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 P
ROOAbstract

On the classical discrete grid, the analysis of digital straight lines (DSL for short) has been intensively studied for

nearly half a century. In this article, we are interested in a discrete geometry on irregular grids. More precisely, our goal

is to define geometrical properties on irregular isothetic grids that are tilings of the Euclidean plane with different sized

axis parallel rectangles. On these irregular isothetic grids, we define digital straight lines with recognition algorithms and

a process to reconstruct an invertible polygonal representation of an irregular discrete curve.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

When a straight line is digitized on a square grid, we

obtain a sequence of grid points defining a digital

straight-line segment. This computer representation of

such a simple Euclidean object has drawn considerable

attention in many applications (drawing [1], shape

characterization [2–4], . . .). The structure of DSL is

now well known and links have been illustrated between

DSL and objects from number theory or theory of

words (see [5] for a survey on digital straightness).

Beyond this characterization, an important task in

computer vision consists in the recognition of DSL

segments. More precisely, given a set of pixels, we have

to decide if there exists a DSL segment that contains the

given pixels. Many efficient algorithms exist to imple-

ment such a recognition process [6–9]. Based on a digital

straight line recognition algorithm, we can also define a

segmentation process that decomposes a discrete curve
77
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Tinto maximal DSL segments. The next step of the

segmentation process is to reconstruct a polygonal curve

from the discrete data such that its digitization is equal

to the original discrete curve. This process is called an

invertible reconstruction of a discrete curve [10–12]. The

invertible property is an important one in discrete

geometry since it allows to convert discrete data to

Euclidean ones such that no information is added nor

lost.

In this article, we are interested in defining a geometry

on irregular isothetic grids. More precisely, we consider

grids defined by a tiling of the plane using axis parallel

rectangles. Such a grid model includes, for example, the

classical discrete grid, the elongated grids [13] and the

quadtree based grids [14]. In [15], a general framework

has been proposed that defines elementary objects and a

digitization framework, the supercover model. An

important aspect of this general framework is the

consistency with classical definitions if the discrete space

is considered.

Many applications may benefit from these develop-

ments. For example, we can cite the analysis of quadtree

79

81d.
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compressed shapes, or the use of geometrical properties

in objects represented by interval or affine arithmetics

(see discussion in [15]). Based on this irregular model, we

define digital straight lines with recognition algorithms

and a process to reconstruct an invertible polygonal

representation of an irregular discrete curve.

Section 2 presents more formal definitions in the

irregular grids: adjacency relations, objects, arcs, curves

and the supercover model. Based on a definition of the

irregular isothetic digital straight lines, we present

algorithms to recognize maximal irregular discrete

straight segments and to reconstruct invertible poly-

gonal arcs and curves (Section 3). Experiments and

results are shown in Section 4.
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2. Preliminary definitions

2.1. The irregular isothetic model

First of all, we define an irregular isothetic grid,

denoted I, as a tiling of the plane with isothetic

rectangles. In this framework, the rectangles have not

necessarily the same size but we can note that the

classical digital space is a particular irregular isothetic

grid. In that case, all squares are centered in Z2 points

and have a border size equal to 1. Fig. 1 illustrates some

examples of irregular isothetic grids. A rectangle of an

isothetic grid is called a pixel. Each pixel P is defined by

its center ðxP; yPÞ 2 R2 and a size ðlx
P; l

y
PÞ 2 R

2. Before we

introduce objects and straight lines in such grids, we

need adjacency relations between pixels.

Definition 1 (ve-adjacency, e-adjacency). Let P and

Q be two pixels. P and Q are ve-adjacent if:

jxP � xQj ¼
lx
P þ lx

Q

2
and jyP � yQjp

l
y
P þ l

y
Q

2
,

or

jyP � yQj ¼
l
y
P þ l

y
Q

2
and jxP � xQjp

lx
P þ lx

Q

2
.

P and Q are e-adjacent if we consider an exclusive ‘‘or’’

and strict inequalities in the above ve-adjacent definition.
UN

Fig. 1. Examples of irregular isothetic grids: (from left to right) the cla

grid (lx
P ¼ l, l

y
P ¼ m and ðxP; yPÞ ¼ ðli;mjÞ with ði; jÞ 2 Z2), a quadtree

lx
P ¼ l

y
P ¼ 1=2k�1 for some m; n 2 Z); a unilateral and equitransitive til

of the two other square sizes; finally a general irregular isothetic grid
ED P
ROOF

In the following definitions, we use the notation k-

adjacency in order to express either the ve-adjacency or

the e-adjacency. Using these adjacency definitions,

several basic objects can be defined:

Definition 2 (k-path). Let us consider a set of pixels

E ¼ fPi; i 2 f1; . . . ; ngg and a relation of k-adjacency. E

is a k-path if and only if for each element Pi of E, Pi is k-

adjacent to Pi�1.

Definition 3 (k-object). Let E be a set of pixels, E is a

k-object if and only if for each couple of pixels ðP;QÞ
belonging to E� E, there exists a k-path between P and

Q in E.

Definition 4 (k-arc). Let E be a set of pixels, E is a k-

arc if and only if for each the element of

E ¼ fPi; i 2 f1; . . . ; ngg, Pi has exactly two k-adjacent

pixels, except P1 and Pn which are called the extremities

of the k-arc.

Definition 5 (k-curve). Let E be a set of pixels, E is a

k-curve if and only if E is a k-arc and P1 ¼ Pn.

If we consider pixels such that lx
P ¼ l

y
P ¼ 1 and

ðxP; yPÞ 2 Z2 (i.e. a 2D digital space), all these definitions

coincide with the classical ones [16,17]. More precisely,

the ve-adjacency (resp. e-adjacency) is exactly the 8-

adjacency (resp. the 4-adjacency). In the following, we

only consider geometrical properties of such objects. A

complete topological analysis of k-curves and k-objects

is not addressed here.

2.2. Supercover model on the irregular isothetic grids

Before defining the digital straight lines on the

irregular isothetic grids, we have to consider a digitiza-

tion model. In the following, we choose to extend the

supercover model. This model was first introduced by

Cohen-Or and Kaufman in [18] on the classical discrete

grid and then widely used since it provides an analytical

characterization of basic supercover objects (e.g. lines,

planes, 3D polygons,y) [19,20].

Definition 6 (Supercover on irregular isothetic

grids). Let F be an Euclidean object in R2. The
103

105

107

109

111

ssical discrete grid (ðxP; yPÞ 2 Z
2 and lx

P ¼ l
y
P ¼ 1), an elongated

decomposition (for a cell of level k, ðxP; yPÞ ¼ ðm=2
k ; n=2kÞ and

ing by squares: the size of the biggest square is equal to the sum

.
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l

(xP, yP)

d1

d2

Fig. 3. Notations used to detect if the pixel of center ðxP; yPÞ

belongs to the supercover of a straight line l (d1 and d2 are the

diagonals of the rectangle P).
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supercover SðFÞ is defined on an irregular isothetic grid

I by

SðF Þ ¼ fP 2 I jBðPÞ \ Fa;g ð1Þ

¼ P 2 I j 9ðx; yÞ 2 F ; jxP � xjp
lx
P

2

�

and jyP � yjp
l
y
P

2

�
, ð2Þ

where BðPÞ is the rectangle centered in ðxP; yPÞ of size

ðlx
P; l

y
PÞ (if lx

P ¼ l
y
P, BðPÞ is the ball centered in ðxP; yPÞ of

size lx
P for the L1 norm).

Properties of this model are discussed in [15].

Fig. 2 illustrates some examples of the supercover

digitization of Euclidean objects. If I is the classical

digital space (i.e. ðxP; yPÞ 2 Z
2 and lx

P ¼ l
y
P ¼ 1), many

links exist between the supercover of an Euclidean

straight line and classical digital straight line definitions

[5,20]. Since we have not any assumption on the

irregular grid, no strong topological property can be

stated on the supercover of an Euclidean straight line.

Proposition 1 (Coeurjolly [15]). Let l be an Eu-

clidean straight line and a I-grid, the SðlÞ is a single ve-

object.
83
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3.1. Definitions and IDSL Recognition
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Definition 7 (Irregular isothetic digital straight

line). Let S be a set of pixels in I, S is called a piece

of irregular digital straight line (IDSL for short) iff there

exists an Euclidean straight line l such that:

S � SðlÞ. (3)

In other words, S is a piece of IDSL iff there exists l such

that for all P 2 S, B1ðPÞ \ la;.

To detect if B1ðPÞ \ l is empty or not, we use the

notations presented in Fig. 3. Hence, B1ðPÞ \ l is not
UN 101

103

105

107

109

111Fig. 2. Illustration of the supercover digitization of a curve

(left) and of a straight line (right).
TED P
ROOF

empty iff l crosses either (or both) the diagonals d1 or d2

of P.

Without loss of generality, we suppose that l is given

by y ¼ axþ b with ða; bÞ 2 R2 (an appropriate treatment

can be design to handle the straight lines x ¼ k with

k 2 R). To solve the recognition problem, we use the

following statement:

B1ðPÞ \ la; 3 l \ d1a; and aX0 (4)

or l \ d2a; and ao0 (5)

During a recognition process, it is convenient to

consider the set of Euclidean straight lines whose

digitization contains the set of pixels S: if such a set is

empty, we can conclude that S is not a discrete straight

line segment. In the literature, the set of Euclidean

straight lines whose digitization contains S is called the

preimage of S. Many works have been done concerning

the preimage analysis in the classical discrete grid

[7,21,22].

Given a pixel P, Eq. (4) can be represented by two

inequalities in the ða; bÞ-parameter space:

EþðPÞ ¼

a xP �
lx
P

2

� �
þ b� yP �

l
y
P

2
p0;

a xP þ
lx
P

2

� �
þ b� yP þ

l
y
P

2
X0:

8>>><
>>>:

(6)

Details on the computation of these inequalities can be

found in [15]. If we consider Eq. (5), we may obtain the

following inequalities:

E�ðPÞ ¼

a xP �
lx
P

2

� �
þ b� yP þ

l
y
P

2
X0;

a xP þ
lx
P

2

� �
þ b� yP �

l
y
P

2
p0:

8>>><
>>>:

(7)

EþðPÞ is defined for aX0 and E�ðPÞ for ao0. We can

now define the preimages of a piece of IDSL:

Definition 8 (Preimages of an IDSL). Let S be a

piece of IDSL, the two preimages Pþ and P� of S are

given by:
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PþðSÞ ¼
\
P2S

EþðPÞ and P�ðSÞ ¼
\
P2S

E�ðPÞ. (8)

Hence, the recognition process can be described as

follows:

Proposition 2. Let S be a set of pixels in a I-grid. S is a

piece of IDSL iff PþðSÞa; or P�ðSÞa;.

Using Proposition 2, the recognition of a piece IDSL

leads to a linear programming problem: we have to

decide whether a linear inequality system has a solution

or not. To solve this problem, two different classes of

algorithms exist: the IDSL identification algorithms

which decide if S is an IDSL or not, and the IDSL

recognition algorithms which return the complete pre-

images (maybe empty) of the recognized IDSL. To solve

the identification problem, incremental OðnÞ solutions

exist if n is the number of linear constraints (i.e. the

number of irregular pixels in our case) [23,24]. To

completely describe the preimages, the incremental

Preparata and Shamos algorithm [25] may be used

whose computational cost is optimal in Oðn log nÞ. In

[15], an algorithm based on a linear programming

procedure is proposed to recognize IDSL given a set of

pixels. This algorithm can also be used to segment an

irregular arc, i.e. to decompose the arc into maximal

piece of IDSL (see Fig. 4).

The segmentation of a curve gives information

concerning the geometry of the curve. In the next

section, we detail an algorithm to obtain an invertible

polyline from the irregular set of pixels.

3.2. Invertible reconstruction of irregular arcs and curves

In the following, we propose an algorithm to

construct an Euclidean polyline from a discrete curve

such that its digitization is equal to the original discrete

curve. If we consider the supercover digitization model,

a polyline L is an invertible reconstruction of a discrete
UNCO

Fig. 4. Illustration of the segmentation algorithm on a general irregu

from the preimages associated to each IDSL segment [15].
ROOF

curve S if it lies inside the discrete curve. More precisely,

for each Euclidean point p onL, there exists a pixel P in

S such that p belongs to P.

Usually, the reconstruction task is a post-treatment of

a DSL segmentation algorithm: first we decompose the

discrete curve into maximal DSL, then, for each piece of

DSL, we compute a representative Euclidean segment.

The main drawback of this approach is that it is difficult

to ensure the reversibility of the polyline vertices [10,12].

In the classical discrete grid, Sivignon et al. [11] propose

an invertible reconstruction algorithm in which both the

recognition and the Euclidean segment extraction are

performed at the same time. More precisely, the authors

reduce the problem forcing the first extremity of the

segments to be inside the discrete curve. Then, they

perform an analysis on the preimage of the segment to

compute the second extremity.

In the following, we propose a similar algorithm

without the computation of the preimages that would

have required complex linear programming procedures.

The main idea is to use a visibility test technique

commonly used in computational geometry to solve

shortest path extraction problems [26].
ED P3.2.1. Visibility cone based approach

First, we define the predicate TURNPOSITIVEða; b; cÞ
which is true if the points fa; b; cg in the plane are sorted

counterclockwise. Note that such a predicate can be

computed according to the sign of the determinant

detð~ab; ~bcÞ.

Let S ¼ fPigi¼0::n be a k-arc, we first fix the first

extremity p0 of the first segment such that p0 2 P0.

Given the pixel P1 k-adjacent to P0, we denote e0 the

Euclidean segment shared by the two pixels P0 and P1.

We consider the first cone C0ðp0; s; tÞ with center p0 and

defined by the two points s and t such that fp0; t; sg is
sorted counterclockwise (i.e. TURNPOSITIVEðp0; t; sÞ is

true) and such that s and t coincide with the extremities

of e0 (see Fig. 5(left)). C0 is a visibility cone since for
97

99
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111lar curve. The Euclidean straight lines are manually extracted
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Fig. 5. Illustration of the visibility cone based algorithm: (from left to right) the first cone C0, the update of the cone considering the

pixel P2 and an example when the visibility fails.

Fig. 6. Illustration of the different cases when we update a cone: (from left to right) the cone is not modified, only the point t is moved,

only the point s is moved, both s and t are moved, and finally, the visibility fails.
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each point p in the intersection between C0 and the

pixels of S, the segment ½p0p� lies exactly in S. In other

words, the supercover digitization of ½p0p� is a subset of

S.

According to the previous definitions, the cone C0

describes a subset of the preimages PþðfP0;P1gÞ and

P�ðfP0;P1gÞ in the parameter space. Indeed, each

straight line ðp0pÞ crosses the pixels P0 and P1. More

precisely, the set of straight lines contained in the cone

C0 is the segment in the ða; bÞ-parameter space which

corresponds to the intersection between the preimages

Pþ and P� and the straight line defined by the point p0.

Hence, as proposed in [11], we could have performed all

computations in the parameter space ða; bÞ but the

analysis using visibility cones leads to a more efficient

algorithm.

The algorithm can be sketched as follows: for each

pixel Pi, we consider the shared segment ei between Pi�1

and Pi. Then, we have a simple procedure to update the

current cone Cjðpj ; s; tÞ according to eiðu; lÞ (such that

TURNPOSITIVEðp0; l; uÞ is true). The different cases are

presented in Fig. 6. Note that using the predicate

TURNPOSITIVE, Algorithm 1 is valid whatever the

orientation of the curve and the segment ½ul� is not

necessarily vertical nor horizontal.

From the different cases presented in Fig. 6, we can

design a simple algorithm (Algorithm 1) with three

possible outputs: the visibility fails, the cone is updated

or the cone remains unchanged.

When the update procedure fails, it means that there

is no euclidean straight line going through pj and

crossing the pixel Pi. In that case, we need to start a new

recognition process. Hence, we set up a new cone
PRCjþ1ðpjþ1; s; tÞ where s and t are given by the edge ei. To

compute the new center of the cone pjþ1 we use a similar

strategy as in [11]: we consider the bisector of the cone
EDAlgorithm 1. Visibility cone update procedure

Let Cjðpj ; s; tÞ be the current cone and eiðu; lÞ the shared

segment between Pi and Pi�1

if (not TURNPOSITIVEðp; t; uÞ) or TURNPOSITIVEðp; s; lÞ then
T

return ; {the visibility test fails}

else
if TURNPOSITIVEðp; t; lÞ then

t l
return Cjðpj ; s; tÞ
end if
if not TURNPOSITIVEðp; s; uÞ

s u
return Cjðpj ; s; tÞ
end if

end if

(dashed straight lines in Fig. 5) and we define pjþ1 as the

midpoint of the intersection between the bisector and the

pixel Pi�1 (this intersection is not empty since Pi�1 has

already been considered). The idea of this strategy is to

obtain a polyline as centered as possible in the discrete

curve. By definition of Algorithm 1, the segment ½pj ; pjþ1�

lies inside the irregular discrete curve. Hence, if we

repeat the above process for each pixel of the k-arc, the

final polyline is an invertible reconstruction of the arc

(see Figs. 5(right) and 7).
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Fig. 7. Illustration of the reconstruction algorithm: (left) the sequence of cones during the visibility test and (right), the reconstructed

polygonal curve.

Fig. 8. Different cases to end the reconstruction of a k-curve: (a) and (b) we can close the curve using ½p0pj � or ½p
0
0; pj �, (c) a new vertex

pjþ1 must be inserted, and (d) we have to test cases (a), (b) or (c) using the cone Cjþ1 centered in pjþ1.
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3.2.2. Overall algorithm
85
T 87

89
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93
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Algorithm 2. Invertible reconstruction of a k-arc

Let S ¼ fPigi¼0::n be a k-arc and p0 the first point in P0

Set j ¼ 0

Initialization of the cone Cjðpj ; s; tÞ using P0 and P1 such

that TURNPOSITIVEðpj ; t; sÞ is true

pj is the first vertex of the final polyline

for i from 2 to n do
C
ompute the shared segment ei between Pi and Pi�1
 95

C
0  Update the visibility cone using Algorithm 1
if

R

C0 ¼ ; then

97
Compute the point pjþ1 using the bisector of Cj
99

Oand the pixel Pi�1
Initialization of a new cone Cjþ1 with pjþ1 and ei
101

CMark pj as a vertex of the final polyline
e
lse
103

N

Cj  C0
e

105

107

109

111
Und if

end for

Algorithm 2 presents the complete incremental recon-

struction algorithm based on the visibility cone update

procedure. Since Algorithm 1 updates the cone is Oð1Þ,

the overall computational cost of Algorithm 2 is OðnÞ if

n is the number of irregular pixels. Compared to the

segmentation algorithm based on the complete pre-
ED 
images, the IDSL segments may be shorter since subsets

of the preimages are considered. However, this restric-

tion allows us to construct an invertible polyline.

3.2.3. Invertible reconstruction of k-curves

If we consider an irregular k-curve S ¼ fPigi¼0::n, the

reconstructed polyline must be closed and thus defines a

simple polygon. Hence, we can use Algorithm 2 for the

pixels P0 to Pn and add a specific analysis to handle the

adjacency between Pn and P0 that creates as few as

possible new vertices. Let Cjðpj ; s; tÞ be the last visibility

cone such that the intersection between Pn and this cone

is not empty. Several cases occur (see Fig. 8): for

example, if p0 2 Cj , we close the polyline using the

segment ½pjp0�. Otherwise, we may move p0 along ðp0p1Þ

if there exists an intersection between Cj and the straight

line ðp0p1Þ that lies inside P0 (see Fig. 8(b)). In that case,

we still close the curve using ½pjp
0
0� and the global

reversibility of the polygonal curve can be easily proved.

Other cases can be derived (for example using the

visibility from p0 to Pn) but additional vertices may be

inserted to the polygonal curve (see Fig. 8).
4. Experiments

We have constructed a Cþþ library to handle

elementary irregular objects (irregular pixels, k-arcs

and k-curves) (Fig. 9). Using this library, we have
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Fig. 9. Result of Algorithm 2 on an irregular ve-arc: the input ve-curve and the invertible reconstruction using Algorithm 2.

Fig. 10. Result of Algorithm 1 on a classical 4-connected curve: the input 4-connected curve and the invertible reconstruction using

Algorithm 2.
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EC
implemented the reconstruction algorithm described in

the previous section (the code is available on the

following web page: ohttp://liris.cnrs.fr/�dcoeurjo/

Code/Reconstruction4). Fig. 10 presents the result of

Algorithm 2 on an irregular k-arc. Since the classical

digital grid is a specific irregular isothetic grid, Algo-

rithm 2 can also be used to reconstruct a polygonal

curve from a classical 4-connected curve (see Fig. 10). In

this case, results are similar to [11].
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UNCOR5. Conclusion

In this article, we have presented a global digitization

framework on irregular isothetic grids: the supercover

model. Based on this digitization scheme, we have

defined the digital straight lines and briefly presented

algorithmic solutions to solve the recognition and

segmentation problem. We have also presented an

OðnÞ on-line algorithm to reconstruct a polygonal curve

from a discrete irregular arc or curve. Since the classical

regular digital grid can be seen as a particular irregular

grid, all the presented framework is consistent with

classical definitions and algorithms. To achieve the

linear in time computational cost, we have only

considered specific subsets of the preimages defined by

the visibility cones. Thus, the reconstruction may not be

optimal in the number of segments. Additional processes
TEDsimilar to [12] in the classical discrete case could be

investigated.

Since adaptive grids or QuadTree based decomposi-

tions are specific irregular isothetic models, an impor-

tant future work is to use the proposed framework to

provide geometric tools to characterize object bound-

aries in such grids. Furthermore, topological definitions

and data structure to handle irregular objects is an

important on going research topic.
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