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Abstract

Pre-attentive vision aims at organizing raw data from im-
ages in more meaningful groups, with domain-independent
criteria. We present a new framework for this process,
at several levels of granularity. We consider a perceptual
grouping occurs when multiple local evidence appear on its
support. We rely on region-based segmented image, com-
pute evidence from geometrical measurements, and com-
bine evidence with Shafer’s degree of belief. Several results
are shown, both on artificial and real images, which show
the relevancy of our method.

1. Introduction

Computer vision systems aim at extracting a symbolic de-
scription of images from signal-based raw data. To this end,
they proceed by hierarchical treatments, iteratively handling
more and more abstract objects. However, both the senso-
rial and the semantic gap make this goal so hard to reach.
As a matter of fact, the former states the loss of information
between the real 3D world and the image, while the latter
refers to the non-obvious way from set of image descriptors
to symbolic description.

Two main categories of processes could be found, though
strongly linked [10]. On the one hand, top-down (atten-
tive) processes need domain knowledge, in order to per-
form goal-oriented tasks. Such knowledge is of various
forms and could be explicitly formalized, or directly inte-
grated in control procedures. On the other hand, bottom-
up (pre-attentive) processes, organize raw data into more
meaningful groups with varied criteria, independent on do-
main. Hence, so-called intermediate objects are created,
which are a first abstraction of signal-based data. These
treatments allow to strongly reduce noise issued from pre-
vious steps (segmentation). Besides, they permit a partial
reduction of sensorial gap by recovering primitives issued
from a common underlying real object which were discon-
nected (for example by occlusions). Finally, pre-attentive
processes also allow to reduce further computational com-
plexity, for instance when matching extracted groups, in-
stead of all the primitives, with objects from a database. In
this article, we introduce a new framework for pre-attentive

processes, which relies on a local interaction model of sev-
eral laws. Besides, we use region- or contour-based primi-
tives whenever they are the most appropriate.

2. Previous Work
Pre-attentive processes are inspired, to some extent, explic-
itly or not, from Gestalt theory introduced in the psychology
field by Wertheimer, Kohler and Koffka [5]. These state
that during perception, the several stimuli, acquire different
new properties, depending on the whole in which they hap-
pen to be. Hence, visual perception proceeds by successive
groupings, based on five laws: proximity, similarity, clo-
sure, symmetry and continuity (figure 1). There also exists
one meta-law, that is the tendency of a process to realize the
most regular, ordered and stable state possible.

Figure 1: Gestalt laws of grouping

A complete survey of perceptual grouping techniques
is presented by Sarkar [9] which classifies them accord-
ing to two criteria: the considered dimension (2D, 2D1/2,
2D+time, 3D+time) and the kind of features used for group-
ing (signal, primitives, structural, assembly levels). Most
of works deal with primitive and structural levels in 2D
images. This means they try to group closed or single
contours, curves, regions, polygons or corners. However,
contour-based treatments are far more widespread com-
pared with region-based ones [12]. Such a situation might
be the consequence of the fact that almost all well-known
examples of Gestalt laws deal with dots or lines. Neverthe-
less, as previously mentioned [5], the two kinds of primi-
tives are fully adapted to Gestalt laws. More precisely, some
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are more adapted for some kinds of laws. For instance, the
law of similarity is quite difficult to handle with contours.
Region-based treatments also allow the definition of a local
context in which to search for grouping hypotheses. With-
out it, the neighborhood of a primitive is quite difficult to
define, hence leading to heuristics [1].

The SCERPO system [6] may be the first one which
made intensive use of some Gestalt laws in order to orga-
nize previously extracted contours in so-called perceptual
groupings. Their saliency are evaluated as the inverse of
their prior probability of apparition in the image. Thus, per-
ceptual groupings are considered to be useful since they are
unlikely to have arisen by accident of viewpoint or position
and therefore reflect a meaningful structure in the scene.
This is known as the principle of non-accidentalness. In
this view, only laws of proximity, colinearity and symmetry
are considered, since all the other could lead to the orga-
nization of real-accidental features. Nevertheless, it seems
to us a restriction to use only these laws at this stage. In
the same view, Desolneux [3] introduces a systematic way,
based on Helmholtz principles, for calculating groupings’
saliency, but considering one law at a time.

Sarkar [10] and Ackermann [1][12] introduce hierarchies
of treatment, so as to use several laws. Several groupings
are performed from raw data to assembly level, each of them
handling tokens issued from previous step, according to one
law at a time. Global control can be super-imposed with
graph-based heuristics [10] or with Markov Random Fields
[1] for instance. However, as previously noted by Desol-
neux [3], Gestalt laws have complex interactions among
them, so that it seems impossible to decide in which order
they may be used. Besides, laws often cooperate in favor of
a grouping.

That is why other works model global interaction be-
tween laws. Hence, Murino [7] uses a graph with straight
segments as nodes and geometrical relationships as edges.
An energy function is computed, based on geometrical re-
lationships between segments, and then minimized, in or-
der to find the most stable state of this Markov Random
Fields’ model. Geometrical constraints used are colinear-
ity, symmetry and junctions. Urago [13] relies on the same
approach. One can also mentions Kang [4] for his itera-
tive use of fuzzy logics in order to decide whether several
geometric segment-based objects should be grouped or not.
However, one law is used at a time as a unique relation be-
tween two segments, even if interaction is modeled from a
more global point of view.

In order to handle more complex local interactions
between several laws, Vasseur [14] exhibits a belief-
computing system for grouping contours, based on
Dempster-Shafer theory. Nevertheless, model used leads
to conflicting hypotheses which are then impossible to in-
tegrate. Besides each belief value is computed in an em-

pirical way, with fixed threshold, making the whole process
difficult to control.

3. System Overview
We present a pre-attentive grouping module, which relies
on an efficient interaction model between Gestalt laws.
More precisely, we consider a perceptual grouping occurs
when multiple local evidence appear on support of it. Each
Gestalt law is used as a potential local evidence, and thus
as a potential grouping activator. We use the Dempster-
Shafer theory [11] in order to model the degree of belief
commited in one grouping hypothesis under the influence of
each Gestalt law. Then, it is possible to derive a combined
belief for this grouping hypothesis, considering all Gestalt
laws, by computing the orthogonal sum of belief functions.
Hence, several laws are at work in order to trigger one local
grouping.

Beliefs commited in one hypothesis are statistically com-
puted, given the set of all measurements in the image, hence
avoiding the use of static thresholds. We use as a primitive
for grouping a region-based segmented image on which we
extract a Region Adjacency Graph (RAG). It allows us to
use both region or contour clues whenever it is the most
adapted for a given law. In RAG, nodes represent seg-
mented regions while an edge is instantiated between two
nodes when corresponding regions are adjacent. Thus, each
edge represents a grouping hypothesis. Then, the process
involves four steps:

1. The local measurements of Gestalt properties for each
edge of the graph

2. The normalization of these values, leading to one
belief function for each hypothesis, considering one
Gestalt law.

3. The combination of the belief functions, in order to
compute, for each hypothesis, a combined belief value.

4. The reduction of the graph, based on the combined be-
lief values, and considering more global constraints.

Next section will present fundamentals of Dempster-Shafer
theory, before detailing the four steps in section 5. Then,
section 6 presents some results on color-based primitives.

4. Demspter-Shafer theory
Formalized by Shafer in [11], based on Dempster’s work,
it is a probabilistic theory of evidence, allowing a flexible
modeling of uncertainty. Thus, it is well-designed when
working with incomplete data. It strongly differs from other
probabilistic approach in so far that it does not model for
one hypothesis its probability of occurrence but rather the
belief commited in its realization. More precisely, classical
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theories engage a1 − x probability in eventĀ each time
they engagex in A. However, Shafer considers that, when
dealing with belief, it should be possible allowing a por-
tion x1 of belief in A while another portionx2 in Ā with
x1 + x2 ≤ 1. Besides, Shafer’s work strongly focuses on
combination of distinct bodies of evidence, which is espe-
cially well-suited for our needs.

4.1. Basic definitions and notations

Let Θ be a finite set of mutually exclusive hypotheses
{H1,H2, , Hn}, called frame of discernment. The set of all
subsets ofΘ is denoted2Θ. We call belief function a func-
tion Bel : 2Θ → [0 1] which satisfies the three following
conditions:

(i) Bel(�) = 0
(ii) Bel(Θ) = 1
(iii) for every integer k and every collectionA1, A2, , Ak

of subset ofΘ:

Bel(
k⋃

i=0

Ai) ≥
∑

I ⊂ {1, ..., k}
I 6= �

(−1)card(I)+1Bel(
⋂
i∈I

Ai)

For each subsetA of Θ, Bel(A) could be interpreted as
one’s degree of belief that the truth lies inA. When build-
ing a belief function, we distribute the whole belief on each
hypothesisHi or more generally on a subsetA of Θ when
uncertainty prevents us from being more precise. Given two
or more belief functions on the same frame of discernment,
the Dempster’s rule of combination allows to compute their
orthogonal sum, which is still a belief function, representing
the combined belief on the frame of discernment.

Whenever a portion of belief is commited in a hypoth-
esisA, it is also commited in every hypothesis implied by
A, that is, from the frame of discernment, in every subset
B like A ⊂ B. Consequently, when we commit a portion
of belief in A, we have to precise the proportion commited
in A exclusively and in subsets ofA. Practically, we de-
fine a belief function by making use of a basic probability
assignment (bpa).

A functionm : 2Θ → [0 1] is called basic probability as-
signment, if and only if:m(�) = 1 and

∑
A⊂Θ m(A) = 1.

m(A) is called probability mass ofA and represents the be-
lief one commits exactly inA. The associated belief func-
tion, Bel, is obtained by:

Bel(A) =
∑
B⊂A

m(B) (1)

A subsetA of Θ is called focal element if and only if
m(A) > 0.

4.2. Demspter’s rule of combination
Let m1 and m2 be basic probability assignments associ-
ated with belief functionsBel1 andBel2 respectively, over
the same frame of discernmentΘ. A1, A2, , Ak are focal
elements ofBel1 while B1, B2, , Bn are those ofBel2.
If
∑

Ai∩Bj=�m1(Ai)m2(Bj) < 1 , then the function

m : 2Θ → [01] defined by
m(�) = 0

m(C) =

∑
Ai∩Bj=C

m1(Ai)m2(Bj)

1−
∑

Ai∩Bj=�
m1(Ai)m2(Bj)

for all non-emptyC ⊂ Θ is a basic probability assignment.
Its associated belief function is called orthogonal sum of
Bel1 and Bel2 and denotedBel1 ⊕ Bel2. The number∑

Ai∩Bj=�m1(Ai)m2(Bj) is called conflict measure and
tends towards 1 when belief functions tend to be incompati-
ble (which means they are defined over hypotheses sets that
are incompatible).

5. Model for perceptual grouping
We rely on the Region Adjacency Graph (RAG) of a region-
based segmented image. This allows defining a context of
grouping for each region, considering the law of proximity.
Then, for each adjacency between regionsRi andRj , we
consider the hypothesisGij : ”Ri andRj are grouped”.

The scope of the process is to compute for each hypoth-
esisGij , several belief functionsBelk (via bpamk) corre-
sponding to Gestalt laws of grouping: similarity, closure,
continuity and symmetry. Then, these belief functions are
combined according to Dempster’s rule, in order to compute
the total belief in the hypothesisGij . Finally, graph reduc-
tion is performed, handling global constraints. Basic proba-
bility assignement are derived from local measurementsMk

of Gestalt properties.
One of the originalities of our approach is to consider

that a perceptual grouping occurs when multiple evidence
appear on support of it. Each Gestalt law is used as a po-
tential evidence, and thus as a potential grouping activa-
tor. Consequently, for each grouping hypothesis, total belief
will be distributed over two hypotheses:Gij andΘ (total ig-
norance). No Gestalt property could be directly interpreted
so thatGij is denied. On the contrary, if one does not tend
to supportGij , this can only increase the ignorance about
the grouping.

5.1. Local measurements
Proximity property is directly handled by the use of a RAG.
It first relies on a 1-neighborhood for each node during the
local measurements of Gestalt properties, since those are
processed for each edge. Nevertheless, such a neighbor-
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hood will be further expanded during the reduction and the
integration of global inconsistencies (See section 5.4).

Similarity property is thought from the point of view of
the descriptors used during segmentation step. As a matter
of fact, each segmented regionRi, handles a set of descrip-
tors di,k that take homogeneous values among each of its
pixels. Hence, we define the similarity measure as a classi-
cal distance in Euclidean space:

M1(Gij) =

(∑
k

(di,k − dj,k)2
)1/2

When the descriptors used are color-based, we rely on the
CIE Lab color space. In this way, the Euclidean distance
reflects explicitly the perceptual distance between the two
sets of colors.M1(Gij) tends towards 0 when the sets of
descriptors for the two regions tend to be identical.

According to [5], Closure property tends to favor the per-
ception of simple, closed and regular object with smooth
contours. It has often been reduced in contour-based ap-
proaches only to closed objects. We consider as a reference
shape an ellipse, and we introduce:

M2(Gij) =
∣∣∣∣1− area(Ri + Rj)

area(ellipse(Ri + Rj))

∣∣∣∣
where:

• Ri +Rj represents the region issued from the merging
of regionsRi andRj .

• ellipse(Ri + Rj) stands for the ellipse which has the
same second order moments asRi + Rj .

M2(Gij) tends towards 0 whenRi + Rj tends to shape as
an ellipse with the same second order moments.

On the contrary to both previous properties, continuity
and symmetry far more rely on contours of regions than on
regions only. We decided to unify them in one single law,
considering they both rely on the same kind of notion that is
the orientation difference between primitive segments. The
main difference is that continuity need two segment to be
close, while symmetry can handle more distant ones. We
use a polygonal approximation of regions contours, based
on a recursive approximation [8]. Then, orientationθsi

is
extracted for each segmentsi and a global measure is set:

M3(Gij) = Min si ∈ σi

sj ∈ σj

(∣∣θsi
− θsj

∣∣αsi
αsj

βsi,sj

)

where

• σsi
stands for the set of segments issued from polygo-

nal approximation ofRi

• αsi
= Maxsi∈σi

(lsi
)

lsi
with lsi

the length of segmentsi.
αsi is used as a corrective parameter (αsi > 1), which
modelssi’s relevance in regionRi. It tends to discard
symmetries that involve short segments, compared to
Ri’s size (See figure 2(c)).

• βsi,sj
= Max(lsi,lsj)

Min(lsi,lsj)
. βsi is used as a corrective para-

meter (βsi > 1) which grants that a symmetry is de-
tected among two segments with almost the same size.
It prevents the detection of symmetry like one shown
in figure 2(d)).

Figure 2: Examples of allowed (a,b) or discarded (c,d) sym-
metries

5.2. Computation of belief functions
At this stage, several measuresMk(Gij) for k=1..3 have
been extracted. These tend towards 0 when corresponding
Gestalt property tends to occur in the hypothesis. We need
now a process in order to compute belief functions for each
measurement on each edge of the graph, over the frame of
discernment{Gij ,Θ}.

Considering the principle of non-accidentalness, stating
that perceptual groupings occur when their prior probabil-
ity of apparition decreases, we consider that the mean value
Mk(G) of a measurement cannot be regarded as salient.
Consequently, such a value leads to a basic probability mass
of 0 for mk(Gij). Then, a linear regression is handled:


mk(Gij) = Mk(G)−Mk(Gij)

Mk(G)
if Mk(Gij) < Mk(G)

mk(Gij) = 0 else
mk(Θ) = 1−mk(Gij)

5.3. Combination of belief functions
Belief functions (or, more precisely, basic probability as-
signments) are iteratively combined, according to Demp-
ster’s rule. Figure 3 illustrates the mechanism for the com-
bination of two belief functionsBelk andBell, with mk

andml as corresponding basic probability assignment.
Hence, the basic probability assignment ofBelk⊕Bell,

denoted m, is defined as follows:{
m(Gij) = slsk + sl(1− sk) + sk(1− sl)
m(Θ) = (1− sl)(1− sk)
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Figure 3: Dempster’s rule of combination

with sl = ml(Gij) andsk = mk(Gij) Associated belief
function can be derived with equation (1). Note that because
of our frame of discernment, we have no conflict between
our hypotheses. Besides, we can remarkm(Gij) > sk and
m(Gij) > sl. This implies that evidence in favor ofGij ’s
realization tend to reinforce themselves, thus leading to a
system that extract perceptual grouping when multiple evi-
dence appear on support of it.

5.4. Global constraints integration

Graph reduction consists in grouping all nodes separated by
an edge whose belief inGij is more than a belief value.
This one is linked to the granularity of the process: the
more it will be, the less the regions will be perceptually
grouped. However, local evidence is bound to create in-
consistency from a more global point of view. We there-
fore propose a reduction process that handles two concur-
rent mechanisms: global constraints integration and evi-
dence propagation. While the latter tends to activate sev-
eral grouping hypotheses, the former judges them from a
more global view and prevents inconsistent nodes from be-
ing grouped together. More precisely, the process consists
in ranking edges thanks to their decreasing belief values and
in iteratively grouping corresponding nodes of the graph. In
doing so, two distinct cases appear, when considering for
current nodes i and j, the configuration they take with any
third node from their 1-neighborhood: either those 3 nodes
form a complete sub-graph of the RAG or a planar sub-
graph. Since first case could lead to global inconsistency,
the lowest belief value of sub-graph’s edges is transmitted
to the resulting edge when merging nodes. Hence, it acts as
global constraints integration. An example of such case is
presented in figure 4. While nodes i and j are merged, there
may be a kind of inconsistency between belief valuebik and
bjk that respectively express the belief forGik andGjk.

Second case does not handle any inconsistency. Thus,
we propagate belief value to the resulting node, in order to
keep this edge as a potential grouping activator (See figure
5). This is justified by the fact that local properties that have
lead to the beliefbjl are still active between merged nodes
and node l.

Figure 4: Global constraint integration

Figure 5: Evidence propagation

6. Results
We first present some results on non-natural images, in or-
der to show the relevancy of our descriptors. Tests are then
performed on color-based segmented images, with tech-
nique described in [2]. All our results involve one single
extraction of Gestalt measurements over the whole image,
and then several reductions. In first line of figure 6, lit-

Figure 6: Basic examples

tle bright squares have color descriptors very different from
black ones, compared to the enclosing rectangle. However,
bright and black squares are grouped together, thanks to
the continuity/symmetry law. As a matter of fact, this law
finds its most significant measurement for those squares and
therefore triggers corresponding grouping. If the combined
belief is set to lower, grouping increases and leads to a sin-
gle rectangle on the right, thanks to a combined similarity-
continuity-symmetry evidence, while on the left, the enclos-
ing rectangle is grouped with the background according to
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similarity law.
In second line of figure 7, bright ellipses’ descriptors are

very close to those of foreground, compared to black el-
lipse’s ones. Nevertheless, the black ellipse is grouped with
the bright one on the right, thanks to closure law. If the
combined belief is set to lower, two other bright ellipses are
grouped into the black one, according to closure parameter.

Figure 6(d) displays results on a real image, issued from
the GoodShot database. Perceptual grouping allows sig-
nificantly reducing the number of regions, from 250 to 76.
Besides, resulting regions are perceptually relevant as they
tend to make emerge semantic objects. Results on (c) are
obtained with the similarity law only, and show the advan-
tages of our combination of several laws. Note that if belief
in (c) is set to lower, bright regions are grouped together,
leading to the loss of the elephants’ silhouettes.

Figure 7: Example of results on real image

7. Conclusion and future work
We have presented a new framework for pre-attentive vi-
sion, in combining several Gestalt laws in a multiple ev-
idence triggering way. Besides, our system relies on dy-
namic thresholds for the computing of belief functions and
is thus easy to control. Several results both on artificial and
real images have shown the relevancy of our model. Fur-
ther work will be focused on an optimization of our system.
We are currently working on an additional descriptor which
would be an implementation of the Gestalt meta-law. At this
time, we are investigating a curvature-based descriptor. In
addition, special attention should be put on the iterative use
of our tool. As a matter of fact, results shown in this paper
involve one single extraction of Gestalt properties followed
by several graph reductions. It would be fruitful to make
several iterations of the same process.

Finally, we aim at using pre-attentive descriptions in or-
der to extract an image’s signature for indexing. In doing so,
we hope handling more meaningful descriptors than those
currently used in content-based indexing.
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