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Abstract. Bi-clustering is a promising conceptual clustering approach.
Within categorical data, it provides a collection of (possibly overlap-
ping) bi-clusters, i.e., linked clusters for both objects and attribute-value
pairs. We propose a generic framework for bi-clustering which enables to
compute a bi-partition from collections of local patterns which capture
locally strong associations between objects and properties. To validate
this framework, we have studied in details the instance CDK-Means. It
is a K-Means-like clustering on collections of formal concepts, i.e., con-
nected closed sets on both dimensions. It enables to build bi-partitions
with a user control on overlapping between bi-clusters. We provide an
experimental validation on many benchmark datasets and discuss the
interestingness of the computed bi-partitions.

1 Introduction

Many data mining techniques have been designed to support knowledge discov-
ery from categorical data which can be represented as Boolean matrices: the rows
denote objects and the columns denote Boolean attributes that enable to record
object properties as attribute-value pairs. For instance, given r in Table 1, we say
that object t2 satisfies properties g2 and g5. Clustering is one of the major data
mining tasks and it has been studied extensively, including for the special case
of categorical or Boolean data. Its main goal is to identify a partition of objects
and/or properties such that an objective function which specifies its quality is op-
timized [1]. Thanks to local search optimizations, many efficient algorithms can
provide good partitions but suffer from the lack of explicit cluster characteriza-
tion. It has motivated the research on conceptual clustering [2] and bi-clustering
[3,4,5] whose goal is to compute bi-clusters, i.e., associations of (possibly over-
lapping) sets of objects with sets of properties. An example of an interesting bi-
partition in r (Table 1) is {{{t1, t3, t4}, {g1, g3, g4}}, {{t2, t5, t6, t7}, {g2, g5}}}.
The first bi-cluster indicates that {t1, t3, t4} almost always share properties
{g1, g3, g4}. A major problem is that most of the bi-clustering algorithms com-
pute non overlapping bi-partitions, while in many application domains, it makes
sense to have objects and properties belonging to more than one bi-cluster. It
motivates more research on the computation of relevant collections of possibly
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Table 1. A Boolean context r

g1 g2 g3 g4 g5
t1 1 0 1 1 0
t2 0 1 0 0 1
t3 1 0 1 1 0
t4 0 0 1 1 0
t5 1 1 0 0 1
t6 0 1 0 0 1
t7 0 0 0 0 1

overlapping bi-clusters. Formal concept analysis [6] might be a solution. Infor-
mally, a formal concept is a bi-set (T, G) where the set of objects T and the
set of properties G form a maximal (combinatorial) rectangle of true values,
e.g., ({t1, t3}, {g1, g3, g4}) in r. Unfortunately, we generally get huge collections
of formal concepts which are difficult to interpret by end-users. In our example,
{{t1, t3, t4}, {g1, g3, g4}} is not a formal concept ((t4, g1) �∈ r) but can be built
from {{t1, t3}, {g1, g3, g4}} and {{t1, t3, t4}, {g3, g4}} which are “similar enough”
formal concepts. It provides the intuition of our approach.

The contribution of this paper is twofold. First we propose a new bi-clustering
framework which enables to compute bi-partitions by grouping local patterns
which capture locally strong associations between objects and properties, i.e.,
bi-sets which satisfy some user-defined constraints. Various local patterns are
candidates for such a process, e.g., frequent sets of properties associated to their
supporting set of objects, formal concepts, etc. Secondly, we study one instance of
this framework, the CDK-Means algorithm, which builds simultaneously linked
partitions on objects and properties. More precisely, we apply a K-Means-like
algorithm to a collection of bi-sets (formal concepts in our experiments). As a
result, objects and properties are intrinsically associated to clusters, depending
on their weights in the finally computed centroids. Our experimental validation
confirms the added-value of CDK-Means w.r.t. other (bi-)clustering algorithms.

In Section 2, we set up our clustering framework and we survey related
work. Section 3 discusses our experimental validation methodology and it con-
tains many experimental results on various benchmark datasets. A comparison
between CDK-Means, two bi-clustering algorithms (Cocluster [4] and Bi-
Clust [3]), and two classical clustering algorithms (K-Means and EM [1]) is
given. Scalability issues are discussed and Section 4 concludes.

2 Clustering Model

Assume a set of objects O = {t1, . . . , tm} and a set of Boolean properties P =
{g1, . . . , gn}. The Boolean context to be mined is r ⊆ O × P , where rij = 1 if
property gj is satisfied by object ti. We define the bi-clustering task as follows:
we want to compute a partition of K clusters of objects (say {Co

1 . . . Co
K}) and a

partition of K clusters of properties (say {Cp
1 . . . Cp

K}) with a mapping between
both partitions such that each cluster of objects is characterized by a cluster of
properties. Our idea is that bi-partitions can be computed from bi-sets and it will
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be instantiated later on formal concepts. Formally, a bi-set is an element bj =
(Tj , Gj) (Tj ⊆ O, Gj ⊆ P) and we assume that a collection of a priori interesting
bi-sets denoted B has been extracted from r beforehand. Let us now describe
bj by the Boolean vector < tj >, < gj >=< tj1, . . . , tjm >, < gj1, . . . , gjn >
where tjk = 1 if tk ∈ Tj (0 otherwise) and gjk = 1 if gk ∈ Gj (0 otherwise).
We are looking for K clusters of bi-sets {C1, . . . , CK} (Ci ⊆ B). Let us define
the centroid of a cluster of bi-sets Ci as µi =< τi >, < γi >=< τi1, . . . , τim >,
< γi1, . . . , γin > where τ and γ are the usual centroid components:

τik =
1

|Ci|
∑

bj∈Ci

tjk, γik =
1

|Ci|
∑

bj∈Ci

gjk

We now define our distance between a bi-set and a centroid:

d(bj , µi) =
1
2

( |tj ∪ τ i| − |tj ∩ τ i|
|tj ∪ τ i| +

|gj ∪ γi| − |gj ∩ γi|
|gj ∪ γi|

)

It is the mean of the weighted symmetrical differences of the set components. We
assume |tj ∩ τ i| =

∑m
k=1 ak

tjk+τik

2 and |tj ∪ τ i| =
∑m

k=1
tjk+τik

2 where ak = 1
if tjk · τik �= 0, 0 otherwise. Intuitively, the intersection is equal to the mean
between the number of common objects and the sum of their centroid weights.
The union is the mean between the number of objects and the sum of their
centroid weights. These measures are defined similarly on properties.

Objects tj (resp. properties gj) are assigned to one of the K clusters (de-
noted i) for which τij (resp. γij) is maximum. We can enable that a number
of objects and/or properties belong to more than one cluster by controlling the
size of the overlapping part of each cluster. Thanks to our definition of cluster
membership determined by the values of τ i and γi, we just need to adapt the
cluster assignment step. For this purpose, let us introduce parameters δo and δp

in [0,1] to quantify the membership of each element to a cluster. We say that
an object tj belongs to a cluster Co

i if τij ≥ (1 − δo) · maxi(τij). Analogously, a
property gj belongs to a cluster Cp

i if γij ≥ (1 − δp) · maxi(γij). Obviously the
number of overlapping objects (resp., properties) depends on the distribution of
the values of τ i (resp. γi). Notice that if overlapping is allowed, δ = 0 does not
imply that each object or property is assigned to a single cluster. The choice
of a relevant value for δ is clearly application-dependent. When a bi-clustering
structure holds in the data, little values of δ are not enough to provide relevant
overlapping. On another hand, in noisy contexts, even little values of δ can give
rise to significant overlapping zones.

We can now provide details about the studied instance of this framework:
a bi-clustering based on formal concepts. Many efficient algorithms have been
developed that can extract complete collections of formal concepts under con-
straints. We use D-Miner [7].

Our instance CDK-Means is presented in Table 2. It computes a bi-partition
of a dataset r given a collection of bi-sets B extracted from r beforehand (e.g.,
formal concepts), the desired number of clusters K, the threshold values for δo
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Table 2. CDK-Means pseudo-code

CDK-Means (r is a Boolean context, B is a collection of bi-sets in r, K is the
number of clusters, MI is the maximal iteration number, δo and δp are thresholds
values for controlling overlapping)

1. Let µ1 . . . µK be the initial cluster centroids. k := 0.
2. Repeat

(a) For each bi-set c ∈ B, assign it to cluster C s.t. d(c, µi) is minimal.
(b) For each cluster Ci, compute τi and γi .
(c) k := k + 1.

3. Until centroids are unchanged or k = MI .
4. If overlap is allowed, for each tj ∈ O (resp. gj ∈ P), assign it to each cluster

Co
i (resp. Cp

i ) s.t. τij ≥ (1− δo) ·maxi(τij) (resp. γij ≥ (1− δp) ·maxi(γij)).
5. Else, for each tj ∈ O (resp. gi ∈ P), assign it to the first cluster Co

i (resp.
Cp

i ) s.t. τij (resp. γij) is max.
6. Return {Co

1 . . . Co
K} and {Cp

1 . . . Cp
K}

and δp, and a maximum number of iterations MI. On our example r, CDK-
Means provides the bi-partition given in Section 1. The complexity is linear in
B and scalability issues are discussed in Section 3.

Related work. [3] and [4] bi-clustering methods alternatively refine a partition
when the other one is fixed, optimizing respectively the Goodman-Kruskal’s τ
coefficient and the loss in mutual information. The first interesting difference
is instead of considering objects and properties as separated entities during the
bi-clustering task (even if objective functions are computed on both sets), CDK-
MEANS considers their associations as the elements to process. The second one
is that CDK-Means can easily compute partitions with overlapping clusters.

3 Experimental Validation

Different techniques can be used to evaluate the quality of a partition. An exter-
nal criterion consists in comparing the computed partition with a “correct” one.
It means that data instances are already associated to some correct labels and
that one quantifies the agreement between computed labels and correct ones. A
popular measure is the Jaccard coefficient [1].

To evaluate the quality of our bi-clustering using an internal criterion we use
Goodman and Kruskal’s τ coefficient [8]. It is evaluated in a co-occurrence table
p and it discriminates well bi-partitions w.r.t. the intensity of the functional link
between both partitions [3]. pij is the frequency of relations between an object
of a cluster Co

i and a property of a cluster Cp
j . pi. =

∑
j pij and p.j =

∑
i pij .

The τQ coefficient evaluates the proportional reduction in error given by the
knowledge of Co on the prediction of Cp (τO will denote the measure when
exchanging the partitions):
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τQ =

∑
i

∑
j

p2
ij

pi.
− ∑

j p2
.j

1 − ∑
j p2

.j

We report on experiments using eight well-known datasets taken from the
UCI ML Repository1 and from the JSE Data Archive2. All the experiments
have been performed on a PC with 1 Gb RAM and a 3.0 GHz P4 processor.
First, without considering the class variable, we have processed each dataset
with D-Miner [7]. Minimal set size constraints have been used for mushroom
and credit-a (minimal itemset and objectset sizes (13, 15) and (6, 15)) to obtain
complete collections of formal concepts before using CDK-Means.

Table 3. Goodman-Kruskal’s coefficient values for different bi-clustering algorithms
(mr-2 and mr-5 refer to mushroom with 2 and 5 clusters)

Bi-Clust Cocluster CDK-means
Dataset Dim. Max Max Mean Max Mean
voting 435×48 0.320 0.320 0.315±0.002 0.311 0.311±0.000
titanic 2201×8 0.332 0.321 0.226±0.076 0.314 0.160±0.109
iris-2 150×8 0.543 0.543 0.357±0.195 0.543 0.474±0.056
iris-3 150×8 0.544 0.390 0.379±0.045 0.523 0.329±0.080
zoo-2 101×16 0.191 0.186 0.157±0.034 0.192 0.165±0.020
zoo-7 101×16 - 0.080 0.065±0.009 0.083 0.049±0.015
breast-w 699×18 0.507 0.507 0.474±0.121 0.498 0.498±0.000
credit-3 690×52 0.104 0.014 0.003±0.003 0.110 0.091±0.015
credit-2 690×52 - 0.012 0.006±0.004 0.096 0.055±0.011
mr-2 8124×126 - 0.198 0.158±0.026 0.176 0.157±0.017
mr-5 8124×126 0.187 0.119 0.097±0.009 0.116 0.112±0.004
ads 3279×1555 - 0.006 0.003±0.001 0.538 0.137±0.109

We compared CDK-Means bi-partitions with those obtained by Coclus-
ter [4], and Bi-Clust [3]. As the initialization of these algorithms is random-
ized, we executed them 100 times on each dataset and we selected the result
which returned the best Goodman-Kruskal’s coefficient. The number of desired
clusters for each experiment has been set to the number of class variable values,
except for Bi-Clust which automatically determines the number of clusters.
Bi-Clust is available within WEKA3 and we were not able to process internet-
ads (more than 1500 properties). We summarize these results in Table 3. We
provide only the τQ coefficients. The corresponding τO coefficients are equal or
not significantly different. Notice that, when CDK-Means has the worst results,
the Goodman-Kruskal’s coefficient is not significantly dissimilar from other al-
gorithm coefficients. On the other hand, for internet-ads, the coefficient obtained
with CDK-Means is considerably higher than the one obtained with Coclus-
ter. This is due to the high dimension of the dataset which is not well handled
by the other algorithms. Also the average behavior is similar to the one of Co-
cluster. The average values of the two algorithms are often similar, as well
1 http://www.ics.uci.edu/˜mlearn/MLRepository.html
2 http://www.amstat.org/publications/ jse/jse data archive.html
3 http://www.cs.waikato.ac.nz/ml/weka/
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Table 4. Jaccard coefficient values w.r.t. class variable for different algorithms

Dataset Bi-Clust Cocluster K-Means EM CDK-means
voting 0.6473 0.6473 0.6027 0.6459 0.6737
titanic 0.4281 0.4651 0.3697 0.3697 0.4745
iris-2 0.4992 0.4992 0.5117 0.4992 0.4992
iris-3 0.4932 0.5240 0.5394 0.5394 0.5144
zoo-2 0.5141 0.5630 0.5027 0.5179 0.5141
zoo-7 - 0.1647 0.1843 0.2325 0.2212
breast-w 0.8246 0.8287 0.7777 0.8328 0.7666
credit-3 0.4233 0.3869 0.3765 0.3405 0.4452
credit-2 - 0.4360 0.4698 0.4442 0.4915
mr-2 - 0.6819 0.3496 0.6976 0.6356
mr-5 0.5068 0.3450 0.3192 0.3364 0.3375
ads - 0.4317 - - 0.8019

as the standard deviation values. Notice that for voting-records and breast-w,
CDK-Means has always produced the same bi-partition.

CDK-Means generally needs for more execution time than the other al-
gorithms because it processes possibly large collections of formal concepts. In
these benchmarks, the extraction of formal concepts by itself is not that expen-
sive (from 1 to 20 seconds). Using minimal size constraints during the formal
concept extraction phase enables to reduce the collection size and it will be dis-
cussed later. For titanic, iris, and zoo, CDK-Means performs in less than one
second, while for breast-w, credit-a and internet-ads, the average execution time is
less than one minute. For mushroom, the average execution time is about seven
minutes since more than 50 000 formal concepts have to be processed.

We also used the Jaccard index to compare the agreement of the object par-
titions with those determined by the class variables. Here again, we have selected
the bi-partition with the highest τQ coefficient4. We provide the comparisons in
Table 4. Again, our algorithm is competitive w.r.t. the other bi-clustering meth-
ods. With the exception of breast-w, our algorithm always performs as or better
than Bi-Clust, and most of the times better than Cocluster.

Finally, we have compared our results, w.r.t. two classical clustering algo-
rithms, the WEKA implementations of K-Means and EM (see Table 4). Except
for breast-w, our algorithm is competitive w.r.t the other ones. For most datasets,
CDK-Means performs better than K-Means and EM. Once again, when our
algorithm obtains the best result, the difference with the score of the others is
significant (except on breast-w). These results show that our clustering of formal
concepts is a relevant approach for both partitioning and bi-partitioning tasks.

Scalability Issues. Collections of formal concepts are usually huge, especially
in intrinsically noisy data. Since CDK-Means has a linear complexity in the
number of bi-sets, it can be time-consuming. An obvious solution is to select
some formal concepts, for instance the ones which involve enough objects and/or
properties. Interestingly, such minimal size constraints can be pushed into for-
mal concept mining algorithms [7]. Not only it enables the extraction in hard

4 Clearly, it does not lead to the highest Jaccard’s index.
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Table 5. Clustering results on ads-internet with different minimal size constraints

(σp,σo) |B| time(s) τ(mean) τ(max) J-class J-ref
(0,0) 7682 33 0.137 ± 0.109 0.538 0.8019 1
(4,4) 2926 8 0.194 ± 0.137 0.565 0.6763 0.6737
(5,5) 2075 5 0.254 ± 0.148 0.565 0.6862 0.7490
(5,10) 1166 2.5 0.223 ± 0.119 0.511 0.6745 0.7405
(7,10) 873 2 0.204 ± 0.095 0.549 0.6172 0.6658
(10,10) 586 1.5 0.227 ± 0.125 0.543 0.6080 0.7167

contexts, but also, intuitively, it removes formal concepts which might be due
to noise. We therefore guess that this can increase the quality of the clustering
result. Let σo be the minimal size of the object set and σp be the minimal size
of the property set. Properties (resp. objects) that are in relation with less than
σo objects (resp. σp properties) will not be included in any formal concept. As
our bi-partitioning method is based only on a post-processing of these patterns,
these objects and/or properties can not be included in the final bi-partition.
This is not necessarily a problem if we prefer a better robustness to noise. How-
ever, one can be interested in finding a bi-partition that includes all objects and
properties. An obvious solution is to add the top and bottom formal concepts
(O, ∅) and (∅,P). This has been done in some experiments (mushroom, credit-a)
and we noticed that the decrease of the Jaccard and Goodman-Kruskal’s co-
efficients were not significant. We made further experiments to understand the
impact of using minimal size constraints on both the execution time and the qual-
ity of the computed bi-partition. We have considered internet-ads as the most
suitable for these experiments (high cardinality for both object and property
sets). We extracted formal concepts by setting some combinations of constraints
(0 ≤ σp < 10 and 0 ≤ σo < 10) and by adding (O, ∅) and (∅,P).The results
are summarized in Table 5. It shows that, increasing the minimal size thresh-
old considerably reduces the number of extracted formal concepts and thus the
average execution time. Also the extraction time decreases from 4 seconds (for
σp = σo = 0) to one second (for σp = σo = 10). Moreover, the maximum
Goodman-Kruskal’s coefficient does not change significantly. In some cases it is
greater than the coefficient computed when no size constraint is used. Also the
average values of the Goodman-Kruskal’s measures are better in general (while
standard deviation values are similar). We then computed the Jaccard index of
the different partitions w.r.t. the class variable (J-class column) and the partition
obtained without setting any constraint (J-ref column). The slight variability of
the Jaccard indexes and the high values of the τ measures show that they are
still consistent w.r.t. the class one. Finally, results are always better than those
obtained by using Cocluster (see Fig. 3 and Fig. 4) whose average execution
time is about 4.2 seconds. In other terms, increasing σp and σo can eliminate the
impact of noise due to sparse sub-matrices. In particular, grouping larger formal
concepts can improve the relevancy of bi-partitions. Notice that if we do not add
(O, ∅) and (∅,P), we get better results involving a subset of the original matrix:
constraints can be triggered to trade-off between the coverage of the bi-partition
and the quality of the result.
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4 Conclusion and Future Work

We have introduced a new bi-clustering framework which exploits local patterns
in the data when computing a collection of (possibly overlapping) bi-clusters.
The instance CDK-Means builds simultaneously a partition on objects and a
partition on properties by applying a K-Means-like algorithm to a collection
of extracted formal concepts. Our experimental validation has confirmed the
added-value of CDK-Means w.r.t. other (bi-)clustering algorithms. We demon-
strated that such a “from local patterns to a relevant global pattern” approach
can work. Due to the lack of space, we omitted the experimental results on real
data and the study of overlapping clusters [9]. Many other instances of the frame-
work might be studied. For instance, given extracted local patterns, alternative
clustering techniques can be considered. Also, other kinds of local patterns (i.e.,
relevant bi-sets which are not formal concepts) could be considered. Finally, an
exciting challenge concerns constraint-based clustering. Our framework gives rise
to opportunities for pushing constraints at two different levels, i.e., during local
pattern mining but also when building bi-partitions from them.
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nical support. This research is partially funded by CNRS (ACI MD 46 Bingo).
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