
Exposing relational data on the Semantic Web

with CROSS

Pierre-Antoine Champin1, Philippe Thiran2, Geert-Jan Houben3, and Jeen
Broekstra4

1 LIRIS, Université Claude Bernard Lyon 1,
pchampin@liris.cnrs.fr,

2 Facultés Universitaires Notre-Dame de la Paix, Namur,
pthiran@fundp.ac.be,

3 Vrije Universiteit Brussel,
Geert-Jan.Houben@vub.ac.be,

4 Technische Universiteit Eindhoven,
j.broekstra@tue.nl

Abstract. With the advent of the World Wide Web, a growing amount
of heterogeneous data sources is becoming available, thus requiring wrap-
ping mechanisms for a unified access by end-users or applications. OWL,
an ontology language for the Web, is a good candidate for coping with
structural and semantic heterogeneity between data sources. For this
purpose, we propose CROSS, an open-source prototype which aims at
exposing relational databases and additional knowledge about them in
OWL. The key feature of CROSS is that it follows a declarative approach
since it relies on the target language, OWL. In this approach, the rela-
tional structure is first converted into OWL which can then be employed
by the user to declare additional OWL statements about the database.
The conversion rules are inspired by previous work on database reverse
engineering. However, the originality of our declarative approach is that
those rules are used without any exception; we show in the paper with
a number of examples how additional knowledge can be added without
ever questioning the rules. We also discuss a number of directions for fur-
ther work, such as the choice of the target language and the integration
of the CROSS prototype with the Sesame framework.

1 Introduction

One of the challenges of the Semantic Web (SW) vision is to integrate the huge
amount of information already available on the standard Web. This involves first
to expose this information in the languages of the SW (XML, RDF, OWL), but
also to take advantage of these languages to add as much semantics as possible
to the data sources in order to improve their usability by SW agents.

On the other hand, the database community has long been studying methods
and tools for expressing more knowledge about databases than the relational
languages allow. One purpose of those methods and tools is data integration
and query mediation among distributed and heterogeneous sources. OWL is a



good candidate to fulfil that need, offering an expressive unifying language for
representing both relational structures and additional knowledge about them.

This paper presents the CROSS wrapper5, an open-source prototype which
aims at exposing an OWL description of a relational database, as well as enabling
to enrich that description with additional OWL statements about the database.
One of the intended applications is the mediation of such wrapped relational
databases with other wrapped relational databases or other OWL data sources.
Indeed, OWL has a much richer semantics than relational languages, which
is a benefit to cope with structural and semantic heterogeneity between data
sources. We furthermore believe that the use of OWL for representing both the
relational structures and the additional knowledge makes the CROSS prototype
both powerful and easy to deploy with respect to other approaches.

1.1 Related work

There are a number of different approaches and proposals for exposing relational
structures into more expressive formalisms: object models [1, 2], description log-
ics [3] and of course SW technologies. Among the latter ones, we distinguish two
trends: rule-based approaches require the user to express a set of conversion rules
in a dedicated language, and then apply those rules to the relational database.
Declarative approaches, on the other hand, focus on the target language (which
is declarative, hence their name); they first convert the relational structure into
that language, which can then be employed by the user to declare additional
knowledge about the database.

The tool presented in [4], D2R MAP, implements a rule-based approach for
exporting a relational database to RDF (hence possibly to OWL). It provides
its own rule language, where each rule associates an SQL query with a template
RDF description. That tool is only concerned with relational data and RDF
instances; it makes the assumption that classes and properties were defined else-
where. However, it seems technically possible to also generate an OWL ontology
from the relational schema, provided that the latter is available to SQL queries
through catalog tables.

[5] propose a declarative approach based on RDF Schema (RDFS), where
both the schema and the data are converted, and customization is expected
to be done by adding RDFS statements. This approach suffers, as the authors
acknowledge, a scalability problem since it generates very dense graphs. It also
focuses on a single table, and does not take advantage of constructs such as
foreign keys.

[6] proposes another declarative approach, based on OWL and very similar
to the one presented in this paper. It is however mainly focused on schema con-
version; neither data conversion nor customization by adding OWL statements
are addressed.

The approach proposed by [7] also uses OWL as its target language for both
schema and data. The authors focus more on the conversion process than on

5 http://liris.cnrs.fr/~pchampin/dev/cross



customizing the resulting OWL; furthermore, their approach uses the meta-
modeling capabilities of OWL-Full, which prevents the use of decidable inference
on the resulting ontology.

1.2 Structure of the paper

The CROSS prototype presented in this paper follows a declarative approach
to expose relational databases and additional knowledge about them in OWL.
The motivations of those choices are developed in section 2. We then present in
section 3 the wrapper itself and the possibilities it offers in term of customizing
the OWL view of the database. Finally, section 4 presents some perspectives and
future work, before the conclusion in section 5.

2 Motivations

This section presents the motivations and rationale underlying our approach and
its implementation.

2.1 Declarative approach for ease of use

One of the design rationales of our approach has been to make the wrapping of
a relational database as easy as possible for the user that is unwilling to spend a
lot of time on configuration, while allowing more demanding users to customize
the wrapping according to their needs. This appears to us as a critical feature,
for the Semantic Web can only have the same success as the Web if it also shares
its simplicity of use.

This has led us to prefer a declarative approach, where the wrapping can
be done fully automatically, while configuration and customization can be (but
do not need to be) performed afterwards. Another advantage of this kind of
approach is that it only requires users to learn the target language (OWL in
our case), while rule-based approaches require them to learn the rule language
as well. This reduces the learning cost, and the risk of semantic discrepancies
between the expected and the actual result of the conversion. Declarative ap-
proaches also allow customization to be performed incrementally, with the pos-
sibility of testing the effect of every new declaration rapidly (because the whole
conversion does not have to be run again).

Besides, declarative languages are indeed considered better than rule lan-
guages for the purpose of knowledge representation, from the perspective of de-
signing as well as maintaining. This argument is relevant to the problem of
wrapping relational structures because we consider that any configuration or
customization of the wrapper is the assertion of additional knowledge about the
data source: knowledge which was previously only implicitly contained in the re-
lational structure. In a rule-based approach like D2R [4], such knowledge would
be less explicit, not only because the language is rule-based but also because
some of the knowledge would be held by the SQL queries, and some of it, held



by the RDF statements produced by the rules. We hence believe that, although
approaches of that kind are strictly more expressive than CROSS (which could
be implemented with them), their lack of legibility paradoxically makes them
less flexible from a user’s point of view.

2.2 Locations of additional knowledge

The knowledge and constraints that the relational DBMS can not handle are gen-
erally concealed in the code, user interface, and documentation of applications
using the database [8]. Changes in the structure or semantics of the database
have to be reflected in the application, which is feasible (if not always easy) in
a centralized context.

In the context of the Web, the problem becomes harder, because the data
sources and the agents using them may be under separate and independent con-
trol, or belong to different organizations willing to keep their autonomy. It is
thus critical that wrappers do not only act as model converters, but also sup-
ply as much additional knowledge as possible in an explicit form. By providing
that knowledge to autonomous agents rather than requiring them to internally
implement it, we improve the robustness of the overall system with regard to
evolutions in the structure and semantics of data sources.

Of course, nothing prevents third-party ontologies to import the OWL de-
scription provided by the CROSS wrapper and add their own statements about
the classes, properties, and instances it defines. The difference between the ad-
ditional knowledge provided by the wrapper and such external ontologies is that
the content of the former is endorsed by the source owner; it is hence assumed
to describe “constant” knowledge about the database, while the latter may on
the other hand state contextual knowledge, valid and/or useful only for a par-
ticular purpose: interoperability with another CROSS wrapper or independently
designed ontology, user-friendly presentation, etc. (see figure 1).

Fig. 1. Third-party ontologies (in black) extending the output of the CROSS wrapper

2.3 The choice of OWL

The choice of OWL as a target language could be questioned; the complexity of
reasoning, even with OWL-Lite, is considered by some people as prohibitively
high for scalable applications.



Our position is that RDF Schema is not expressive enough, considering the
kind of knowledge we have to express (see section 3.3). On the other hand,
implementations exist for OWL-Lite and OWL-DL6. We hence chose initially not
to make any a priori restriction over the expressiveness of the allowed language
(as long as decidable reasoning is available). Further experimentations with real
databases will allow us to determine precisely how much expressiveness we need.

2.4 Running example

In the next section, we will use a small relational database as a running example
to illustrate a number of points. That database is represented in figure 2. It
is composed of five tables. In each table, the primary key is composed of the
column with bold labels. Foreign keys are described explicitly, below the table
data. The semantics of each table and column should be quite explicit from their
name.

Fig. 2. Our running example database

3 Converting and enriching

In this section we present the CROSS wrapper and its intended use. We first
present the general principles underlying the conversion process, which produces
three components. We then focus on the first two components (schema and data)
and how they are automatically produced. Afterwards, we demonstrate how the
manually generated third component (additional knowledge) allows us to tailor
and refine the OWL view of the relational database. We then briefly discuss how
external ontologies can also use those additional statements.

3.1 General principles

Translation vs. Wrapping It is important to first emphasize the difference
between translation and wrapping, for CROSS uses both notions in different

6 http://www.mindswap.org/2003/pellet/



contexts. We use the word translation to refer to a static conversion, made once
and for all, usually off-line. On the other hand, the term wrapping refers to
dynamically converting data on-demand, in response to a particular query.

In the CROSS prototype, the relational schema is translated. We consider
this approach viable since the source does not change very often. On the other
hand, data are wrapped, since they are likely to change frequently, and they
are generally too big for reasonably allowing to store the result of a one-shot
translation and update it regularly.

Components The OWL view of the wrapped database is divided into three
components, namely: the Schema, the Data, and the Additional Knowledge
(AK). The first two are quite explicitly named: they are automatically produced,
respectively from the relational schema and from the data. On the other hand,
the AK component contains all the knowledge which was not automatically in-
ferred from the relational structures and has been manually added by the user
inside the wrapper.

As previously stated (section 2.1), our approach prevents the users to have to
interfere in the conversion processes. Instead, they can rely on the deterministic
fashion in which those processes produce the Schema and Data components to
express their own knowledge about the database; subsequently the Additional
Knowledge component will allow OWL reasoners to infer more facts from the
other two components.

3.2 The Schema and Data components

This subsection describes the automatic conversion processes generating the
Schema and Data components. Those processes are largely inspired by previ-
ous work on database reverse engineering [1, 9, 10]. Those approaches describe
conversion rules for the general case, acknowledging the fact that they should
be adapted or even ignored in some particular contexts. In CROSS, however,
the rules described hereafter are never questioned. Adaptation is still possible
by adding statements in the AK component, but not by changing or discarding
the rules.

Prerequisites There are a number of prerequisites that the relational database
must fulfil for the CROSS approach to be applicable. First, every table must
have a primary key. That is required to provide a unique identifier for every
row-instance (see below).

Second, all foreign keys should be explicit in the schema. This requisite is not
as strong as the previous one: the approach will be able to handle a database
without any foreign key, but the produced OWL will obviously be impoverished.

We know that those requirements (even the first one) are not always fulfilled
by real databases. However, we consider that extracting the implicit knowledge
about the source database is a part of the reverse engineering effort necessary
to its integration into any mediation architecture.



Finally, it is worth noting that the CROSS approach does not assume that
the database was in any particular normal form.

Cells Besides the common notions describing relational structures (tables, columns,
keys, rows), CROSS uses the notion of cell. A cell can be described as the in-
tersection between a row and a column, and holds the value of that row for the
corresponding column. Rows with a null value for a given column have no cell
for that column.

While most approaches consider the values to be directly linked to the row, we
will show that cells provide more flexibility for expressing additional knowledge
about the relational structure (see section 3.3).

Conversion rules As stated before, the conversion rules used by CROSS are
very similar to those recommended by other approaches. Each table t is converted
into a class, each row of the table into an instance of that class (a row-instance).
To each table is also associated an object property same-t which is both symmet-
ric and functional. Furthermore, each row-instance of that table has the property
same-t pointing to itself7.

In CROSS, column values are not directly linked to rows, but held by cells.
The latter are then represented in OWL by cell-instances. Therefore, to each
column correspond (1) an object property, intended to link the row-instance
to the cell-instance corresponding to this column, and (2) a datatype property,
intended to link the cell-instance to its literal value (see figure 3). In the Schema
component, appropriate axioms about the properties are generated to reflect
general attributes of relational columns (e.g., their datatype range, cardinality
restriction stating that they can have at most one value) as well as specific
constraints expressed in the schema (e.g., whether the column is nullable and/or
unique).

Fig. 3. Example: rows and cells in the Data component

7 Note that owl:sameAs can not be used instead of same-t, for it is not an object
property; so we can not, e.g., make it a subproperty of another object property, as
described in section 3.3.



Finally, each foreign key is converted into an object property, intended to
link two row-instances, as can be seen in figure 4. As with columns, appropriate
axioms about the property are added to the Schema component, especially a
cardinality restriction when the foreign key is declared to be unique.

Fig. 4. Example: two foreign keys (book.fka and book.fkb) in the Data component

Let us emphasize again that the rules just described are not used in the same
way for the Schema component and the Data component; namely, the former is
produced by a static translation while the latter is generated on demand by the
wrapper (see section 3.1).

3.3 Additional knowledge

The Schema and Data component, being automatically extracted from the re-
lational database, only constitute a conversion of the relational structure. The
language change does not convey any added value. However, what it allows is to
make explicit the knowledge otherwise extracted by a user (after reading the doc-
umentation; understanding the labels of tables and columns; reverse-engineering
the schema, queries and applications using them; etc.). Furthermore, explicit
OWL-DL knowledge can not only be reused by other users but also by inference
engines, to draw additional conclusions about the first two components. The
Additional Knowledge (AK) component is the place of choice for that kind of
statements.

Relating to other ontologies It is possible to relate the defined classes and
properties to terms from other, widely accepted ontologies. In our running ex-
ample, it could for instance be relevant to declare that author.fname is equivalent
to foaf:firstName [11] or that book.title is equivalent to dc:title [12].

Compound attributes Relational tables are flat. However, they sometimes
contain columns which can be grouped as a compound attribute. This is the case
with columns table.fname and table.lname which can be considered as attributes
of a complex “full-name” object.

This can be achieved by the aggregation mechanism described in [13]: stating
that table.fname and table.lname are equivalent properties, together with the fact



that they are functional, forces to infer that both cell-instances are the same
individual (see figure 5). Making the attribute belong to a particular class, and/or
making the merged column-object-properties a synonym of a more explicitly
named property (e.g. fullName) is of course possible.

Fig. 5. Cell-instances aggregation to form a compound attribute

Cardinality restriction While many-to-many relations can be represented
with a table (see for instance book-author in our example), limiting the car-
dinality of such relations is not possible in the relational model. Adding that
knowledge is however trivial in OWL by using cardinality restrictions on the
properties corresponding to the foreign keys (more precisely their inverse prop-
erty). It could be stated, for example, that a book must have at least one author,
or that an author must have written at least one book.

Subclasses from tables Modelling a subset of the objects represented by a
table can be done by declaring another table, with its primary key being a foreign
key to the former table. This is for example the case for table famous-author in
our example, which represents a subclass of authors.

To make this subclass relationship explicit, one can state that the property
corresponding to the foreign key is a sub-property of same-t, where t is the
“superclass” table. This will result in (a) inferring the subclass relationship be-
tween the two classes representing the tables, and (b) aggregating instances of
the subclass into their corresponding instance of the superclass. In our exam-
ple, one would declare that famous-author.fka is a sub-property of same-author,
so that class Famous-author was inferred to be a subclass of Author, and that
row-instance famous-author.1 was aggregated (with its other properties) with
row-instance author.1.

It must be noted that the pattern described above does not always represent
a subclass relationship. In our example, table authors-agent follows exactly the
same pattern, but does not represent a subset of the authors. It is the respon-
sibility of the user to decide whether to add or not the statements making the
subclass relationship inferable.

Subclasses from data Subsets of the objects represented by a table are not
always represented by another table: in many cases, a column with a controlled



set of values is used, each value representing a subset. In our example, the column
book.editor can illustrate this scenario: it can only contain a limited set of values,
partitioning the books into subset of books by the same editor.

The ability of OWL-DL to cope with single values (owl:hasValue construct)
provides a straightforward solution to this problem: one can define, for each
possible value of the column, the class of all instances having that value for
the column-datatype-property. In our example, the class BookEditedBySmith can
easily by defined as the set of books having value “Smith” in column book.editor.

New instances from data The previous paragraph about compound at-
tributes has shown how cell-attribute can be useful. This approach can be ex-
tended when one wants to represent instances of classes which are totally implicit
in the relational schema. Let us consider column book.editor again, but assume
now that we wish to represent editors as instances of a new class Editor, defined
in the AK component.

It is straightforward to state that every cell-instance pointed at by the column-
property book.editor is an instance of Editor. What is more difficult is to state
that every two such instances holding the same value are actually the same edi-
tor; though it may be tempting to declare the datatype property associated with
book.editor to be inverse-functional, that is not possible in OWL-DL (only ob-
ject properties can be inverse-functional). This limitation of OWL-DL is a very
strong one with respect to converting relational data to OWL, since it prevents
to capture the semantics of one of the most basic relational notions, namely the
“UNIQUE” constraint.

We see two work-arounds to the aforementioned problem. The first one is to
replace every literal value by an individual with an appropriate URI (constructed
from the datatype URI and a canonical lexical representation), and use object
properties instead of the datatype properties, thus escaping the limitation of
the latter. This is not quite satisfying, since for interoperability reasons, we
could not possibly leave the literal values. We would thus be forced to keep
both representations (individual and literal) for every cell of the database, which
would be both redundant and expensive.

The second work-around is the following: for each possible value (e.g. “Smith”)
of column book.editor, (1) add in the AK component a subclass of class Editor,
and a fresh instance smith of that class, (2) define the class BookEditedBySmith

as in the previous example, (3) force all instances of that class to be related to
smith with an appropriate property. The drawback of that work-around is that
it requires to know in advance all the possible values of the column, hence to
update the AK component every time the data changes.

Mixing schema and instances The last two scenarios show an interesting fea-
ture of OWL-DL, namely its ability to mix schema components with instances.
This feature is all the more interesting in that it is missing from most reverse-
engineering approaches for converting relational structures to more expressive



languages [8]. The last scenario, however, exhibits some limitations of that fea-
ture, primarily due to the limitations concerning literal values – a serious hand-
icap when dealing with databases, which we will address in section 4.1.

4 Perspectives and future work

4.1 Alternative target languages

As we have mentioned earlier, the choice of OWL-DL has been pragmatically
motivated by the fact that (1) it is highly expressive and (2) implementations of
inference engine are available. However, we also observed that its expressiveness
is limited when it comes to data (section 3.3). Furthermore, inference mecha-
nisms for OWL-DL are highly complex, and many authors argue in favor of less
expressive sub-languages with more efficient inference algorithms.

As we already discussed in section 2.3, we wait for more feedback on real
databases to settle for any loss of expressiveness: we have to experimentally check
which constructs are actually needed and which can be left aside. An interesting
direction is proposed by [14], where the efficiency of logic programming engines
can be combined with the legibility of description logic constructs (with heavy
limitations on the way they can be used and combined, however).

As noted in the previous section, OWL has some limitations when it comes
to literal values. Although we proposed some work-arounds for that problem, we
are also investigating extensions of OWL aiming at improving its handling of
concrete data. [15], for example, describe such an extension, where restriction of
basic types (e.g. “any integer greater than 10”) can be expressed. The authors
show that their extension preserves decidability in many description logics –not
only in OWL-DL. It is hence not contradictory with our intention to use an
otherwise less expressive language.

Sesame Integration The Sesame framework [16] is an RDF database frame-
work that allows scalable storage, querying and inferencing with large RDF data
sets. One of the central architectural components of Sesame8 is the SAIL (Storage
And Inferencing Layer) API, which is an abstraction layer on top of a physical
storage system, such as an RDBMS, a file system, or some other source of RDF
data. On top of this SAIL, Sesame provides many useful tools for manipulating
the data, such as the SeRQL [17] query language, and pluggable components
for reasoning, such as a rule-based RDF Schema reasoner and OWLIM [18], an
OWL reasoner.

The setup is ideally suited for integrating with CROSS: the CROSS approach
can be implemented as a SAIL component, allowing Sesame’s query engines and
reasoner to operate on top of the CROSS wrapper (and thus on top of the legacy
data) without the need for duplication of the data. Thus, CROSS will be enriched

8 for a technical description of the Sesame architecture, see http://www.openrdf.org/
doc/sesame2/user



by having query and OWL reasoning support, while Sesame is enriched with a
generic approach for integrating legacy databases.

We plan to investigate the realization of such an integration in detail. Specific
questions that remain to be solved are, for example, how the reasoner interacts
with the CROSS wrapper, and if an RDF query language such as SeRQL is
expressive enough for our purposes.

4.2 Assisting the user in expressing additional knowledge

Although we showed in section 3.3 how frequent scenarios can be handled in the
AK component, those solutions are not always trivial, especially for a novice user
to OWL. It would hence be interesting to design a “wizard” or assistant software,
helping users in expressing their additional knowledge as OWL statements, at
least for the frequent scenarios described above (and possibly some others).

Furthermore, those scenarios usually correspond to a particular pattern in
the relational schema. We already noted that those patterns do not guarantee
that the scenario applies. However, they could be automatically detected, and
marked in the resulting OWL, using OWL annotations. Those annotations could
then be use by the assistant to suggest the application of the scenario.

Finally, this assistant could take benefit of techniques such as case-based
reasoning to improve its suggestions, relying on similarity measures (rather than
exact pattern matching) and previous experiences.

5 Conclusion

We have presented CROSS, an open-source prototype which aims at exposing re-
lational databases and additional knowledge about them in OWL. The approach
adopted in CROSS is divided in two distinct steps: an automatic conversion of
the schema and data into OWL statements, and the manual addition of OWL
statements capturing the design knowledge that was only implicit in the rela-
tional structures (and generally hidden in applications code, documentation, user
interfaces or queries). We call this kind of approach declarative because the users
only employ a declarative language (OWL) to express that implicit knowledge.
In other approaches, on the other hand, users have to employ rule languages;
we have argued that this makes the additional knowledge less explicit, harder to
express and to maintain.

A consequence of that declarative approach is that the conversion rules used
in the first step are never questioned. This is an originality of CROSS, although
the rules themselves are largely inspired by the previous work on database re-
verse engineering, in which they are not considered to be applicable in any case.
However, we have demonstrated with a number of examples that frequent sce-
narios in database design could be handled by adding statements, and without
removing any.

Finally, we have discussed the choice of the target language, as OWL-DL
suffers from highly complex inference mechanisms and a poor handling of con-
crete data (literal values). We have also proposed further extensions of CROSS.



We plan to integrate it in Sesame, and RDF database framework, which would
benefit from a generic back-end for legacy databases, and bring on top of CROSS
its query capabilities. We also plan to develop an assistant software for helping
users to express their additional knowledge in OWL.

References

1. Ramanathan, S., Hodges, J.: Reverse engineering relational schemas to object-
oriented schemas. Technical Report MSU-960701, Reverse Engineering Relational
Schemas to Object-Oriented Schemas (1996)

2. Lim, E.P., Lee, H.K.: Export database derivation in object-oriented wrappers.
Information & Software Technology 41(4) (1999) 183–196

3. Borgida, A., Lenzerini, M., Rosati, R.: Description Logics for Databases. In Baader,
F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F., eds.: De-
scription Logic Handbook, Cambridge University Press (2003) 462–484

4. Bizer, C.: D2R MAP - A Database to RDF Mapping Language. In: 12th Interna-
tional World Wide Web Conference (Posters). (2003)

5. Korotkiy, M., Top, J.L.: From Relational Data to RDFS Models. In Koch, N.,
Fraternali, P., Wirsing, M., eds.: International Conference on Web Engineering.
Volume 3140 of LNCS., Springer (2004) 430–434

6. Buccella, A., Penabad, M.R., :Rodriguez, F.J., Faria, A., Cechich, A.: From Re-
lational Databases to OWL Ontologies. In: 6th Russian Conference on Digital
Libraries, Pushchino, Russia (2004)

7. de Laborda, C.P., Conrad, S.: Relational.OWL - A Data and Schema Representa-
tion Format Based on OWL. In Hartmann, S., Stumptner, M., eds.: Asia-Pacific
Conference on Conceptual Modelling. Volume 43 of CRPIT., Australian Computer
Society (2005) 89–96

8. Hainaut, J.L.: Introduction to database reverse engineering. Technical report,
University of Namur (2002) Available at http://www.info.fundp.ac.be/~dbm/

publication/2002/DBRE-2002.pdf.

9. Hainaut, J.L., Henrard, J., Hick, J.M., Roland, D., Englebert, V.: Database Design
Recovery. In Constantopoulos, P., Mylopoulos, J., Vassiliou, Y., eds.: CAiSE.
Volume 1080 of LNCS., Springer (1996) 272–300

10. Andersson, M.: Extracting an entity relationship schema from a relational database
through reverse engineering. Int. J. Cooperative Inf. Syst. 4(2-3) (1995) 259–286

11. Brickley, D., Miller, L.: FOAF Vocabulary Specification. http://xmlns.com/foaf/
0.1/ (2005) See also http://www.foaf-project.org/.

12. DCMI Usage Board: DCMI Metadata Terms. DCMI Recommendation, http:

//dublincore.org/documents/2005/06/13/dcmi-terms/ (2005)

13. Dean, M., Schreiber, G.: OWL Web Ontology Language. W3C Recommendation,
http://www.w3.org/TR/owl-ref/ (2004)

14. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Com-
bining logic programs with description logic. In: 12th International World Wide
Web Conference, ACM (2003) 48–57

15. Pan, J., Horrocks, I.: OWL-Eu: Adding Customised Datatypes into OWL. In
Gómez-Prez, A., Euzenat, J., eds.: 2nd European Semantic Web Conference. Num-
ber 3532 in LNCS, Springer (2005) 153–166



16. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture for
Storing and Querying RDF and RDF Schema. In Horrocks, I., Hendler, J., eds.: 1st
International Semantic Web Conference. Number 2342 in LNCS, Sardinia, Italy,
Springer (2002) 54–68 See also http://www.openrdf.org/.

17. Broekstra, J.: SeRQL: A Second Generation RDF Query Language. In: Storage,
Querying and Inferencing for Semantic Web Languages. Number 2005-09 in SIKS
Dissertation Series. Vrije Universiteit (2005) 67–86 See also http://www.openrdf.

org/doc/SeRQLmanual.html.
18. Kiryakov, A., Ognyanov, D., Manov, D.: OWLIM - a Pragmatic Semantic Repos-

itory for OWL. In: International Workshop on Scalable Semantic Web Knowledge
Base Systems, New York City, USA (2005) See also http://www.ontotext.com/

owlim.


