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Abstract. This paper presents a segmentation algorithm for gray-level
images and addresses issues related to its performance on noisy images.
It formulates an image segmentation problem as a partition of a weighted
image neighborhood hypergraph. To overcome the computational diffi-
culty of directly solving this problem, a multilevel hypergraph partition-
ing has been used. To evaluate the algorithm, we have studied how noise
affects the performance of the algorithm. The α-stable noise is consid-
ered and its effects on the algorithm are studied.
Key words : graph, hypergraph, neighborhood hypergraph, multilevel
hypergraph partitioning, image segmentation and noise removal.

1 Introduction

Image segmentation is an important step in computer vision. Several algorithms
have been introduced to tackle this problem. Among them are approaches based
on graph partitioning [1–3]. Their common point is the building of a weighted
graph. This graph is partitioned into components in a way that minimizes a
specified cost function of the vertices in the components and/or the boundary
between those components. One of the most frequently used techniques to par-
tition a graph is by means of the cut cost function. Several alternatives to the
cut criterion have been proposed [1–3]. Of particular note is the normalized cut
criterion (Ncut) of Shi and Malik [1], which attempts to rectify the tendency
of the cut algorithm to favor isolated nodes of the graph. Also, like graphs, hy-
pergraphs may be partitioned such that a cut metric is minimized. However,
hypergraph cut metrics provide a more accurate model than graph partitioning
in many cases of practical interest [4]. It has been shown that, in general, there
does not exist a graph model that correctly represents the cut properties of the
corresponding hypergraph [5]. Recently, several serial and parallel hypergraph
partitioning techniques have been extensively studied [6, 7] and tools support ex-
ists (e.g. hMETIS [8], PaToH [4] and Parkway [9]). These partitioning techniques
showed a great efficiency in distributed databases and VLSI circuits fields.

In practice, the images are often corrupted by a noise. Indeed, the noise
influences considerably the segmentation quality. To solve this problem, many
methods integrate a pre-filtering step. The segmentation quality is conditioned
by this step, and more precisely by preserving the useful information. The latter



one can be assured by using conditional filters. Only the noisy pixels are filtered.
Our goal in this paper is to create a hybrid method between a conditional noise
removal algorithm and an image segmentation algorithm. The two algorithms use
a combinatorial model of the hypergraph theory. The hybrid method integrates
three goals: (1) the use of a combinatorial model which adapts perfectly to the
image. This model can be used to model a variety of systems, where the relations
between objects in a system play a dominant role. (2) The implementation of a
multilevel hypergraph partitioning algorithm. (3) The use of a structural noise
model. These objectives are gathered in an algorithm which processes in three
steps. In the first step, we generate the weighted hypergraph of an image, while
in the second step we remove the noise. Only the noisy pixels are filtered. In the
last step, we partition the weighted hypergraph into k regions.

The remainder of this paper is organized as follows: in section 2, we introduce
the weighted image neighborhood hypergraph. In section 3, we define the struc-
tural model of noise. The hypergraph partitioning is introduced in section 4. In
section 5, we illustrate the performance of the proposed segmentation approach.
The paper ends with a conclusion in section 6.

2 Weighted Image Neighborhood Hypergraph (WINH)

A hypergraph H on a set X is a family (Ei)i∈I of non-empty subsets of X called
hyperedges with : ∪i∈IEi = X, I = {1, 2, . . . , n}, n ∈ N. Given a graph G(X; e),
where X is a set of vertices, and e is a set of unordered pairs of members
of X called edges. The hypergraph having the vertices of G as vertices and
the neighborhood of these vertices as hyperedges (including these vertices) is
called the neighborhood hypergraph of graph G. To each G we can associate a
neighborhood hypergraph: HG = (X, (Ex = {x} ∪ Γ (x))) where Γ (x) = {y ∈
X, (x, y) ∈ e}.

Let HG = (X; (Ei)i∈I) be a hypergraph. A chain is a sequence of hyperedges
Ex. It is disjoined if the hyperedges Ex are not connected two by two. An hyper-
edge Ei is isolated if and only if : ∀j ∈ I, j 6= i if Ei ∩Ej 6= ∅ then Ej ⊆ Ei.

The image will be represented by the following mapping : I : X ⊆ Z2 −→
C ⊆ Zn. Vertices of X are called pixels, elements of C are called colors. A
distance d on X defines a grid (a connected, regular graph , without both loop
and multi-edge). Let d′ be a distance on C, we have a neighborhood relation on
an image defined by: Γλ,β(x) = {x′ ∈ X, |d′(I(x), I(x′)) ≤ λ and d(x, x′) ≤ β).

The neighborhood of x on the grid will be denoted by Γλ,β(x). To each image
we can associate a hypergraph called Image Neighborhood Hypergraph (INH):
HΓλ,β

= (X, ({x} ∪ Γλ,β(x))x∈X).
On a grid Γβ , to each pixel x we can associate a neighborhood Γλ,β(x),

according to a predicate λ. The threshold λ can be carried out in two ways. In
the first way, the λ is given for all the pixels of the image. In the second way, the
λ is generated locally and applied in an adaptive way to the unit of the pixels.

From Hλ,β , we define a Weighted Image Neighborhood Hypergraph (WINH)
according to the two maps functions fwv and fwh

. The first map fwv , associates



an integer weight wxi with every vertex xi ∈ X. The weight is defined by the
color in each pixel. The map function fwh

associates to each hyperedge a weight
whi defined by the mean color in hyperedge. According to λ, we generate two rep-
resentations: WINH and WAINH using respectively global and local thresholds.
The last one is named: Weighted Adaptive Image Neighborhood Hypergraph.

3 Noise Model Definition

In this section, we define a structural noise model. This model exploits a lack
of homogeneity criterion. We consider that the non-homogeneity characterizes
noise. The isolated hyperedge can be used to model this non-homogeneity in an
image. It is a hyperedge which does not have any information shared with its
open neighborhood in the image. We call open neighborhood of the hyperedge
E noted Γ o(E), the set Γ (E)\E.

By using this property, we propose the following noise definition: Eλ,β(x) is
a noise hyperedge if it verifies one of the two conditions : (1) The cardinality of
Eλ,β(x) is equal to 1 and Eλ,β(x) is not contained in disjoined thin chain having
ω elements at least. (2) Eλ,β(x) is an isolated hyperedge and there exists an
element y belonging to the open neighborhood of Eλ,β(x) on the grid, such that
Eλ,β(y) is isolated.

4 Multilevel WINH Partitioning

The formal definition of the k-way hypergraph partitioning technique is as fol-
lows: find k disjoint subsets Xi, (i = 0, . . . , k − 1) of the vertex set X with
part (region) weights Wi (i = 0, . . . , k − 1)(given by the sum of the constituent
vertex weights), such that, given a prescribed balance criterion 0 < ε < 1,
Wi < (1 + ε)Wavg holds ∀i = 0, . . . , k − 1 and an objective function over the
hyperedges is minimized. The Wavg denotes the average part weight.

If the objective function is the hyperedge cut metric, then the partition cost
(or cut-size) is given by the sum of the costs of hyperedges that span more than
one part.

Initial Partitioning Phase
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H1

H0

UnCoarsening PhaseCoarsening Phase

Fig. 1. Multilevel Hypergraph Partitioning.

Computing the optimal bisection or k-section of a hypergraph under the
hyperedge cut metric is known to be NP-complete [10]. Thus, researches have



focused on developing polynomial time heuristic algorithms resulting in good
sub-optimal solutions. Because it scales well in terms of run time and solution
quality with increasing problem size, the multilevel paradigm is preferred to
direct solution approaches. Below, we describe the main steps of the multilevel
paradigm (figure. 1):

– Coarsening phase: Hλ,β is approximated via a succession of smaller hy-
pergraphs that maintain its structure as accurately as possible. Many ap-
proaches have been proposed for finding the groups of vertices to be merged
[7].

– Initial partitioning phase: During the initial partitioning phase, a partition-
ing of the coarsest hypergraph Hλ,β

coarse is computed, such that it minimizes
the cut.

– Uncoarsening phase: During the uncoarsening phase, a partitioning of the
coarser hypergraph is successively projected to the next level finer hyper-
graph, and a partitioning refinement algorithm is used to reduce the cut-set.

Figure 2 illustrates the proposed algorithm. It starts with a WINH genera-
tion, noise removal using structural noise model followed by a multilevel hyper-
graph partitioning.

Partitioning

WINHNoise

RemovalGeneration

WINH 

input image + parameters Segmented image
Step 1 Step 2 Step 3

Fig. 2. The three steps of the proposed segmentation algorithm. The input parameters
are: λ, β, ω and k desired regions.

5 Experimental Results

We shall present a set of experiments in order to assess the performance of
the segmentation approach we have discussed so far. The experimental results
contain two steps. In the first step, we evaluate only the segmentation method in
non-corrupted images. The algorithm is carried out in two stages: weighted image
neighborhood generation followed by a multilevel hypergraph partitioning. In the
second step, we evaluate the segmentation method in corrupted images. In this
step, the algorithm is carried out in three stages. We start with an evaluation of
noise model, then we evaluate the segmentation algorithm in noisy images. For
all experiments: In WINH generation, we use the parameters values β, λ and k
adjusted in experiments . In the case of WAINH generation, we use an adaptive
threshold λ estimated using: λ = Median {I(y)−Median(F (x))}∀y∈F . F is the
window centered in x with the size [2β + 1 × 2β + 1]. In WINH partitioning,



and in the coarsening phase, we use the hyperedge coarsening approach (figure
3). In the initial partitioning phase, we compute the k-way partitioning of the
coarsest hypergraph using the multilevel hypergraph bisection algorithm [7]. In
the uncoarsening phase, we use the F.M. refinement algorithm [6].

For the coarsening, initial partitioning and uncoarsening phases we use the
Hmetis package [8].

Fig. 3. Hyperedge coarsening method

We will now show the effect of the weighted hypergraph generation on the
quality of the image segmentation results. For this study, we implement two
weighted neighborhood hypergraph representation : WINH and WAINH. Figure
4 shows the segmentation results of Peppers image. From this figure, we can see
that using the WAINH, we obtain significant and better results. Indeed, using
WAINH, we detect more significant regions compared to segmentation approach
using WINH representation.

(a) (b) (c)

Fig. 4. WINH and WAINH comparison. (a) the original image of size 256×256. Outputs
of our algorithm : (b) using WINH with (λ, β, k) = (10, 1, 51) and (c) using WAINH
with (β, k) = (1, 51).

In order to compare our method with an existing one, we have chosen the
technique of Shi and Malik (Normalized Cuts detection - Ncut) [1]. We have
processed a group of images with our segmentation method and compared the
results to Ncut algorithm. The Ncut algorithm used the same parameters for
all images, namely, the optimal parameters given by authors. Figure 5 shows a
comparison between the proposed and Ncut algorithms on Peppers and Medical
images. According to the segmentation results on these images, we note that
our algorithm make a better localization of the regions in the processed image
compared to the Ncut method. The strength of this algorithm is that it better
detects the regions containing many details. In addition, it results in shorter



computing times faster than Ncut algorithm. The computing times of these two
algorithms have been implemented using C++ language in a notebook with the
following characteristics: Pentium Centrino, 1.5GHz, 512 Mo RAM.

Original images proposed Ncut

(a) (b) (c)

(a’) (b’) (c’)

Fig. 5. A comparison between the proposed and Ncut algorithms. (b,b’) The outputs
processed in 32,23s and 29,06s respectively. (c,c’) The outputs processed in 402,75s with
k = 51 and 463,64s k = 40 respectively. The parameters of (b,b’) are ((β, k) = (1, 51))
and ((β, k) = (1, 39)) respectively.

Using the noise model illustrated in section 3, we develop a conditional noise
removal algorithm. It is conditional because only the noisy hyperedges are fil-
tered. The noise removal algorithm starts with AINH representation followed
by noisy hyperedge detection and followed by noisy hyperedge estimation. We
tested the performance of noise removal algorithm in the presence of α-stable
noise. This distribution is a useful model of noise distribution. For a symmetrical
distribution, the characteristic function is given by: ϕ(t) = e{jat−γ|t|α}, where:
(1) α is the characteristic exponent satisfying 0 < α ≤ 2. The characteristic
exponent controls the heaviness of the tails of the density function. The tails are
heavier, and thus the noise more impulsive, for low values of α while for a larger
α the distribution has a less impulsive behavior. (2) a is the location parameter
(−∞ < a < +∞). (3) γ is the dispersion parameter (γ > 0), which determines
the spread of the density around its location parameter.

The objective of the filtering is to remove the noisy hyperedges while pre-
serving the noise-free patterns. In figure 6, we present the results of the noise
detection in Peppers and Medical images corrupted by α-stable noise with two
parameters: α = 0.5 and α = 1, 5 representing respectively a impulsive and
Gaussian distribution noise. These two results are compared with the Median
Filter. It operates using 3 × 3 square processing windows. From the error im-
ages 6(e,e’) between the filtered image and the original image, we note that the



proposed algorithm preserves better the edge of the corrupted image than the
Median filter.

a b c d e

a’ b’ c’ d’ e’

Fig. 6. Noise model evaluation. (a,a’) corrupted images by α-stable noise. The α-stable
noise parameters are (α = 0.5,γ = 1, a = 0, percentage = 10%) and (α = 1, 5,γ = 20,
a = 0 and percentage = 10%) for images a,a’ respectively. (b,b’) filtered image by our
noise model (β = 1,ω = 5). (c,c’) output of median 3×3 filter. (d,d’) error ×10 between
the orginal images and b,b’ images respectively. (e,e’) error ×10 between the original
images and c,c’ images respectively.

Segmentation results of Peppers and Medical images corrupted by the same
parameters of α-stable noise are illustrated in figure 7. This figure shows the
segmentation results with and without the integration of the noise model in
the proposed algorithm. In the case of non-integration of noise model in the
proposed algorithm, we note that this last one detects the noise like regions
(figures 7(c,c’)). This noise influences the segmentation result considerably. The
figures 7 (b,b’) justify the absence of this drawback in the case of use of noise
model. According to this figure and to several simulations on several image types
we note that the use of both noise model and hypergraph partitioning in WAINH
representation constitutes a robust segmentation algorithm to the noise effect.

6 Conclusions

We have presented a segmentation algorithm for noisy images. The segmenta-
tion is accomplished in three steps. In the first step, a weighted adaptive image
neighborhood hypergraph is generated. In the second stage, a conditional noisy
hyperedge removal algorithm is computed. In the last stage, a hypergraph parti-
tioning method is computed using a multilevel technique . Experimental results
demonstrate that our approach performs better than Ncut algorithm. It can
be improved in several ways (parameters: the function maps, the colorimetric
threshold, the unsupervised region number, etc.).
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Fig. 7. Robustness evaluation of the proposed algorithm to noise effect. (a,a’) corrupted
images with α = 0.5, γ = 1 and α = 1.5, γ = 20 respectively with 10% of α-stable
noise. (b,b’) The output of the proposed algorithm after noise removal with proposed
noise model. (c,c’) the output of the proposed algorithm without noise removal. The
Peppers image was processed by β = 2 and k = 56 parameters, while the Medical
image used β = 2 and k = 37 parameters.
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