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Abstract

Spherical harmonics transform plays an important role in research in shape description. Current methods

to compute the spherical harmonics decomposition of the characteristic function of the intersection of a

polyhedral solid with a sphere involve expensive voxelization, and are prone to numerical errors associated

with the size of the voxels. This paper describes a fast and accurate technique for computing spherical

harmonics coe�cients directly from the description of the mesh. The algorithm runs in linear time O(pn),
where n is the number of triangles of the mesh and p is the number of terms calculated, which is roughly

linear.

1 Introduction

If M is a closed embedded surface in 3D space then there is a solid volume V bounded by M . Fixing a point
P , one can consider the intersection of V with a sphere Sr of radius r around P . In general, we choose P at
the centroid of the object. The intersection Mr = V ∩ Sr is a region of the sphere. The characteristic function
χr of this region (1 for points inside, 0 for those outside) can be approximated by a sum of spherical harmonics
Y m

l (θ, ϕ) in the spherical coordinates. Theoretically, the expansion of χr in terms of spherical harmonics is
written as:

χr(θ, ϕ) =
∞∑

l=0

∑
|m|≤l

cr
lmY m

l (θ, ϕ) (1)

This expansion corresponds to a frequency-based decomposition of χr. In practice, since higher order coe�cients
cr
lm correspond to �ner details of the objects (maybe noise), we limit this summation to a bandwidth denoted
as bw :

χr(θ, ϕ) ≈
bw∑
l=0

∑
|m|≤l

cr
lmY m

l (θ, ϕ) (2)

A collection of such approximations of the characteristic function χr, for several values of r, has proved to be
useful as shape-descriptors for searching and identifying 3D objects [3, 9].

In this paper, we show how to compute the coe�cients of the spherical harmonics representation of χr quickly
and accurately when the surface M is given by a polyhedral mesh. The computation of each coe�cient cr

lm

has an O(n) complexity, where n is the number of triangles of the mesh. To calculate the spherical harmonics
representation of χr, there is also a dependence on the number of terms calculated, which is roughly linear.

Standard algorithms [3, 6, 8] compute a voxelization of V and then use this discrete approximation to
�nd the coe�cients. The discretization introduces errors in the integrations needed to compute the harmonic
coe�cients. Furthermore, when the harmonics have high degree, the grid-spacing necessary to get accurate
integration becomes smaller and smaller, and this, too, can add to the complexity. In contrast, our method does
not require this discrete approximation of V to calculate the integration. The numerical quality of the voxelized
methods can approximate ours when the voxel grid is chosen small enough. Mesh voxelization can be computed
in a time that is approximately linear in the number of voxels that meet the mesh [5]. The integration of the
function over these voxels is then linear in the number of voxels. Our algorithm is linear in the number of mesh
triangles. Thus if the voxelization generates approximately a constant number of voxels per triangle, the two
methods have identical asymptotic running times.
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(a) A and C are inside
the sphere Sr. EG is
the only non geodesic
arc.
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(b) A is inside the
sphere Sr. EG is the
only non geodesic arc.
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(c) A is inside the sphere Sr

and Sr intersects twice the
edge BC. EE′ and GG′ are
the only non geodesic arcs.
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(d) A, B and C are
outside the sphere. All
arcs are geodesics.

A B

C

E
F

G

P

(e) A, B and C are out-
side the sphere. How-
ever ABC intersects
the sphere.

Figure 1: intersections of the sphere Sr and a tetrahedron H.

2 Decomposition

The volume V can be de�ned as a union of tetrahedra, one from each triangle of the mesh to the point P . The
triangles of the mesh are assumed to be oriented consistently, i.e., for two neighboring triangles, the shared
edge has two di�erent directions. If the normal of a triangle and P are in the opposite side with respect to the
triangle, the corresponding tetrahedron is said to be positive, and negative otherwise.

Let {Hk, k = 1, . . . , n} denote the set of signed tetrahedra. We split {Hk} into two subsets {H+
i } and

{H−
j } according to the signs of the tetrahedra. The signed volume enclosed by the triangulated mesh can be

represented as :

V =

(⋃
i

H+
i

)
−

⋃
j

H−
j

 (3)

More formally, this means that a point is de�ned to be in V if the sum of the signs of all tetrahedra that it
occupies is positive. Zhang and Chen [11] have shown that this decomposition can be used to calculate global
volumetric moments on V as a sum of elementary volumetric moments computed on each tetrahedron of the
decomposition.

moment(V ) =
∑

k

sign(Hk)moment(Hk) (4)

We extend this property to directly compute the spherical harmonics transform of the triangulated mesh M .
To compute the spherical harmonics coe�cients of χr, we observe that the set Mr = V ∩ Sr is a signed union
of spherical triangles {Tk, k = 1, ..., sn} arising from the intersections of the sphere Sr with the tetrahedra of
V . Let χTk

denote the characteristic function of Tk. Therefore χr can be represented as :

χr(θ, ϕ) =
∑

k

sign(Tk)χTk
(θ, ϕ) (5)

and
cr
l,m =

∑
k

sign(Tk)cr
l,m|Tk

(6)

The decomposition of Mr into a signed union of spherical triangles is obtained from the intersection of
Sr with the set of signed tetrahedra {Hk}. There are four general cases for the intersection of Sr and the
tetrahedron H = PABC (recall that P is the center of the sphere).

• If A,B and C are inside Sr, then there is no intersection.

• If one of A,B and C is outside Sr, then Sr intersects the edges of H at three points forming a spherical
triangle T (�gure 1(a)).
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Figure 2: direction of θ and ϕ in the spherical coordinate

• If two of A,B and C are outside Sr, then Sr intersects the edges of H at four or six points forming a
union of two spherical triangles T1 ∪ T2 (�gure 1(b) and 1(c)).

• If A,B and C are all outside Sr, then Sr intersects the edges of H at three points forming a spherical
triangle T (�gure 1(d)). An interior part of the triangle ABC may be inside Sr (�gure 1(e)). Then the
spherical triangle T does not entirely lie inside H. To deal with that case, let Q be a point on ABC lying
inside Sr. Then the tetrahedron H can be seen as the union of the tetrahedra PABQ, PBCQ and PCAQ
which can be treated as in the second case (�gure 1(b) or 1(c)). Note that those tetrahedra raise spherical
triangles with at most one non geodesic arc for each.

The sign of a spherical triangle is inherited from the tetrahedron it comes from. We compute the spherical
harmonics coe�cients for the characteristic function of a single spherical triangle EFG, and then sum the
results. The details of the summation process are described in the next section.

3 The coe�cients for a single spherical triangle

In this section, we describe the calculation of the harmonic coe�cients over a single spherical triangle T . We
describe it for general spherical triangles. To �nd the spherical harmonics coe�cient cr

l,m|T for the characteristic
function χT , we must compute:

cr
l,m|T =

∫ ∫
S2

χT (θ, ϕ)Y
m

l (θ, ϕ) sin(θ)dθdϕ (7)

Y m
l is the spherical harmonics of degree l and order m where l ≥ 0 and |m| ≤ l, θ ∈ [0 π] is the polar angle from

the z-axis, and ϕ ∈ [0 2π[ is the azimuthal angle in the xy-plane from the x-axis (�gure 2). The expression
of cr

l,m|T is the projection of χT on Y m
l since the spherical harmonics are a set of orthogonal functions. Recall

that Y m
l (θ, ϕ) is de�ned as :

Y m
l (θ, ϕ) = klmPm

l (cos θ)eimϕ (8)

klm is a constant depending on l and m, and Pm
l is the associated Legendre Polynomial [10]. For more details

about spherical harmonics see [1, 4].
The expression to be integrated is nonzero only for points in EFG, so cr

l,m|T simpli�es to

cr
l,m|T =

∫ ∫
T

Y
m

l (θ, ϕ) sin(θ)dθdϕ (9)

The harmonic coe�cients cr
l,m|T are complex. They are related to each other by the following relation:

cr
l,−m|T = (−1)mcr

l,m|T (10)

This allows one to do half as much work as would be otherwise necessary.
Although directly integrating the spherical harmonics over a single spherical triangle might appear simple,

symbolic packages o�ered by Mathlab or Mathematica do not permit, as far as we know, to calculate the
integration expressed in equation 9, because of the non linear relation between θ and ϕ on the domain boundaries,
(see [7] for more details). We therefore prefer a general numerical approach, which we now describe.
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Figure 3: a spherical triangle and its corresponding euclidean triangle.

4 Numerical Estimation

A spherical triangle EFG bounded by geodesic arcs (and which is smaller than its complementary on the
sphere) can be parametrized by the euclidean triangle sharing the same vertices (�gure 3). Therefore, the radial
projection from EFG to the corresponding standard triangle can be used to parametrize the integration over
EFG. The function we want to integrate is :

χ(θ, ϕ)Y
m

l (θ, ϕ) (11)

where χ is 1 for each point of EFG and 0 otherwise. In fact, each point Q on the euclidean triangle EFG can
be written as:

Q = λE + βF + (1− λ− β)G 0 ≤ λ ≤ 1 0 ≤ β ≤ 1 0 ≤ λ + β ≤ 1 (12)

We can parametrize (θ, ϕ) by (λ, β) using the conversion from the cartesian to spherical coordinates:

θ(λ, β) = arctan

√
x(λ, β)2 + y(λ, β)2

z(λ, β)
(13)

ϕ(λ, β) = arctan
y(λ, β)
x(λ, β)

(14)

Therefore, the integration over a spherical triangle bounded by geodesic arcs becomes:

cr
l,m|T =

∫ 1

0

∫ 1

0

χ(θ(λ, β), ϕ(λ, β))Y
m

l (θ(λ, β), ϕ(λ, β)) sin θ(λ, β)J
[

θ, ϕ

λ, β

]
dλdβ (15)

where J
[

θ,ϕ
λ,β

]
is the Jacobian of (θ, ϕ) with respect to (λ, β). Equation (15) can be evaluated using one

of numerical integrations implemented in any scienti�c library. The examples presented in this article were
evaluated using the plain Monte Carlo integration implemented in the GNU Scienti�c Library, GSL [2] with 103

as the size of the iteration space.
The numerical estimation has the following advantages:

• it need not partition the spherical triangle,

• it maintains implicitly the dependency between θ and ϕ,

• it can compute high order harmonic coe�cients,

The numerical estimation described in this section can handle the case of the spherical triangle whose one
boundary is not geodesic, see Figures 1(a), 1(b) and 1(c), but also spherical triangle that miss an interior part,
see Figure 1(e), without splitting it into smaller ones. In fact, the integrand, in equation 15, evaluates to 0 for
the points that do not lie inside the tetrahedron. The test of inside/outside the tetrahedron is what is done by
the function χ.

An overview of our method is summarized by the following algorithm :
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Algorithm 1 overview of our algorithm

1: input: a triangulated mesh M , a sphere Sr with radius r and centered at P
2: output: cr

l,m

3: T ← the set of triangles of M
4: H ← the set of signed tetrahedra induced by P and T
5: cr

l,m ← 0
6: for all h ∈ H do

7: Γ← the set of the spherical triangles resulting from h ∩ Sr, Figure 1
8: for all t ∈ Γ do

9: cr
l,m ← cr

l,m + sign(h)× cr
l,m|t, {where cr

l,m|t is evaluated using equation 15}
10: end for

11: end for

12: return cr
l,m

5 Examples and Discussion

We have tested our method with di�erent kinds of objects. Indeed, the quality of the spherical harmonics
description of the object depends both on the number of spheres and on the bandwidth bw. Figure 4 and 5
show a reconstruction of di�erent kind of models using di�erent spheres radii and bandwidths.

To simplify the calculations, we normalize the models and translate them so that the centers of masses
coincide with the origin. The spheres are chosen to be equispaced. We can exploit an interesting property
o�ered by our decomposition. When the radius of the sphere changes and the intersection of the tetrahedron
H and the sphere is always as depicted in �gure 1(d) then the spherical harmonics coe�cients associated to H
remain the same. The source code available online does not include this optimization, since we want to make
it more simple for the reader to comprehend the main algorithm.

The integrations performed over a single triangle are independent of the other triangles. Therefore the
calculation can be parallelized without any overlapping problem.

(a) original (b) 50 spheres (c) original (d) 100 spheres

Figure 4: reconstruction of a polygonized torus and aircraft using bw = 64

(a) original (b) 100 spheres (c) original (d) 100 spheres

Figure 5: reconstruction of a horse and Isis statue using bw = 64
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