
     

 
 
 
 
 
 
 
 

FROM CASE-BASED REASONING TO TRACES-BASED REASONING 
 

Alain Mille 
LIRIS UMR CNRS 5205 

Université Lyon1, Insa-Lyon, Université Lyon2, ECL 
 
 
 

 
Abstract: CBR is an original paradigm to adapt solutions of past problems in order to 
solve new similar problems. A case is a problem with its solution and cases are stored in 
a case library. The reasoning process obeys to a cycle allowing to “learn” from new 
solved cases. This approach is also viewed as a lazy learning method when applied for 
classification. This AI technology is applied for various tasks as designing, planning, 
diagnosing, information retrieving, etc. The talk will be the occasion to go a step further 
in reusing past experience, by considering traces of computer use as experience 
knowledge containers for contextual and situation based problem solving.Copyright © 
2002 IFAC 
 

Keywords: Problem solvers, Artificial intelligence, knowledge-based systems, knowledge representation 

 
1 CASE BASED REASONING 

1.1 CBR foundations 
Minsky, Schank, Abelson and others gave general 
directions for reusing past problem solving schemes 
to solve new problems in new situations. In this 
paper, we focus on Minsky and Schank pioneers 
works. Interested reader will find biographical 
information about them in (Crevier 1993) for 
example. 
Marvin MINSKY draws main lines of what we could 
call “Stereotypes Based Reasoning”1 
Marvin Minsky argues that usual theoretical 
approaches in AI try to be too “precise”, local and not 
really structured to face “real world” problems. He 
considers several approaches through Artificial 
Intelligence and Cognitive Psychology: 

• A common proposal, he made with Papert, 
to divide “knowledge” in structures they 
called “microworlds” 

• The definition of “problem spaces” by 
Newell and Simon 

• The expression of linguistic objects by 
Schank, Abelson and Norman. 

He describes these approaches as promising by 
contrast with classical ones attempting to describe 
Knowledge as set of pieces of knowledge, with no 
particular structure. Marvin Minsky proposes the 
notion of “Frame” as a convenient structure to 
support these theories. A frame is supposed to 
describe the “context” in which the reasoning process 
has to be done.  

                                                 
1(Minsky 75) and 
http://web.media.mit.edu/~minsky/papers/Frames/fra
mes.html   

As Minsky explains “Here is the essence of the 
theory: When one encounters a new situation (or 
makes a substantial change in one's view of the 
present problem) one selects from memory a structure 
called a Frame. This is a remembered framework to 
be adapted to fit reality by changing details as 
necessary.” 
A frame has three main parts: 

• A part about its use (its goal and context of 
use) 

• A part about what can occurs after using this 
frame 

• A part about what to do if there is an 
unwanted result after frame application 

“We can think of a frame as a network of nodes and 
relations. The "top levels" of a frame are fixed, and 
represent things that are always true about the 
supposed situation. The lower levels have many 
terminals–"slots" that must be filled by specific 
instances or data. Each terminal can specify 
conditions its assignments must meet. (The 
assignments themselves are usually smaller "sub-
frames.") Simple conditions are specified by markers 
that might require a terminal assignment to be a 
person, an object of sufficient value, or a pointer to a 
sub-frame of a certain type. More complex conditions 
can specify relations among the things assigned to 
several terminals”. 
The complete frame-system works like a frame with 
“always true” things at the very top nodes and 
“sensors on the world” at the lowest level. 
 
Roger Schank: one of the first to speak of Case Based 
Reasoning 
Understanding stories in natural language was one of 
the first objectives of Schank & al. when he 



     

developed his theory on CBR. The basic idea is that 
mental schemes are guiding the understanding of 
texts, allowing filling the “gaps” of what was not 
said. “Understanding is Explaining” said Robert 
Schank. 
Let’s consider the following sentences: “John went to 
the restaurant. He got some ham. It was good.”. 
Understanding this short text needs to know that 
when we got ham in a restaurant, it is for eating. 
Nothing of that is said in the text, but we guess that 
John ate the ham… Robert Schank proposes to 
represent the behavior (here, in a restaurant) by a 
“script” splitting it in different steps which can be 
finer scripts and so on.  
So, a script describes an episode according to a 
known behaviour by the way of a sequence of events 
as they are awaited (usual experimented situations). 
When a new situation is encountered, the script is 
adapted to fit with this exception. In order to 
complete events with useful information, scripts 
contain other information and mainly: 

• Actual goals, 
• Current plans, 
• Social links, 
• Played roles, 
• Character traits, 
• And generally speaking, anything indicating 

the behaviour of the script in a given 
situation. 

Scripts and schemas share many properties but what 
is really different is the status of “immediate 
experience”. While Minsky argues that frames are 
“idealistic stereotypes” of encountered situations, 
Schank proposes to keep in memory “concrete 
episodes” as they occurred in reality. They are 
organized in a dynamic memory and reused by 
adaptation. Episodes memory is self organized by a 
simple generalization process. 
 
1.2 Knowledge and CBR principles 
Minsky and Schank were CBR pioneers but Janet 
Kolodner worked explicitly on CBR and wrote the 
first book on the subject in 1993 (Kolodner 1993). 
From an engineering point of view, Agnar Aamodt 
and Enric Plazza (1994) proposed a CBR reasoning 
cycle and a lot of correlated research works and 
applications were developed since [http://www.ai-
cbr.org]. A paper to appear in “Knowledge 
Engineering Review” makes the state of the art on the 
subject (Mantaras and al. 2005). 
 
What is a case? 
A case is the description of a solving problem 
episode. Its structure fits the situation of the task: 
diagnostic, planning, decision helping, design, etc. 
For pedagogical purpose, we consider a case as a list 
of descriptors (descriptors can be structured). 
A case is composed of a problem part and a solution 
part: ))(,( pbSolpbCase = . A source case 

))(,(_ sourceSolsourcecasesource =  is a case from 
which the solution )(sourceSol will be reuse in order to 

solve a new problem we call a target case 
))(,(_ sourceSoltargetcasetarget = . 

A case is described by descriptors: 
• source={ds

1..ds
n} where ds

i is a source 
problem descriptor. 

• Sol(source)={Ds
1..Dsm} where Ds

i is a 
source solution descriptor 

• target={dt
1..dt

n} where dt
i is a target 

problem descriptor. 
• Sol(target)={Dt

1..Dt
n} where Dt

i is a target 
solution descriptor. 

Example 1: 
Consider a problem of finding the adequate price for 
a flat. 
Problem part 
ds

1 = Flat surface (real) 
ds

2 = Flat location (a structure) 
ds

3 = Flat state (a list of defects) 
Solution part 
Dt

1 = Sale price of the flat (real) 
Dt

2 = Sale conditions (payment facilities for example) 
Example 2 
Consider a task of car diagnosis. 
Problem part 
ds

1 = Noises (list of symbolic descriptors) 
ds

2 = External symptoms (list of symbolic descriptors) 
ds

3 = Car model (symbolic descriptor) 
ds

4 = First circulation date (date descriptor) 
Solution part 
Dt

1 = Mechanical pieces to troubleshoot (list of 
symbolic descriptors) 
Dt

2 = Diagnosed faults on the mechanical pieces 
 
Ontology of description attributes 
To match and compare cases, attribute values have to 
be compared for similarity evaluation purpose. Each 
attribute has a type. Knowing the type allows to 
choose adequate comparison operators. It is useful to 
describe the ontology of the types of attributes to 
enable efficient similarity measure (not for 
“describing the world”)! 

 

 
Figure 1 Examples of domain ontologies for Case 
descriptors 



     

Ontology can be shared by a whole case base, but it is 
not mandatory to build such an ontology Each 
attribute can have a “facet” explaining how to manage 
the similarity measure for each specific case. “Pure 
CBR” embodies any knowledge in cases. 
 
What is a Case Base? 
A Case base is a collection of solved cases for a class 
of problems. For example, there are separate and 
different case bases for the “Flat sale problem” and 
for the “Card diagnosis problem”. For the “Flat sale 
problem”, a case is the description of a sale episode 
and descriptors fit the corresponding ontology. On the 
following table, white lines stand for problem 
descriptors and grey line stands for the solution 
description (here, the sale price). 
Attribute label Case 1 Case 2 Case 3 Attribute 

type 

Pb_Surface 55 35 55 Real 

Pb_District_Location Rhône 
district 

Rhône 
district 

Ain 
district 

Symbol 

Sol_Sale_Price 20000 45000 15000 Real 

Pb_Flat_Type F2 F2 F2 Symbol 

Pb_Town_Location Lyon Lyon Bourg en 
Bresse 

Symbol 

The district location can be easily inferred from the 
ontology. Even if it seems that building a case base is 
easier that building a set of rules, Knowledge 
Engineering problems are often encountered. Most of 
industrial CBR applications propose forms to fill the 
case base. The case base can be small (if different 
possible types of cases are well represented and that 
the domain knowledge is rich) or very large (if there 
exists a wide variety of cases and that the domain 
knowledge is poor). 
For each case base, there is an associated metric 
allowing to project cases on the “solution plan”. 
Similar cases are cases that have similar solutions for 
similar problems. 
 
How to choose a source case? 
There is a threshold of similarity to take into account 
when attempting to adapt a past case for a new one. 
Moreover, there is no chance to use the same 
adaptation process for different kind of problems (for 
example, adapting the price of an old flat is not the 
same thing than adapting the price of a new one, even 
if anything else is very similar). Consequently, 
similarity measures are used to build dynamic clusters 
of cases in order to choose which kind of adaptation 
method has to be chosen for a given new problem. 

 
Figure 2 Clusterng cases by "type of adaptation 
process" 

 
Figure 3 Source Case selection 

The resolution process is illustrated in Figure 3: 
similarity of the new target case (T) is computed with 
all other cases2. The algorithm chooses the type of 
adaptation which is the significant and the most 
represented in the cluster of neighbors. (T) has been 
assessed to fit with a “B” adaptation process. 
Case Based Reasoning needs at least a case base on 
which a metric and a similarity measure have been 
defined. 
 
CBR Cycle 
Aamodt and Plaza (1994) proposed a first CBR cycle 
to make evident the knowledge engineering effort in 
CBR. We completed this general cycle by an 
“Elaborate” step which was not specified at first. 
Each step has his proper way to use knowledge base 
and case base but “retrieve” and “adapt” steps explain 
how to build knowledge representation for domain 
and cases. 

 
Elaborate 
Elaborating a new case consists to decide what 
descriptors are useful for finding “adaptable” cases in 
the case base. Similarity is synonym of 
“adaptability”. Adaptability depends directly on the 
supposed effort to adapt a source case solution in the 
context of the target case problem. A general method 
consists to complete or to filter the raw description of 
a problem on the basis of domain knowledge, 
inferring new descriptors and importance weights. 
Dependencies (β) are very important to be explicitly 
available at this step. This step “elaborate” is 
illustrated in Table 1 while Figure 4 illustrates how 

                                                 
2 Case base can be structured in order to cut the number of 
matches to do. 



     

the domain knowledge can be used to infer a new 
descriptors from an other one. 
Att label Att type Att-value Elaborated 

value 

General status Symbol 
(inferred) 

?? Good 
 

Nb kms Real 198000 198000 

Nb of years of the cas Real 10 10 
 

Car Manufacturer Symbol 
(inferred) 

?? Peugeot 
 

Car model Symbol 206 205 

Car type Symbol Break Break 

Defects  List of 
symbols 

(superficial 
problems) 

(superficial 
problems) 
 

Sale Price (solution) Real ???  ??? 
 

Table 1 Elaboration of problem descriptors 

 
Figure 4 Domain knowledge to infer « general 
status » value from « list of defects » 
 
Retrieve 
The “retrieve” step is the key step in CBR because the 
quality of the adaptation depends on the quality of the 
retrieval. Do not forget that we are looking for 
“similar” solutions by matching source and target 
problems. It is necessary to define a similarity 
measure which will take into account dependencies 
between problem and solution descriptors and 
adaptation operators availability for observed 
discrepancies. There are numerous similarity 
measures in literature (coming from data analysis for 
example) taking into account specificities of 
descriptors (time, space, complex structures, plans, 
sequences, etc.).  It is often possible to translate these 
specific similarity measures in simpler ones by 
transforming complex descriptors in a set of simpler 
ones. Intuitively, we understand that we have to give 
a high weight for problem descriptors exhibiting a 
high dependency with solution descriptors and for 
which there is no simple adaptation operators. 
Conversely, we can put low weights for problem 
descriptors exhibiting little dependency and for which 
it is easy to adapt corresponding dependent solution 
descriptors. For reason of simplicity, we consider the 
following distance measure:

∑
∑ ×

=

i
i

i
ii

p

dp
d

 the distance 

between two problem descriptors is constituted by the 
weighted sum of attributes distances. Weights ip  

hold the knowledge on the scale of “influence” of the 
problem descriptor di on the solution. 
Attribute label Attribute 

type 
Influence weight of the 
attribute on the solution 

General Status Symbol 
(inferred) 

20% 

Nb of kms Real 35% 

Nb of years of 
the car 

Real 25% 

Manufacturer Symbol 
(inferred) 

5% 

Car Model Symbol 5% 

Car type  Symbol 10% 

Observed defects 
list 

List of 
symbols 

No importance 

Sale Price 
(solution) 

Real ??? 

Table 2 Attribute weights = influence importance of 
the attribute on the solution 
Retrieval step consists to use these weights to choose 
the best case to adapt. The classical algorithm is the 
KNN algorithm (K nearest neighbors 
 
Adapt 
Adaptation is the end of the analogical inference by 
computing which could be a target solution by 
adapting the solution of the most similar case. 
Adaptation rules have to express how to manage 
discrepancies between source and target problems to 
guide adaptation of the source solution. The following 
schema illustrates knowledge and inference process 
of adaptation: 

 
Figure 5 Simple adaptation process 

Equation 1 

i
s
i

s
k

s
k

t
kk

s
k

t
k ddDDDDDD ∆×±=∆±= )/I(;  

 
Figure 6 Global adaptation process 



     

Equation 2 

( )
{ }
∫

=

∆×±=∆±=
mji

i
s
i

s
k

s
k

t
kk

s
k

t
k ddDDDDDD

,

)/I(;  

The formula (Equation 1) expresses that Dk
t is 

computed by “adding” the influence I(Dk
s/di

s) “in 
proportion of” the difference ∆di between source and 
problem descriptors. “adding” operator and “in 
proportion of” operator can be very specific to the 
types of descriptors and to the context of the case (the 
type of adaptation to process). 
The formula (Equation 2) generalizes the previous 
one. There is a new operator « integrating » the effect 
of several discrepancies on problems parts. 

• id∆  = discrepancy between source and 
target problem descriptors values according 
to a specific matching function. 

• )/I( s
i

s
k dD  = influence of a discrepancy of 

s
id on the value of s

kD . 
• ×  = operator to compute Influence 

according to the observed problem 
descriptors discrepancies. 

• 
( )

{ }
∫

=

∆×
mji

i
s
i

s
k ddD

,

)/I(
 sums individual 

influence effects of problem descriptors 
discrepancies for an “individual” source 
solution descriptor (there is no general 
equation for several source solution 
descriptors). 

• ±  = operator of “addition” of the integrated 
computed influence to a source solution 
descriptor to propose a value for the 
corresponding target solution descriptor. 

 
Consider the following « car sale problem » 

 
Figure 7 Importance (influence) values 

The adaptation rule could be the following: 

 
Figure 8 Simple adaptation rule 

In this (too simple) rule, we consider only 1 influence 
of problem descriptors on the price: age of the car. 
Each positive (negative) discrepancy of 1 year on the 

descriptor age adds (subtracts) 1000 euros to the 
price. 
 
Revise 
Revising is sometimes necessary when the adapted 
solution did not fit the current situation and needs 
“revisions” to fit it. In order to revise, we can: 

• Try the adapted solution in the “real” world 
(for example, we try to sell our car with the 
adapted sale price…). 

• Introspect the case base with the complete 
case in order to verify how similar complete 
cases worked when applied (for example, we 
could verify that similar cars were really 
sold with a similar price). 

• Use an other problem solving process 
(simulator, expert system, …) 

In each case, we can observe discrepancies between 
what the system proposed and what would have been 
a correct proposal. After the revising step, we could 
use these discrepancies as starting points to revise the 
domain knowledge and to learn about the 
retrieval/adaptation process. 
 
Memorize (learn) 
Adding a new real solved case to the Case base is the 
basic “learning” mechanism of CBR. Other important 
things can be capitalized: 

• As noticed for the “revise” step, retrieval and 
adaptation knowledge: 

o Similarity measure 
o Influence knowledge 
o New dependencies, etc 

• The “trace” of the “reasoning process” as it 
was done for the current new case. For 
example, if we keep trace of the adaptation 
process, we can consider these adaptation 
traces as “adaptation cases” usable in a CBR 
cycle for improving adaptation knowledge. 

 
1.3 CBR Knowledge engineering 
Very shortly, we can summarize important steps we 
usually find during knowledge engineering for a CBR 
application: 

o Collecting potential “cases” 
o Describing case descriptors 
o Testing cases structures with “users/experts” 
o Building an ontology of descriptors 

attributes 
o Observing the reusing of cases by 

users/experts for real concrete problems. 
o Focusing on the adaptation process 
o Eliciting dependencies and influences as 

they are used in adaptation 
o Building a similarity measure on the base of 

known dependencies and influences 
o Testing similarity measure with the set of 

solved cases 
o Building adaptation rules according to 

dependencies and influences 
o Testing adaptation on the set of known cases 



     

o Building new cases with “normal” users with 
“observers/experts” (we call this period the 
“learning” period of the system) 

o Revising the whole system 
o Delivering the CBR system with an initial 

“case base” useful for reusing…and 
continuous learning possibilities! 

2 TRACES BASED REASONING 
We share the idea that human experience, temporally 
situated by definition, is well represented by a 
temporal record or trace describing an implicit 
underlying process. CBR claims also that property by 
addressing problem solving episodes, even if de facto 
CBR systems exploiting the temporal dimension of 
cases are not so numerous; case descriptors are not 
compulsorily time stamped. Moreover, a problem 
solving episode is considered independently of the 
different "stories" (contexts) where this episode 
occurred. A case is described with a fixed granularity, 
in a specific temporality and contains intangible 
description terms.  
 We propose to exploit use traces of a computer 
environment as possible indirect records of 
knowledge which emerged while the user did his/her 
tasks with the help of the computer environment. We 
propose a theory defining what we call a "trace", how 
it can be represented and which kind of computations 
can be done in order to retrieve useful past sequences 
for new uses.  
 When traces are exploited on the basis of pattern 
similarities allowing some adaptations to new 
situations, we propose to call this kind of computation 
"Traces Based Reasoning" (TBR). TBR is a kind of 
generalization of CBR principles.  

 
Figure 9 The CBR cycle handles cases, which are 
stored in a case base, under a predefined form; the 
TBR cycle dynamically elaborates episodes which 
could be potentially useful in available traces 
according to some "task signature"; the target episode 
is built with the help of other proposed episodes 
under the user control. The target episode belongs to 
the current trace, it will be stored in it without 
particular indexing. Stored traces are containers of 
potential episodes which will be revealed in new 
situations. 
 
As for CBR, we consider that most of the reasoning 
cycle steps can be realized by the computer 
environment or/and by the user himself. 

3 CONCLUSION 
Case-Based Reasoning is an AI paradigm for problem 
solving. This approach is very efficient and its 
robustness comes from its ability to “learn” from 
experience. Despite its big success, it suffers from the 
“frame problem” which means that new case 
structures are very difficult to manage when their 
structure has to change because of new ways to solve 
problems for example. A case has to describe its 
“context” of use, which is difficult to decide before 
any reuse and can change in time and space. We 
propose an extension of the CBR paradigm by 
considering solving episodes as they can be found in 
computer use traces. Traces offer the possibility to 
build dynamically new case structures and to extend 
the context of cases if necessary. 
 
De Màntaras et al. (2005) Retrieval, reuse, revision 

and retension in case-based reasoning. The 
Knowledge Engineering Review 0.1-2 (2005) (to 
appear) 

Champin P.A., Mille A., Prié Y (2003).. MUSETTE 
Modelling USEs and Tasks for Tracing 
Experience. ICCBR'03 : Workshop: From 
structured cases to unstructured problem solving 
episodes ICCBR'03: NTNU, 2003. 279-286. 

Crevier D. (1993) . AI, The tumultuous history of the 
search for Artificial Intelligence. Basic Books, 
Harper-Collins, 1993. 

Minsky. M. (1975) A framework for representing 
knowledge The Psychology of Computer Vision 
Ed. Patrick Winston Mc Graw Hill, 1975. 

Schank. R.C/ (1982) Dynamic Memory. A theory of 
reminding and learning in computers and people 
Cambridge University Press, 1982. 

Aamodt, A. and Plaza E.. Case-Based Reasoning 
foundational issues, methodological variations 
and system approaches AI Communication 7.1 
(1994): 39-59. 


