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Abstract. The aim of this paper is to present an improvement of a pre-
viously published algorithm. The proposed approach is performed in two
steps. In the first step, we generate the Weighted Adaptive Neighborhood
Hypergraph (WAINH) of the given gray-scale image. In the second step,
we partition the WAINH using a multilevel hypergraph partitioning tech-
nique. To evaluate the algorithm performances, experiments were carried
out on medical and natural images. The results show that the proposed
segmentation approach is more accurate than the graph based segmen-
tation algorithm using normalized cut criteria.
Key words: hypergraph, neighborhood hypergraph, hypergraph parti-
tioning, image segmentation, edge detection and adaptive thresholding.

1 Introduction

Image segmentation is an important step in computer vision. Several algorithms
have been introduced to tackle this problem. Among them are approaches based
on graph partitioning [1–6].

The graph approaches carry the appeal of a strong theoretical basis and the
advantage of being applicable not only to the segmentation of images, but also
to other low, mid, and high level vision tasks. For grouping pixels into regions
with a graph-theoretic approach, a graph is usually defined as G(X, e), where
the nodes X represent the pixels (one node per pixel) and the edges e represent
the weights w(i, j) that connect pairs of nodes.

One of the most frequently used techniques to partition a graph is by means
of the cut cost function. The goal of the cut algorithm is to find two sub-graphs
A and B of G that minimize the value of : cut{A, B} =

∑
i∈A,j∈B w(i, j) and

with the obvious constraints A ∪B = X, A ∩B = ∅, and A 6= ∅ ,B 6= ∅.
Several alternatives to the above criterion have been proposed to date [4, 1,

3]. Of particular note is the normalized cut criterion (Ncut) of Shi and Malik
[1], which attempts to rectify the tendency of the cut algorithm to favor isolated
nodes of the graph.

A hypergraph is an extension of a graph in which edges are allowed to connect
arbitrary, non-empty sets of vertices (as shown in Fig. 1). Similarly to graphs,
hypergraphs can be used to represent the structure of many applications, such
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Fig. 1. An example graph and a hypergraph.

as data dependencies in distributed databases, component connectivity in VLSI
circuits and image analysis [7–10]. Also, like graphs, hypergraphs may be par-
titioned such that a cut metric is minimized. However, hypergraph cut metrics
provide a more accurate model than graph partitioning in many cases of prac-
tical interest. For example, in the row-wise decomposition of a sparse matrix
for parallel matrix-vector multiplication, a hypergraph model provides an exact
measure of communication cost, whereas a graph model can only provide an
upper bound [11, 12]. It has been shown that, in general, there does not exist
a graph model that correctly represents the cut properties of the correspond-
ing hypergraph [13]. Recently, several serial and parallel hypergraph partition-
ing techniques have been extensively studied [14, 15, 12] and tools support exists
(e.g. hMETIS [16], PaToH [11] and Parkway [17]). These partitioning techniques
showed a very great efficiency in distributed databases and VLSI circuits fields.

In this paper, we present a new hypergraph-based image segmentation algo-
rithm using hypergraph partitioning techniques. The basic idea of this algorithm
can be described as follows. It first builds a weighted hypergraph of the given
gray-scale image. Then the algorithm partitions this representation into a set of
vertices, representing homogeneous regions. The hypergraph partitioning is done
by a fast multilevel programming algorithm. Our contribution consists in pre-
senting an Adaptive Image Neighborhood Hypergraph representation (WAINH).
The WAINH is the most significant step in the segmentation algorithm, because
it makes it possible to connect the given gray-scale image and the existing hy-
pergraph partitioning techniques.

The adaptive representation captures the local properties of the gray-scale
image and the whole key information for the segmentation purpose. This leads to
a new hypergraph-based technique which is more relevant to image segmentation
than our previous work [9].

The remainder of this paper is organized as follows: in section 2, we intro-
duce the weighted adaptive image neighborhood hypergraph. The hypergraph
partitioning for image segmentation is introduced in section 3. In section 4, we



illustrate the performances of the proposed approach. The paper ends with a
conclusions and perspectives in section 5.

2 Adaptive Image Neighborhood Hypergraph (AINH)

A hypergraph is a pair H = (X, E), where X = x1, x2, . . . xn is the set of vertices
(or nodes) and E = E1, E2, . . . , Em, with Ei ⊆ X for i = 1, . . . , m, is the set of
hyperedges.

Let us note G(X; e) a graph and H(X, E) a hypergraph. The hypergraph
having the vertices of G as vertices and the neighborhood of these vertices as
hyperedges (including these vertices) is called the neighborhood hypergraph of
graph G. To each graph G we can associate a neighborhood hypergraph (figure
1):

HG = (X, (Ex = {x} ∪ Γ (x))) where Γ (x) = {y ∈ X, (x, y) ∈ e} (1)

In this paper, the image will be represented by the following mapping :

I : X ⊆ Z2 −→ C ⊆ Zn

Vertices of X are called pixels, elements of C are called colors. A distance d on
X defines a grid (a connected, regular graph, without both loop and multi-edge).
Let d′ be a distance on C, we have a neighborhood relation on an image defined
by:

Γλ,β(x) = {x′ ∈ X, |d′(I(x), I(x′)) ≤ λ and d(x, x′) ≤ β). (2)

The neighborhood of x on the grid will be denoted by Γλ,β(x). To each image
I, we can associate a hypergraph called Image Neighborhood Hypergraph(INH)
[8] :

HΓλ,β
(I) = (X, ({x} ∪ Γλ,β(x))x∈X) (3)

The figure 2 illustrates an example of image neighborhood hypergraph rep-
resentation.

On a grid Γβ , to each pixel x we can associate a neighborhood Γλ,β(x),
according to a predicate λ. The threshold λ can be carried out in two ways. In
the first way, the λ is given for all the pixels of the image. In the second way,
the λ is generated locally and applied in an adaptive way to the image I.

In this paper, the attribute λ is computed in an adaptive way depending on
the local properties of the image. The value of λ will be estimated by :

λ = Median {I(y)−Median(F (x))}∀y∈F (4)

F is the window centered in x with the size [2β + 1× 2β + 1].
This HΓλ,β

(I) combinatorial representation is more relevant than the pre-
vious one introduced in [9], because it takes into account both the local and
global aspects of the image. Hence HΓλ,β

(I) offers new facilities for handling the
topology and the geometry of the image. Consequently, it gives more information
about the nature of the image to analyze.
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Fig. 2. An example of INH representation.

3 Multilevel WAINH Partitioning

From HΓλ,β
(I), we define a Weighted Adaptive Image Neighborhood Hypergraph

(WAINH) according to the two maps functions fwv and fwh
. The first map fwv

associates an integer weight wxi with every vertex xi ∈ X. The weight is defined
by the intensity in each pixel. The map function fwh

associates to each hyperedge
a weight whi defined by the mean intensity in this hyperedge. The WAINH is
defined by:

Hλ,β = (X, Eλ,β , wx, wh), ∀x ∈ X, fwx(x) = I(x)

∀E(x) ∈ Eλ,β , fwh
(E(x)) =

1
|E(x)|

|E(x)|∑

i=1

I(xi)xi∈E(x)

The formal definition of the k-way hypergraph partitioning technique is as
follows : find k disjoint subsets Xi, (i = 0, . . . , k − 1) of the vertex set X with
part (region) weights Wi (i = 0, . . . , k − 1)(given by the sum of the constituent
vertex weights), such that, given a prescribed balance criterion 0 < ε < 1,
Wi < (1 + ε)Wavg holds ∀i = 0, . . . , k − 1 and an objective function over the
hyperedges is minimized. The Wavg denotes the average part weight.

If the objective function is the hyperedge cut metric, then the partition cost
(or cut-size) is given by the sum of the costs of hyperedges that span more than
one part. Alternatively, when the objective function is the (k − 1) metric, the
partition cost is given by : Pcost =

∑|E|−1
i=0 (γi − 1)whi

Computing the optimal bisection of a hypergraph under the hyperedge cut
metric (and hence the (k − 1) metric since k = 2 for a bisection) is known to
be NP-complete [18]. Thus, researches have focused on developing polynomial



time heuristic algorithms resulting in good sub-optimal solutions. Because it
scales well in terms of run time and solution quality with increasing problem
size, the multilevel paradigm is preferred to direct solution approaches. Below,
we describe the main steps of the multilevel paradigm (figure. 3).

Initial Partitioning Phase

H0 H1 H2
H1

H0

UnCoarsening PhaseCoarsening Phase

Fig. 3. Multilevel Hypergraph Partitioning.

i. Coarsening phase: Hλ,β is approximated via a succession of smaller hyper-
graphs that maintain its structure as accurately as possible. A single coarsening
step is performed by merging the vertices of the original hypergraph together to
form vertices of the coarse hypergraph, denoted by a map fmerge : X → Xcoarse,
where

|X|
|Xcoarse| = r, r > 1, (5)

and r is the prescribed reduction ratio. The map fmerge is used to transform
the hyperedges of the original hypergraph Hλ,β to the hyperedges of the coarse
hypergraph. Single vertex hyperedges in the coarse hypergraph are discarded as
they cannot contribute to the cut-size of a partition of the coarse hypergraph.
Several fmerge maps functions have been proposed [19] (figure 4): edge coarsen-
ing, hyperedge coarsening and modified hyperedge coarsening.

(a) (b) (c)

Fig. 4. Coarsening phase : (a) Edge coarsening : connected pairs of vertices are matched
together. (b) Hyperedge coarsening : all the vertices belonging to a hyperedge are
matched together. (c)Modified hyperedge coarsening : we match together all the ver-
tices in a hyperedge as well as all the groups of vertices belonging to a hyperedge.



ii. Initial partitioning phase: During the initial partitioning phase, a parti-
tioning of the coarsest hypergraph Hλ,β

coarse is computed, such that it minimizes
the cut. Since this hypergraph has a very small number of vertices, the time to
find a partitioning using any of the heuristic algorithms tends to be small.
iii. Uncoarsening phase: During the uncoarsening phase, a partitioning of the
coarser hypergraph is successively projected to the next level finer hypergraph,
and a partitioning refinement algorithm is used to reduce the cut-set (and thus
to improve the quality of the partitioning). Since the next level finer hypergraph
has more degrees of freedom, such refinement algorithms tend to improve the
solution quality.

Figure 5 illustrates the proposed algorithm. It starts with a WAINH gener-
ation followed by a multilevel hypergraph partitioning.

H1 H2 H0

Initial Partitioning Phase

Coarsening Phase UnCoarsening Phase

H0
H1Generation

WAINH

input image + Parameters

Fig. 5. The two steps of the proposed segmentation algorithm. The input parameters
are : intensity threshold λ, spatial threshold β and the number of desired regions k.

4 Experimental Results

A set of gray-scale images with different homogeneous areas was chosen in order
to demonstrate the performances of our algorithm. The simulations are grouped
in two parts. Firstly, the evaluation of the algorithm according to the WAINH
representation, then the evaluation of the proposed algorithm compared to the
existing methods.

We will first describe the various stages of implementation of the proposed
algorithm.

1. For WAINH generation, we use an adaptive threshold λ. It is estimated using
Equation (4) while the parameters value (β,k) are adjusted in experiments.

2. For WAINH partitioning, and in the coarsening phase, we use the hyper-
edge coarsening approach. In the initial partitioning phase, we compute the
k-way partitioning of the coarsest hypergraph using the multilevel hyper-
graph bisection algorithm [15]. In the uncoarsening phase, we use the F.M.
refinement algorithm [14].

For the coarsening, initial partitioning and uncoarsening phases we use the
Hmetis package [16].

We will now show the effect of the weighted hypergraph generation on the
quality of the image segmentation results. For this study, we implement two



weighted neighborhood hypergraph representations : the WAINH representation
defined in section 3, and the WINH representation used in our previous work
[9].

The WINH representation uses a global threshold λ. This means that all the
hyperedges Eλ,β(x) are generated with the same threshold λ.

Figure 6 shows the segmentation results of Peppers image obtained, using
WAINH and WINH representations. From this figure, we note that the proposed
algorithm using WINH representation tends to divide large constant areas into
multiple segments. The reader might see that we could improve the results by
using WAINH representation. Indeed, the use of WAINH representation in the
proposed algorithm involves the detection of more significant regions with high
precision. Consequently, weighted hypergraph representation influences segmen-
tation quality. The improvement of this representation leads to an improvement
of the segmentation quality. These remarks can be observed on each image of
the set.

(a) (b) (c)

Fig. 6. WAINH and WINH comparison. (a) Peppers image. (b,c) Outputs of the pro-
posed algorithm using WINH (λ = 20, β = 1 and k = 51) and WAINH (β = 1 and
k = 51) representations respectively.

We will now evaluate the WAINH representation according to the mapping
function fwv and fwh

. Independently of these two functions, we can generate
three representations. (1) Using weighted vertices only, (2) using weighted hy-
peredges only and (3) using both weighted vertices and weighted hyperedges.

The goal of this study is to evaluate the proposed algorithm according to
these three representations and more particularly to the quantity of information
contained in these representations.

Figure 7 shows the results of the proposed algorithm using these three WAINH
representations. From this figure, we note that the algorithm with these three
representations gives comparable results. But, in some areas containing more de-
tails and more useful information, we can see that the last representation WAINH
(using both weighted vertices and weighted hyperedges) gives significant results.
Indeed, the third WAINH gives more key information about the image used in



multilevel neighborhood hypergraph partitioning technique for the segmentation
purpose.

(a) (b) (c)

Fig. 7. The output of the proposed algorithm with WAINH (a) using weighted vertices
only, (b) using weighted hyperedge only, (c) using both weighted vertices and weighted
hyperedges. The parameters of the algorithm: β = 1 and µ = 51.

To evaluate the WAINH representation used in our segmentation approach,
the discussion so far used only one Peppers image. In this study, we show several
additional results on different types of images. These additional results are com-
pared to the results of Shi and Malik segmentation algorithm [1] (Normalized
Cuts detection Ncut). This algorithm use the same parameters for all images,
namely, the optimal parameters given by the authors.

Figure 8 shows a comparison between the proposed and Ncut algorithms
on Peppers, Medical, Fruits, Muscle and House images. According to the seg-
mentation results on these images, we note that our algorithm make a better
localization of the regions in the processed image compared to the Ncut method.
The strength of this algorithm is that it better detects the regions containing
many details.

In addition, it results in shorter computing times faster than normalized cuts
algorithm. The table 1 describes the computing times of these two algorithms.
They have been implemented using C++ language in a notebook with the fol-
lowing characteristics: Pentium Centrino, 1,5GHz, 512 Mo RAM.

Table 1. The computing times of the proposed and Malik et al. algorithms for Peppers,
Medical, Fruits, Muscle and House images.

Image proposed (in second) Ncut (in second)

Peppers 3.22 402.75
Medical 2.90 463.64
Fruits 3.25 447.78
House 2.69 453.62
Muscle 3.78 477.28



Peppers Medical Fruits Muscle House

265× 256 265× 256 251× 251 256× 256 256× 256

(a’) k = 51 (b’) k = 35 (c’) k = 45 (d’) k = 57 (e’) k = 27

(a”) k = 51 (b”) k = 40 (c”) k = 32 (d”) k = 48 (e”) k = 28

Fig. 8. A comparison between proposed and normalized cut algorithms. (a’,b’,c’,d’,e’)
The outputs of the proposed algorithm with β = 1. (a”,b”,c”,d”,e”) The output of
normalized cut algorithm.

5 Conclusions and Perspectives

We have presented a weighted adaptive image neighborhood hypergraph parti-
tioning for image segmentation. The segmentation is accomplished in two stages.
In the first stage, a weighted adaptive image neighborhood hypergraph is gen-
erated. In the second stage, a hypergraph partitioning is computed using a mul-
tilevel technique is computed. Experimental results demonstrate that our ap-
proach using the weighted adaptive neighborhood hypergraph performs better
than the same algorithm using a global representation and the normalized cut
algorithm. Currently, we work on the extension of the proposed algorithm on
color images.
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