene expression
data analysis is due to Eisen et al. (see [4]). They consider a technique based on
hierarchical clustering which enables to compare expression profiles of thousands
of genes simultaneously. Genes sharing similar expression profiles are grouped
together in the same subtree structure of the resulting dendrogram. This sup-
ports the analysis for finding putatively cooperating genes. Dually, biological
situations can be processed with the same clustering algorithm. The resulting
structure enables to associate groups of genes to groups of situations in which
these genes are co-expressed. For instance, in Fig. 2, we can observe dendrograms
for the data set in Fig. 1a. Such an approach can be used for identifying some
patterns like putative transcription modules.

One major problem concerning such a technique is that searching transcrip-
tion modules is not that simple. For instance, most of the traditional clustering
algorithms, including [4], provide non overlapping (bi-)clusters: one gene (resp.
one situation) is associated to only one cluster. Moreover, similarities are com-
puted by considering the whole collection of gene or situation vectors. From the
biological point of view, we know that a gene can participate in various biolog-
ical functions, in different cells and environmental conditions, and at the same
time, it is not influenced by the whole set of situations. Therefore, traditional
unsupervised clustering techniques are not really oriented to the discovery of
transcription modules and synexpression groups, even though they remain use-
ful for exploratory analysis of gene expression data sets.
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Fig. 2. Dendrograms obtained after a hierarchical clustering on the data from Fig. 1a

A solution can come from local patterns, i.e., patterns which hold in part
of the data. For example, the signature algorithm (see [7,8]) enables to find
some putative transcription modules starting from a set of known genes. These
techniques however heuristically compute some a priori interesting patterns. It
makes sense to look at the recent breakthrough concerning complete algorithms
for local set pattern mining.

3 A KDD Approach for Gene Expression Analysis

We introduce our KDD-based methodology for gene expression data analysis. It
exploits our results in several domains like constraint-based data mining, prepro-
cessing of gene expression raw data, and postprocessing of pattern collections.
It has been proved useful for supporting the search of putative transcription
modules.

We decided to work on Boolean gene expression data sets instead of numeri-
cal data sets. Boolean gene expression data sets encode boolean gene expression
properties. The main advantage is that beside encoding techniques based on
raw value discretizations, an expert knowledge can be used for assessing the en-
coding (e.g., checking that computed property is consistent with some available
knowledge). A second advantage is that we can add other boolean properties
of genes within the same context (e.g., the fact that a gene is or not associ-
ated to a given transcription factor). The main drawback is that many different
point of views can be considered on a phenomenon like over-expression and the
proposed encoding techniques have parameters (i.e., thresholds) that can not be
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fixed easily. Of course, if the boolean data do not capture well the chosen prop-
erty, then most of the patterns extracted from it will be irrelevant. Therefore, we
have designed a method for fixing encoding method parameters. Once boolean
gene expression data sets are available, we have considered the extraction of set
patterns like closed sets, association rules, and formal concepts. The number of
discovered patterns can be huge and it happens that the computation turns to
be untractable. To increase both the relevancy and the tractability of this task,
we have considered user-defined constraints which can be pushed into the extrac-
tion phase. The final step consists in post-processing the extracted patterns by
deducing new information on data, and exploiting it for further mining tasks. We
have also designed a technique to visualize similarities between extracted pat-
terns by means of a user-friendly graphical representation. This post-processing
has been proved useful to support pattern interpretation by biologists.

3.1 Pre-processing

We assume that raw expression data, i.e., a function that assigns a real expression
value to each couple (o, g) ∈ O × P is available and that some tasks have been
selected by the molecular biologists. A typical example concerns the discovery of
putative transcription modules that involve at least a given set of genes that are
already known to be co-regulated in a given class of biological situations, e.g.,
diabetic ones.

Due to the lack of space, we do not consider the typical data manipulation
statements that are needed, e.g., for data normalization, data cleaning, gene
and/or biological situation selection according to some background knowledge
(e.g., removing housekeeping genes from consideration).

Discretization. This step concerns gene expression property encoding and is
obviously crucial. The simplest case concerns the computation of a boolean ma-
trix r ⊂ O × P which encode a simple expression property for each gene in
each situation, e.g., over-expression1. Different algorithms can be applied and
parameters like thresholds have to be be chosen. For instance, [9] introduces
three techniques for encoding gene over-expression:

– “Mid-Ranged”. The highest and lowest expression values in a biological sit-
uation are identified for each gene and the mid-range value is defined. Then,
for a given gene, all expression values that are strictly above the mid-range
value give rise to value 1, 0 otherwise.

– “Max - X% Max”. The cut off is fixed w.r.t. the maximal expression value
observed for each gene. From this value, we deduce a percentage X of this
value. All expression values that are greater than the (100 - X)% of the Max
value give rise to value 1, 0 otherwise.

1 Not only it is possible to consider several attributes per gene for one property, e.g.,
one for “strong overexpression” and one for “suspected strong-expression” but also
one can decide to encode various properties per gene like “up-regulation” and “down-
regulation”.



334 R.G. Pensa et al.

– “X% Max”. For each gene, we consider the biological situations in which its
level of expression is in X% of the highest values. These genes are assigned
to value 1, 0 for the others.

These techniques give different points of view on the over-expression biological
phenomenon and it is unclear which one performs better. The impact of the cho-
sen technique and the used parameters on both the quantity and the relevancy of
the extracted patterns is crucial. For instance, the density of the discretized data
depends on the discretization parameters and the cardinalities of the resulting sets
(collections of itemsets, association rules or formal concepts) can be very different.
We clearly need a method to evaluate different boolean encoding (different tech-
niques and/or various parameters) of the same raw data and thus a framework
to support user decision about the discretization from which the mining process
can start. Our thesis is that a good discretization might preserve some proper-
ties that can be already observed from raw data. Let E denote a gene expression
matrix. Let {Bini, i = 1..b} denote a set of different discretization operators and
{ri, i = 1..b} a set of boolean contexts obtained by applying these operators, i.e.
∀i = 1..b, ri = Bini(E). Let S : R

n,m �−→ R denote an evaluation function that
measure the quality of the discretization of a gene expression matrix. We say that
a boolean context ri is more valid than another context rj w.r.t the S measure if
S(ri) > S(rj). In [17], we studied an original method for such an evaluation. We
suggest to compare the similarity between the dendrogram generated by a hierar-
chical clustering algorithm (e.g., [4]) applied to the raw expression data and the
dendrograms generated by the same algorithm applied to each derived boolean
matrix. Given a gene expression matrix E and two derived boolean contexts ri

and rj , we can choose the discretization that leads to the dendrogram which is the
most similar to the one built on E. The idea is that a discretization that preserves
the expression profile similarities is considered more relevant. A simple measure
of similarity between dendrograms has been studied and experimentally validated
on various gene expression data sets.

Let O = {o1, . . . , on} denote the set of n objects. Let T denote a binary tree
built on O. Let L = {l1, . . . , ln} denote the set of n leaves of T associated to
O for which, ∀i ∈ [1 . . . n] , li ≡ oi. Let B = {b1 . . . bn−1} denote the set of the
n−1 internal nodes of T generated by a hierarchical clustering algorithm starting
from L. By construction, we consider bn−1 = r, where r denotes the root of T .
Let us define the two sets:

δ (bi) = {bj ∈ B | bj is a descendent of bi}
τ (bi) = {lj ∈ L | lj is a descendent of bi} .

We want to measure the similarity between a tree T and a reference tree Tref

built on the same set of objects O. For each node bi of T , we define the following
score (denoted SB and called BScore):

SB (bi, Tref) =
∑

bj∈δ(bi)

aj
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aj =
{ 1

|τ(bj)| , if ∃bk ∈ Tref | τ (bj) = τ (bk)
0, otherwise

(1)

To obtain the similarity score of T w.r.t. Tref (denoted ST and called TScore),
we consider the BScore value on the root, i.e.:

ST (T, Tref) = SB (r, Tref ) (2)

As usually, it is interesting to normalize the measure to get a score between 0
(for a tree which is totally different from the reference) and 1 (for a tree which
is equal to the reference). In the TScore measure, since its max value depends
on the tree morphology, we can normalize by ST (Tref , Tref ):

ST (T, Tref) =
ST (T, Tref)

ST (Tref , Tref )
(3)

ST (T, Tref) = 0 means that T is totally different from Tref , i.e., there are no
matching nodes between T and Tref . Indeed, ST (T, Tref) = 1 means that T is
totally similar to Tref , i.e., every node in T matches with a node in Tref . Given
two trees T1 and T2 and a reference Tref , if ST (T1, Tref ) < ST (T2, Tref ), then
T2 is said to be more similar to Tref than T1 according to TScore.

We can apply this technique to both the situation and gene trees. Indeed,
we obtain two different similarity scores. To consider a unique TScore, we can
compute the mean between the two scores. However, in order to force the general
similarity score to be equal to 0 when at least one of the two scores is equal to
0, we prefer to use the square root of the product of the two similarity scores:

SAT (Tg, Ts, Tref ) =
√

ST (Tg, Tref ) · ST (Ts, Tref)

where Tg and Ts denote respectively the dendrograms for genes and situations.
Let us apply this technique to the gene expression matrix in Fig. 1a. We decide

to evaluate the set of discretization operators Bini, where i = 1..10, and such
that values in the matrix whose absolute value is greater than i×10−1 are coded
with a “1” in the boolean matrix, while the other expression values are coded
with a “0” (e.g., for i = 5, the threshold is set to 5 × 10−1 = 0, 5). Therefore,
we can obtain ten different boolean contexts and we process each of them with
the same hierarchical clustering algorithm. Then we compare the resulting gene
and situation dendrograms with those obtained by clustering the original real
expression matrix from Fig. 1a. The results are presented in Fig. 3. We can
observe that for a threshold of 0.4 the square root of the product between the
gene similarity score and the situation similarity score is maximal. If we discretize
the raw data from Fig. 1a with such a threshold, we obtain the boolean context
given in Fig. 1b.

Boolean Gene Expression Data Enrichment. We can mine boolean gene
expression matrices for frequent sets of genes and/or situations, association rules
between genes and/or situations, formal concepts, etc. In the following, we focus
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Fig. 3. Similarity scores w.r.t. threshold values

on mining phases that compute formal concepts. When the extractions are fea-
sible, many patterns are discovered (up to several millions) while only a few of
them are interesting. It is however extremely hard to decide of the interesting-
ness characteristics a priori. We now propose a powerful approach for improving
the relevancy of the extracted formal concepts by boolean data enrichment. It
can be done a priori with some complementary information related to genes
and/or situations. For instance, we can add information about the known func-
tions of genes as it is recorded in various sources like Gene Ontology [23]. Other
information can be considered like the associated transcription factors. A simple
way to encode this kind of knowledge consists in adding a row to r for each
gene property. Dually, we can add some properties to the situations vectors. For
instance, if we know the class of a group of situations (e.g. diabetic vs. non dia-
betic individuals) we can add a column to r. We can also add boolean properties
about, e.g., cell type or environmental features. Enrichment of boolean data can
be performed by more or less trivial data manipulation queries from various
bioinformatics databases. r′ ⊂ O′ × P ′ will denote the relation of the enriched
boolean context.

In Fig. 4a, we add three gene properties tf1, tf2 and tf3. A value “1” for a
gene and a property means that this gene has the property. For instance, tf1

could mean that the gene is regulated by a given transcription factor. Dually, in
Fig. 4b, we consider two classes of situations, namely cH and cD. A value “1” for a
situation and a class means that this situation belongs to the class but this could
be interpreted in terms of situation properties as well. For instance, cD (resp.
cH) could mean whether biological situations are diabetic (resp. healthy) ones. In
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the data in Fig. 4b, a formal concept like ({d2, d3, d4, tf1, tf3}, {g1, g4, g5, g7, cD})
informs us about a “maximal rectangle of true values” that involves four genes,
regulated by two transcription factors tf1 and tf2 in three situations that are
of class cD. This could reveal sets of genes that are co-regulated in diabetic
situations but not in healthy ones. We will discuss later how iterative enrichment
enables to improve the relevancy of the extracted patterns.

Genes

Sit. g1 g2 g3 g4 g5 g6 g7 g8

h1 0 1 0 1 1 0 1 0
h2 0 1 0 1 1 0 1 1
h3 0 0 1 0 0 1 1 0
h4 1 1 0 1 1 0 1 0
d1 0 1 0 1 0 1 0 1
d2 1 0 0 1 1 0 1 0
d3 1 1 0 1 1 0 1 0
d4 1 0 0 1 1 0 1 0

tf1 1 0 0 1 1 0 1 1
tf2 0 1 0 1 1 0 1 0
tf3 1 1 0 1 1 0 1 0

Genes

Sit. g1 g2 g3 g4 g5 g6 g7 g8 cH cD

h1 0 1 0 1 1 0 1 0 1 0
h2 0 1 0 1 1 0 1 1 1 0
h3 0 0 1 0 0 1 1 0 1 0
h4 1 1 0 1 1 0 1 0 1 0
d1 0 1 0 1 0 1 0 1 0 1
d2 1 0 0 1 1 0 1 0 0 1
d3 1 1 0 1 1 0 1 0 0 1
d4 1 0 0 1 1 0 1 0 0 1

tf1 1 0 0 1 1 0 1 1 1 1
tf2 0 1 0 1 1 0 1 0 1 1
tf3 1 1 0 1 1 0 1 0 1 1

(a) (b)

Fig. 4. Two examples of enriched boolean microarray contexts

3.2 Pattern Extraction

Constraint-Based Extraction of Formal Concepts. We consider here for-
mal concept extraction from eventually enriched boolean contexts.

Definition 1 (Bi-set). A bi-set (T, G) is a couple of sets such that T ⊆ O
and G ⊆ P. We often use the term rectangle to denote bi-sets: clearly, a bi-set
defines a combinatorial rectangle in the boolean matrix, i.e., up to permutations
over rows and columns.

Definition 2 (1-rectangle). A bi-set (T, G) is a 1-rectangle in r (constraint
C1R(T, G)) iff ∀t ∈ T and ∀g ∈ G then (t, g) ∈ r. When a bi-set (T, G) is not a
1-rectangle, we say that it contains 0 values.

Definition 3 (Formal concept). A bi-set (T, G) is a concept in r iff (T, G)
is a 1-rectangle and ∀T ′ ⊆ O\T, T ′ 	= ∅, (T ∪ T ′, G) is not a 1-rectangle and
∀G′ ⊆ P\G, G′ 	= ∅, (T, G ∪ G′) is not a 1-rectangle. A concept (T, G) is thus a
maximal 1-rectangle. We denote the associated constraint as CConcept(T, G, r).

Thanks to the mathematical properties of formal concepts [11] (e.g., each
formal concept is built on closed sets for both dimensions), a first approach to
extract the complete collection of formal concepts consists in computing the
whole collection of closed itemsets and their associated objectsets. This can be
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done by slightly modifying existing algorithms for extracting closed sets (see,
e.g., [24] for a survey). Indeed, in some applications, we can use frequent closed
set mining with a 0 frequency threshold. In our biological contexts, the number
of genes (items) is very large (up to thousands) and it is often impossible to
use these algorithms to perform this task. However, in many gene expression
data sets, the number of biological situations, i.e., of objects, is quite small. As
a result, a simple transposition of the matrix solves the problem [12,13]. When
the number of objects increases, this technique is however no more tractable.

To overcome this problem (i.e., working on boolean gene expression matrices
whose none of the two dimensions is small enough), we have been considering
the definition and the use of constraints which enable to reduce both the search
space and the solution space. It is indeed possible to consider formal concepts
whose one set component is large enough [25]. We have studied the possibility
to enforce constraints on both components.

Definition 4 (Constraints on formal concepts). Assume that (T, G) is a
formal concept in r.
Minimal size constraints:

(T, G) satisfies the constraint Ct(r, σ1, T ) iff |T | ≥ σ1.
(T, G) satisfies the constraint Cg(r, σ2, G) iff |G| ≥ σ2.

Syntactical constraints:
(T, G) satisfies the constraint CInclusion(r, X, G) iff X ⊆ G.
(T, G) satisfies the constraint CInclusion(r, X, T ) iff X ⊆ T .

Minimal area constraint:
(T, G) satisfies the constraint Carea(r, σ, (T, G)) iff |T | × |G| ≥ σ.

These constraints are quite obvious to interpret for end-users, here molecular
biologists. Properties of constraints have been studied extensively and mono-
tonicity properties can lead to major optimizations.

Definition 5 (Monotonic and anti-monotonic constraints). Let  be a
partial order on a set S. A constraint C on S is said monotonic (resp. anti-
monotonic) w.r.t.  iff ∀ s1, s2 ∈ S, if s1  s2 and C(s1) (resp. C(s2)) is
satisfied then C(s2) (resp. C(s1)) is also satisfied.

Let us now define our partial order on bi-sets.

Definition 6 (Partial order). The partial order  on bi-sets is defined as
follows: (T1, G1)  (T2, G2) iff T1 ⊆ T2 and G1 ⊆ G2.

Given this partial order, the constraints introduced in Definition 4 are mono-
tonic. We have proposed the D-Miner algorithm for computing every formal
concept which satisfies a given monotonic constraint [19]. It generates the for-
mal concept candidates w.r.t. the chosen partial order such that the defined
constraints can be pushed deeply into the extraction phase. More precisely, D-
Miner first computes a list H of 0-rectangles composed of an object and the
items which are not in relation with it. Then, it builds a tree whose root is the
bi-set (O,P). Each node (T, G) is recursively split using an element (a, b) of H ,
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such that a ∩ T 	= ∅ and b ∩ G 	= ∅, until H is empty: the left child is (T \ a, G)
whereas the right one is (T, G \ b). Another constraint denoted Cleft has to be
pushed to avoid the computation of sub-concepts such that each leaf of the tree
is finally a formal concept. Constraint Cleft is used to check that all the children
of (T \a, G) contain at least one item in b. To illustrate this process, we consider
in Fig 5 the extraction of formal concepts (T, G) from r2 (see Table 1) with an
area larger than 4, i.e., satisfying Carea(r2, 4, ((T, G)). Underlined bi-sets are the
leaves which do not satisfy either Cleft or Carea.

Table 1. Context r2 (left) and its corresponding H list

g1 g2 g3

t1 0 0 1

t2 1 0 1

t3 0 0 1

t4 1 0 1

(t1, g1g2)
(t2, g2)

(t3, g1g2)
(t4, g2)

(t1t2t3t4, g1g2g3)

(t1, g1g2)

(t2t3t4, g1g2g3)

(t2, g2)

(t3t4, g1g2g3)

(t3, g1g2)

(t4,g1g2g3)

Carea(4)

(t3t4, g3)

Cleft

(t2t3t4, g1g3)

(t3, g1g2)

(t2t4,g1g3) (t2t3t4, g3)

Cleft

(t1t2t3t4, g3)

(t2, g2)

(t1t2t3t4, g3)

(t3, g1g2)

(t1t2t3t4, g3)

(t4, g2)

(t1t2t3t4, g3)

Fig. 5. Formal concept computation on r2

In r2, we have only two formal concepts with an area greater or equal to 4:
({t2, t4}, {g1, g3)} and ({t1, t2, t3, t4}, {g3}).

It is quite useful to use these constraints in enriched contexts. For instance
we can search for potentially interesting bi-sets that involve a minimum number
of genes (more than γ) to ensure that the extracted formal concepts are not due
to noise. They must also be made of enough (say ≥ 3) biological situations from



340 R.G. Pensa et al.

D = {d1, .., d4} and few (say ≤ 1) biological situations of H = {h1, .., h4} or
vice versa. In other terms, the potentially interesting bi-sets (T, G) are formal
concepts that verify the following constraints as well:

(|TH | ≥ 3 ∧ |TD| ≤ 1 ∧ |G| ≥ γ) (4)
∨ (|TD| ≥ 3 ∧ |TH | ≤ 1 ∧ |G| ≥ γ) (5)

where TH and TD are the subsets of T that concern respectively the biological
situations from H (e.g., healthy individuals) and the ones from D (e.g., diabetic
patients). Notice that this constraint which is the disjunction of Equation 4 and
Equation 5 is a disjunction of a conjunction of monotonic and anti-monotonic
constraints on 2O and 2P . Using D-Miner, we push the monotonic ones, i.e.:

q1 : CConcept(T, G, r) ∧ Ct(r, 3, TH) ∧ Cg(r, γ, G).

q2 : CConcept(T, G, r) ∧ Ct(r, 3, TD) ∧ Cg(r, γ, G).

Applying the previously defined constraints to the data set in Fig. 4a (using
D-Miner, then post-processing the pattern collection to check non monotonic
ones), we get the two following formal concepts:

({h1, h2, h4, d3, tf2, tf3}, {g2, g4, g5, g7}) for q1 with γ = 1
({h4, d2, d3, d4, tf1, tf3}, {g1, g4, g5, g7}) for q2 with γ = 1

In this example, g1 and g2 are putative interesting genes, each of them char-
acterizes only one class of situations represented in the data set. Moreover, all
these genes are regulated by the same transcription factor tf3. This could mean
that they are involved in the same biological function of the cell.

Another way to proceed, is to consider the class properties cH and cD that we
added into the boolean context in Fig. 4b. We can easily perform an extraction
of formal concepts under the following constraints:

q3 : CConcept(T, G, r) ∧ CInclusion(r, cH , G) ∧ Cg(r, γ, G) ∧ Ct(r, γ′, TH).

With γ = 3 and γ′ = 3, two formal concepts satisfy such a constraint:

({h1, h2, h4, tf2, tf3}, {g2, g4, g5, g7, cH})
({h1, h2, h4, tf1, tf2, tf3}, {g4, g5, g7, cH})

Then, we can ask for a second collection with all the formal concepts (T, G) such
that the class attribute cD is included in G:

q4 : CConcept(T, G, r) ∧ CInclusion(r, cD, G) ∧ Cg(r, γ, G) ∧ Ct(r, γ′, TD).

The formal concepts resulting from the execution of the second query, with γ = 3
and γ′ = 3, are:

({d2, d3, d4, tf1, tf3}, {g1, g4, g5, g7, cD})
({d2, d3, d4, tf1, tf2, tf3}, {g4, g5, g7, cD})
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Notice that gene g2 appears only in the first class of patterns, while g1 appears
only in the second class. In other words, using queries q3 and q4 we focus on the
same putative interesting genes (and the same situations) obtained with queries
q1 and q2. The difference is that we use here only monotonic constraints that
can be efficiently pushed by D-Miner.

Let us compare these results with a classical gene expression data analysis
approach. If we observe the dendrogram obtained by applying a hierarchical
clustering algorithm to the raw data set (see Fig. 2), we can notice that only
gene g4 and g7 are grouped together. Other genes belonging to the pattern
extracted before are relatively far (w.r.t. the height of the branches), from g4

and g7. It is interesting to notice that genes g2 and g5 are considered as not
belonging to the same cluster of g4 and g7, even for a relatively “high” cut.

3.3 Post-processing and Iteration

Formal concept extraction, even constraint-based mining, can produce large
numbers of patterns, especially in the first iteration of the KDD process, i.e.,
when very few information can be used to further constrain the bi-sets to be
delivered. Notice also that, from a practical perspective, not all the specified
constraints can be pushed into the mining algorithm: some of these constraints
have to be checked in a post-processing phase. For instance, we can exploit non
monotonic constraints defined in Equation 4 and Equation 5 (i.e., |TD| ≤ 1 and
|TH | ≤ 1) that can not be pushed within D-Miner.

KDD processes are clearly complex iterative processes for which obtained re-
sults can give rise to new ideas for more relevant constraint-based mining phases
(inductive queries) or data manipulations. When a collection of patterns has been
computed, it can be used for deriving new boolean properties. In particular, let
us assume that we got two sets of patterns that can characterize two classes of
genes and, dually, two classes of situations. Therefore, we can define two new
class properties related to genes and their dual class properties related to sit-
uations. The boolean context r′ can then be extended towards r′′ ⊂ O′′ × P ′′.
Considering our running example, we can associate a new property pH (resp. pD)
for the genes not belonging to the formal concepts which are returned by q4 (resp.
q3). It leads to the enriched boolean context given in Fig. 6. New constraints on
the classes can be used for the next mining phase. New set size constraints can
be defined as well. As a result, a new iteration will provide a new collection of
formal concepts which is more relevant according to the user current task. Each
time a collection of formal concepts is available, we can decide either to analyze
it by hand, e.g., studying each genes separately, or looking for new boolean data
enrichment and revisited constraints for the next iteration. Also, genes to which
we can associate new functions, are the best candidates to be chosen for iterating
the KDD process and take advantage of larger seed sets of genes.

In any cases, at the end of the process, we have a set of putative interesting
genes and a set of putative interesting situations. Iterations can be stopped when
we have a set of putative interesting genes that can be easily studied by hand. A
priori knowledge is very important at this point. In our running example, we did
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Genes

Sit. g1 g2 g3 g4 g5 g6 g7 g8 cH cD

h1 0 1 0 1 1 0 1 0 1 0
h2 0 1 0 1 1 0 1 1 1 0
h3 0 0 1 0 0 1 1 0 1 0
h4 1 1 0 1 1 0 1 0 1 0
d1 0 1 0 1 0 1 0 1 0 1
d2 1 0 0 1 1 0 1 0 0 1
d3 1 1 0 1 1 0 1 0 0 1
d4 1 0 0 1 1 0 1 0 0 1

tf1 1 0 0 1 1 0 1 1 1 1
tf2 0 1 0 1 1 0 1 0 1 1
tf3 1 1 0 1 1 0 1 0 1 1

pH 0 1 1 0 0 1 0 1 1 1
pD 1 0 1 0 0 1 0 1 1 1

Fig. 6. A new enriched boolean context

not introduced any additional information about known genes, i.e., genes that
are already known as being directly involved in the analyzed problem. However,
studying interactions between genes whose functions are already identified, and
new putative interesting genes discovered by means of our methodology, can help
biologists to suggest putative functions for new genes.

An other important problem concerns the postprocessing of formal concept
collections. We need efficient techniques to support the subjective search for in-
teresting patterns. In [21], we introduced an “Eisen-like” visualization technique,
that enables to group similar formal concepts by means of a hierarchial cluster-
ing algorithm. We defined a distance between two formal concepts and then a
distance between two clusters of formal concepts. For the first step, we use the
symmetrical set difference ∆ between two sets Si and Sj : Si∆Sj = Si∪Sj\Si∩Sj .

Definition 7. (Distance between two formal concepts) Assume that ci =
(Ti, Gi) and cj = (Tj , Gj) are two formal concepts, the distance d between ci

and cj is defined as

d (ci, cj) =
1
2
|Ti∆ Tj |
|Ti ∪ Tj | +

1
2
|Gi∆ Gj |
|Gi ∪ Gj | (6)

where |S| denotes the cardinality of S.

To compute the distance between two clusters of formal concepts, we associate
a pseudo-concept to each cluster. A pseudo-concept is a unique representation
for all the formal concepts within a cluster. It is composed of two fuzzy sets, one
set of genes and one set of biological situations: a degree of membership αi (a
real number between 0 and 1) is associated to each element ei of the referential
set (i.e., O or P). Value 0 (resp. value 1) denotes that the element does not
belong (resp. belongs) to the set.
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Definition 8. (Pseudo-concept) A pseudo-concept is denoted by (T ′, G′, N) ⊆
O′ ×P ′ ×N with O′ = O× [0; 1] and P ′ = P × [0; 1]. The weight N denotes the
number of formal concepts represented by the pseudo-concept.

It is possible to generalize the distance d for measuring the similarity between
pseudo-concepts. The classical fuzzy set operators (indexed with f) are used:

S1 ∪f S2 = {(o, max{α1, α2}) | o ∈ O, (o, α1) ∈ S1 and (o, α2) ∈ S2}
S1 ∩f S2 = {(o, min{α1, α2}) | o ∈ O, (o, α1) ∈ S1 and (o, α2) ∈ S2}
S1 \f S2 = {(o, α1 − α2) | o ∈ O, (o, α1) ∈ S1 and (o, α2) ∈ S2}
|S1|f =

∑

o∈O
α, (o, α) ∈ S1

Thanks to this approach, we can reduce the impact of concept multiplication
in noisy boolean data and support the post-processing of tens of thousands of
formal concepts.

Example 1. In the boolean context from Fig. 1b, twelve formal concepts (with
at least one gene and one situation) can be extracted:

Concept1 : ({h1, h2, h3, h4, d2, d3, d4}, {g7})
Concept2 : ({h3, d1}, {g8})
Concept3 : ({h3}, {g3, g6, g}7)
Concept4 : ({h1, h2, h4, d1, d2, d3, d4}, {g4})
Concept5 : ({h1, h2, h4, d2, d3, d4}, {g4, g5, g7})
Concept6 : ({h1, h2, h4, d1, d3}, {g2, g4})
Concept7 : ({h1, h2, h4, d3}, {g2, g4, g5, g7})
Concept8 : ({h4, d2, d3, d4}, {g1, g4, g5, g7})
Concept9 : ({h2, d1}, {g2, g4, g8})
Concept10 : ({d1}, {g2, g4, g6, g8})
Concept11 : ({h2}, {g2, g4, g5, g7, g8})
Concept12 : ({h4, d3}, {g1, g2, g4, g5, g7})

By applying a hierarchical clustering associated to a simple visualization tech-
nique (using Treeview from [4]), we provide the pictures (rectangles) in Fig. 7.

a) b)

Fig. 7. Situation (a) and gene (b) rectangles resulting of a hierarchical clustering of
concepts
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A dark-colored cell in the rectangle means that the related gene (or situation)
is present in the related formal concept. Notice that groups of similar formal
concepts can be identified by looking for relatively dense red zones either in the
situation rectangle or in the gene rectangle.

Thanks to this graphical approach and in contrast to the dendrograms ob-
tained with a simpler approach (see Fig. 2), we can notice a strong correlation
between genes involved in previously extracted patterns (g1,g2,g4,g5,g7), and a
disposition of situations which is more consistent w.r.t. their class values.

4 Biological Validations

The method and the techniques we have considered in the previous sections
have been applied with success to different real-life data sets and problems. In
some experiments, we have considered well-documented gene expression data sets
(i.e., containing accurate biological knowledge) to validate the methods by re-
discovery (see, e.g., [17,20]). We have also applied this approach to original gene
expression data sets from which new biological knowledge has been extracted.
For instance, in [9], the authors have used closed sets (and more precisely some
association rules derived from them) to derive biologically relevant knowledge
from human SAGE data [26]. The selection on the SAGE data concerns the
expression level of 822 genes measured in 74 biological situations (cancerous
and not cancerous tissues belonging to various human organs). After an over-
expression encoding by means of the “Max - X% Max” method (see Section 3.1),
homogeneous closed sets of genes have been studied in detail and, among others,
it enabled to suggest a putative function for an EST-encoded protein.

A successful application of constraint-based extraction of formal concepts (see
Section 3.2) to an original microarray data set has been described in [14]. Each
DNA microarray contains the RNA expression level of about 20 000 genes before
and after a perfusion of insulin in human skeletal muscle [27]. It is a nice example
of gene expression data enrichment: the considered context encodes information
about different gene properties that are biologically relevant (expression level
for healthy people and for diabetic patients, regulation by known transcription
factors). The set O of situations was thus partitioned into the set H, the set
D and a set of transcription factors F . After a typical data preprocessing (e.g.,
removing genes whose none of their transcription factors are known), the final
boolean context contained 104 objects (94 transcription factors and 10 biological
situations, 5 for healthy individuals and 5 for diabetic patients) and 304 genes.
Even though a formal concept discovery from such a boolean context has turned
out to be very hard, pushing monotonic constraints has enabled to get signifi-
cant results. Potentially interesting bi-sets (T, G) were considered as the formal
concepts satisfying the following constraints:

(|TH | ≥ 4 ∧ |TD| ≤ 2 ∧ |G| ≥ γ) (7)
∨ (|TD| ≥ 4 ∧ |TH | ≤ 2 ∧ |G| ≥ γ) (8)



Contribution to Gene Expression Data Analysis 345

The authors have considered in details one of the extracted formal concept
which is particularly interesting as it contains genes which are either up-regulated
or down-regulated after insulin stimulation, this being based on the homology
of their promotor DNA sequences (associated transcription factors) [14]. This is
indeed a kind of results we hardly get with classical approaches like [4].

5 Conclusion

We have considered data mining methods and tools which can support knowl-
edge discovery from gene expression data. A prototypical KDD scenario which
takes the most from recent progress in constraint-based set pattern mining has
been described. Importantly, some of our results on algorithms have been in-
deed motivated by the gene expression data mining task. For instance, it has
motivated the design of D-Miner because of the failure of available algorithms
for closed set mining on biological data sets of interest. Concrete instances of
this scenario have been considered in several real-life gene expression data anal-
ysis problems, including the whole human SAGE [13] data and the microrray
data described in [27]. We better understand the crucial issues of boolean gene
expression property encoding. Also, boolean gene expression data enrichment
appears to be a powerful technique for supporting the iterative search of rel-
evant patterns w.r.t. a given analysis task. The perspectives of this research
include the need for fault-tolerant formal concept mining, i.e., strong associa-
tions which might however accept some exceptions, but also the multiple uses
of the extracted patterns. For instance, local patterns like formal concepts could
be used in complementarity with (bi-)clustering techniques, typically to support
accurate (bi-)cluster characterization.

Acknowledgements. Most of the results reported in this paper have been
obtained during the cInQ IST-2000-26469 European project funded by the Eu-
ropean Union. Our research on methodological approaches to gene expression
data analysis is also partially funded by CNRS ACI MD46 Bingo. Finally, we
would like to thank our colleagues in molecular biology, Olivier Gandrillon and
Sophie Rome who have provided such nice challenges for data mining.

References

1. DeRisi, J., Iyer, V., Brown, P.: Exploring the metabolic and genetic control of gene
expression on a genomic scale. Science 278 (1997) 680–686

2. Velculescu, V., Zhang, L., Vogelstein, B., Kinzler, K.: Serial analysis of gene ex-
pression. Science 270 (1995) 484–487

3. Niehrs, C., Pollet, N.: Synexpression groups in eukaryotes. Nature 402 (1999)
483–487

4. Eisen, M., Spellman, P., Brown, P., Botstein, D.: Cluster analysis and display of
genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95 (1998) 14863–
14868



346 R.G. Pensa et al.

5. Robardet, C., Feschet, F.: Efficient local search in conceptual clustering. In: Pro-
ceedings DS’01. Number 2226 in LNCS, Springer-Verlag (2001) 323–335

6. Dhillon, I., Mallela, S., Modha, D.: Information-theoretic co-clustering. In: Pro-
ceedings ACM SIGKDD 2003, ACM (2003) 1–10

7. Ihmels, J., Friedlander, G., Bergmann, S., Sarig, O., Ziv, Y., Barkai, N.: Revealing
modular organization in the yeast transcriptional network. Nature Genetics 31
(2002) 370–377

8. Bergmann, S., Ihmels, J., Barkai, N.: Iterative signature algorithm for the analysis
of large-scale gene expression data. Physical Review 67 (2003)

9. Becquet, C., Blachon, S., Jeudy, B., Boulicaut, J.F., Gandrillon, O.: Strong as-
sociation rule mining for large gene expression data analysis: a case study on hu-
man SAGE data. Genome Biology 12 (2002) See http://genomebiology.com/2002/
3/12/research/0067.

10. Creighton, C., Hanash, S.: Mining gene expression databases for association rules.
Bioinformatics 19 (2003) 79 – 86

11. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of con-
cepts. In Rival, I., ed.: Ordered sets. Reidel (1982) 445–470

12. Rioult, F., Boulicaut, J.F., Crémilleux, B., Besson, J.: Using transposition for
pattern discovery from microarray data. In: Proceedings ACM SIGMOD Workshop
DMKD’03, San Diego (USA) (2003) 73–79

13. Rioult, F., Robardet, C., Blachon, S., Crémilleux, B., Gandrillon, O., Boulicaut,
J.F.: Mining concepts from large SAGE gene expression matrices. In: Proceedings
KDID’03 co-located with ECML-PKDD 2003, Catvat-Dubrovnik (Croatia) (2003)
107–118

14. Besson, J., Robardet, C., Boulicaut, J.F., Rome, S.: Constraint-based concept
mining and its application to microarray data analysis. Intelligent Data Analysis
journal 9 (2005) 59–82

15. Boulicaut, J.F., Klemettinen, M., Mannila, H.: Modeling KDD processes within
the inductive database framework. In: Proceedings DaWaK’99. Volume 1676 of
LNCS., Florence, I, Springer-Verlag (1999) 293–302

16. De Raedt, L.: A perspective on inductive databases. SIGKDD Explorations 4
(2003) 69–77

17. Pensa, R., Leschi, C., Besson, J., Boulicaut, J.F.: Assessment of discretization tech-
niques for relevant pattern discovery from gene expression data. In: Proceedings
4th ACM SIGKDD Workshop BIOKDD’04, Seattle (USA), ACM (2004) 24–30

18. Boulicaut, J.F., Bykowski, A., Rigotti, C.: Free-sets: a condensed representation
of boolean data for the approximation of frequency queries. Data Mining and
Knowledge Discovery journal 7 (2003) 5–22

19. Besson, J., Robardet, C., Boulicaut, J.F.: Constraint-based mining of formal con-
cepts in transactional data. In: Proceedings PAKDD’04. Volume 3056 of LNAI.,
Sydney (Australia), Springer-Verlag (2004) 615–624

20. Pensa, R., Besson, J., Boulicaut, J.F.: A methodology for biologically relevant
pattern discovery from gene expression data. In: Proceedings DS’04. Volume 3245
of LNAI., Padova (Italy), Springer-Verlag (2004) 230–241

21. Robardet, C., Pensa, R., Besson, J., Boulicaut, J.F.: Using classification and visu-
alization on pattern databases for gene expression data analysis. In: Proceedings
PaRMa’04 co-located with EDBT 2004. Volume 96 of CEUR Workshop Proceed-
ings., Heraclion - Crete, Greece (2004)

22. Arbeitman, M., Furlong, E., Imam, F., Johnson, E., Null, B., Baker, B., Krasnow,
M., Scott, M., Davis, R., White, K.: Gene expression during the life cycle of
drosophila melanogaster. Science 297 (2002) 2270–2275



Contribution to Gene Expression Data Analysis 347

23. Ashburnerand, M., Ball, C., Blake, J., Botstein, D., et al.: Gene ontology: tool
for the unification of biology. the gene ontology consortium. Nature Genetics 25
(2000) 25–29

24. Goethals, B., Zaki, M.: Proceedings of the IEEE ICDM Workshop on Frequent
Itemset Mining Implementations FIMI 2003, Melbourne, USA (2003)

25. Stumme, G., Taouil, R., Bastide, Y., Pasqier, N., Lakhal, L.: Computing iceberg
concept lattices with TITANIC. Data & Knowledge Engineering 42 (2002) 189–222

26. Lash, A., Tolstoshev, C., Wagner, L., Schuler, G., Strausberg, R., Riggins, G.,
Altschul, S.: SAGEmap: A public gene expression resource. Genome Research 10
(2000) 1051–1060

27. Rome, S., Clément, K., Rabasa-Lhoret, R., Loizon, E., Poitou, C., Barsh, G.S.,
Riou, J.P., Laville, M., Vidal, H.: Microarray profiling of human skeletal muscle
reveals that insulin regulates 800 genes during an hyperinsulinemic clamp. Journal
of Biological Chemistry (2003) 278(20):18063-8.


	Introduction
	Classical Approaches in Gene Expression Data Analysis
	A KDD Approach for Gene Expression Analysis
	Pre-processing
	Pattern Extraction
	Post-processing and Iteration

	Biological Validations
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




