
1

Design of Context-Aware Applications
Based on Web Services

T. Chaari, F. Laforest A. Celentano*

LIRIS Dipartimento di Informatica
INSA Lyon, France Università Ca’ Foscari di Venezia, Italia

{tarak.chaari,frederique.laforest}@insa-lyon.fr auce@dsi.unive.it
Università Ca'Foscari di Venezia reference: Technical Report CS-2004-5

ABSTRACT
Context-aware systems are applications that adapt to several
situations involving user, network, data, hardware and the
application itself. Researchers in context-awareness have con-
centrated on how to capture context data and to carry it to the
application. In this paper, we study the impact of context on
the core of the application. First, we give the guidelines of a
context model based on a more practical definition of the con-
text. Then, we propose a context-aware architecture providing a
functional adaptation to the context.

1 INTRODUCTION
Data centered applications exchange information with users at
different levels of detail, content and presentation according
to several parameters which depend on the user and his/her
environment. They can also provide, within the same applica-
tion, different services to different users, or to the same user in
different situations. Hence, the notion of context has been de-
veloped, as a means to adapt the behavior and the interface of
an application to the user situation and equipment, encom-
passing a large range of adaptation parameters.

In different contexts, users may access different data and ex-
ploit different aspects of an application. For example, in one
context a doctor accesses a health database for screening pa-
tients for prevention cares, while in a different context the
same doctor accesses the same database for post-treatment
analysis of cases. While the data are the same, the way they are
returned may vary according to the doctor’s goal. Often, in
different contexts, users access almost the same data and the
same services but receive answers shaped differently, with
different presentation and possibly different content detail.
For example, a doctor examines a patient record at the hospital
using a desktop computer connected to the hospital database,
or consults the same record stored on a PDA while visiting the
patient at home, or receives an audio description of the patient
record during a surgical operation.

Context-awareness and adaptation are tightly related, and the
two terms are often used as synonyms. However, they refer to
different capabilities: adaptation is the capability to provide
different versions of a service or different presentations of a
document, in order to suite the needs of the user, of the envi-
ronment, of the equipment, etc.; context-awareness is the ca-
pability of perceiving the user situation in its many aspects,
and of adapting as a consequence the system behavior, i.e., the
services, the data and the interface. Adaptation is therefore the
goal of context-awareness, which is able to drive it without
explicit tuning operations by the user.

A context-aware application must manage the context as one of
its inputs, processing any user request according to the differ-
ent context instances. However, it is simplistic to consider the
context as one of the application input data, due to the diffi-
culty of classifying in advance all the combinations of user
situation, equipment and other context-dependent parameters.
Context, therefore, must be managed separately and its influ-
ence on the application behavior must be described orthogo-
nally with respect to the application data.

The paper is organized as follows: after reviewing the state of
art in context-awareness in Section 2, in Section 3 we briefly
discuss context modeling. A context-aware architecture based
on Web services is proposed in Section 4. Section 5 discusses
the structure and the composition of adaptation services, with
a focus on adaptation of the application’s behavior. Section 6
draws the conclusions and the future work.

2 STATE OF ART
Research on context-awareness has started with addressing the
problem of mobility by hiding it to the user. The first real con-
text-aware computing effort was initiated by Researches at
Olivetti Research Ltd and Xerox PARC Laboratory [19]. Since
then, many other researches have studied this topic and con-
tributed to this domain. Early works approached the problem
by studying location-awareness, and still now many context-
aware applications are limited in the scope of their analysis,
using small pieces of contextual information and presenting
ad hoc solutions for very specific needs.

In most contributions in this area, we distinguish three main
steps that an application has to do in order to be context-
aware. First, we have to capture low level contextual informa-
tion from different sensors (for example, GPS coordinates).
Second, we have to make some interpretation on what we cap-
ture to build high level contextual information which is more
relevant to the application. For example, we can transform GPS
coordinates to a complete address and compute physical, tem-
poral and semantic relationships from the initial low level
context values. Finally, we have to carry this interpreted in-
formation to the application. The Context Toolkit [7] is one of
the first context-aware architectures considering these three
main steps. Sensors capture low level context signals and pre-
sent them to the context widget; widgets use the interpreter to
carry high level context data to the application through a con-
text server.

Some researches store the context before its dissemination to
build a contextual history. This step is very important to com-
pute the high level representations of the context. For exam-
ple, we may require the last location of the user before arriving
to the current one, in order to analyze the user motion.

This extra step has revealed another potential need in context* Work done during a sabbatical leave at INSA Lyon, France

2

research, which is context modeling. In fact, before storing the
context, we have to find a reliable representation of all its as-
pects.

We distinguish three approaches in context modeling.

- The first approach stores context as a simple set of attrib-
ute/value pairs, e.g., {Name=“context1”, User=”x”, Loca-
tion=”y”, Time=”t”). The Context Toolkit uses this ap-
proach.

- The second approach presents the context using RDF. The
most consistent is an extension of the CC/PP W3C profile
[15] called Comprehensive Structured Context Profiles
(CSCP), proposed by Held in [13].

- The third approach models the context using ontologies
[4]. The most consistent one is CoOL [18] that presents a
context parameter as a set of entities having certain aspects
representing its characteristics.

Table 1 presents a summary of these approaches with the ad-
vantages and the drawbacks of each one.

Table 1. Existing context models

Model
characteristics

Expressiveness
and semantic

richness

Implementation
ease

Conflict
resistance

Attribute/value
pairs

- + -

RDF based + + -

Ontologies + - +

After modeling and storing the context, it must be carried to
the application, with information about how the application
can adapt to context changes. In this area, Dockhorn Costa [8]
distinguishes between four research approaches:

- Conceptual frameworks focus on the architectural aspect of
context-aware systems and provide means to facilitate cap-
turing, interpreting and carrying context data to the inter-
ested parties. The Context Toolkit [7] and the Cooltown
[16] projects are examples of this approach.

- Service platforms aim at providing the pertinent services to
the user depending on context. This includes dynamic serv-
ice discovery, dynamic deployment of adaptive services
addressing issues of scalability, security and privacy. M3
[14] and Platform for Adaptive Applications [9] are exam-
ples of contributions to this approach.

- Appliance environments try giving solutions to the hetero-
geneity problem by providing interoperability techniques
and frameworks. Ektara [5] and Universal Information Ap-
pliance [11] are projects which use this approach.

- Computing environments for pervasive applications focus
on designing the physical and logical infrastructure to
hold ubiquitous systems. The PIMA [2] and Portolano [10]
projects are examples of this approach.

Table 2 presents a synthetic view of these approaches by com-
paring the most relevant issues.

In conclusion, we can say that a practical complete context
model is yet missing. Moreover, in the existing context-aware
applications, there is a great interest to how to gather the con-
text and how to carry it to the system, but there is no consis-

tent answer to the question: How the application can adapt to
the context? To be more precise, we reformulate this question:
What is the impact of context on the application core?

Table 2. Approaches in context-awareness

Issue Conceptual
Frameworks

Service
Platforms

Appliance
Environments

Computing
Environments

Device
heterogeneity

X

Device
mobility

X

Context
management

X X

Adaptation X X

RAD/
deployment

X X

User context X

3 CONTEXT MODELING
Context-aware applications usually mix context management
code within the application code. The application code be-
comes more complex and more difficult to read and maintain.
Decoupling context-independent activities of the application
from contextual concerns would locally reduce the code com-
plexity. In this article, we present solutions to make this effec-
tive. The first step, discussed in this section, concerns the
separation of contextual data from application data, while the
second step concerns the application architecture, and will be
discussed in the next section.

Practical definitions of context — and more precisely of con-
text data — have not yet drawn to a consensus. Definitions in
the literature are often domain-oriented and thus too limited.
Dey defines the context as “any information that can be used
to characterize the situation of an entity, where an entity can be
a person, place, or physical or computational object” [6]. It is a
complete and general definition, but it does not help in sepa-
rating the contextual data from the application data. We be-
lieve that this distinction is important because it reduces the
complexity of the design of the final application. The core of
the application should be designed by making abstraction of
any context, which should be included in a second step. Such a
way of working allows turning a legacy application into a con-
text-aware one, leaving the legacy application unmodified.

To do so, the boundary between contextual data and applica-
tion data has to be clearly defined. It depends on the applica-
tion domain, since some data that of the application level in
one domain can be seen as context in another domain. For ex-
ample, GPS localization is context data in a telemedicine ap-
plication, but is application data in a traffic regulation system.

We can define the context as the set of external parameters that
can influence the behavior of the application. Context parame-
ters evolve during application runtime; they are not signifi-
cant to the user, therefore they must be transparent to him/her.
A new instance of these parameters characterizes a new context
situation, which does not modify the application data, but may
select of process it in a different way. For example, in a home
care application, when a doctor moves from a patient residence
to another, the patient records do not change; they are part of

3

application data. However, the current patient id changes; it i s
therefore a context parameter.

4 A CONTEXT-AWARE ARCHITECTURE
BASED ON WEB SERVICES

The development of context-aware, adaptable applications
requires two goals to be assessed: (1) how to design an archi-
tecture supporting context-awareness at run-time, and (2) how
to design the application itself in order to be context-aware.
Different technologies can be used to build applications, and
no one appears to dominate the current scenarios. The adop-
tion of Web services, however, is widespread and is considered
today a viable architecture for evolving applications, mainly
due to its “loosely coupling” approach to integration of appli-
cation functions [1]. We therefore adopt a Web services para-
digm for discussing about context-aware application design.

Figure 1 illustrates a service oriented architecture, in which the
components devoted to context management are separated
from the application core. Each component corresponds to a
phase of context management, as discussed in the following.

Context capturing. Context capturing concerns physical sen-
sors and the raw data they generate. This part is highly device-
dependent and a generic model is difficult to build. In our
architecture we define a context provider that represents a con-
text capturing system.

Context interpreting. The low level representations that we
initially capture may not be meaningful to the application,
while high level representations are easier to interpret and to
use (e.g., an address is more significant than GPS coordinates).
In our architecture, the context interpreter module makes the
context interpretation.

Context modeling. A context repository stores context values.
To model context parameters, we use XML documents storing
and exchanging context values. We define a set of elements for
each context facet (user, network, device, metadata), containing
current values of parameters relevant to that facet. Defining the
set of context parameters is the job of the application designer,
who defines also their syntactic and semantic structure (e.g.,
scalar values, sets, references to other parameters,…).

Context dissemination. A context aware application has to
consume a part of the context. In a service oriented architecture
it must subscribe to the context broker that carries the perti-
nent data to each service in the application. While subscribing,
the service tells the broker which part of the context is relevant
to it. Then, the broker can provide a context view for each serv-
ice. This view can dynamically evolve during execution, re-
quiring some intelligence in the broker. Services may pull
context values each time they require it, or the context broker
may push context to subscribers every time it is updated.

Adaptation to the context. Context consumers have to adapt
to the context. To do so, they are first registered to the context
broker. Context adaptation can concern three levels: data flow
(content adaptation), visualization (user interface adaptation),
and application’s behavior (service adaptation). All these ad-
aptations can be static (before runtime) or dynamic (at run-
time). We must use both to ensure the best adaptation to the
context. Content and user interface adaptations are well stud-
ied in the literature, even if there are still aspects that need to
be explored more deeply. In the next section we shall discuss
mainly the application’s behavior adaptation, and only survey
content and user interface issues.

Context
Consumer

Context
Provider

Services adaptation

Content adaptation

Application core

Context awareness

Context management

Context
Broker

Context
interpreter

Context
repository

PushContext()

PullContext()

Subscribe()

User Interface

Data

service

Method call
Inheritance
Data flow

Figure 1. A service oriented architecture

5 ADAPTATION SERVICES
It would be desirable to achieve a certain degree of independ-
ence in composing services, at least at the outermost levels;
i.e., adaptation processing should be done by different combi-
nations of services which are independently selected on the
different dimensions of the application (user interface, content
and business services), as shown in Figure 2.

Web services can be used to ensure the adaptation of the three
dimensions of the application. Since we assume that the busi-
ness core of the application is implemented by Web services,
such a way of working guarantees a variable degree of granu-
larity at one hand, and a flexible and reusable application as-
sembly and deployment at another hand. It also helps carrying
out the context adaptation at many levels of the business core.

4

data
dimension

presentation
dimension application

service
dimension

common
services

Figure 2. Three dimensions for application
adaptation to the context

In Figure 2, a point in the 3D space defines an adaptation plan,
i.e., a data adaptation route, plus an application service adapta-
tion route, plus a presentation adaptation route. The three
routes are planned in common, but may be processed inde-
pendently. Results are gathered to build the context adapta-
tion. Each service can access a pool of common services which
can also be context dependent. Common services are “general”
adaptation services (e.g., image compression).

To be efficient and ready for adding new contexts with limited
effort, each dimension combination should not be completely
pre-built, but should result from the dynamic combination of
independent services, each related to its own dimension.

5.1 User interface
It is the most important part of the application to the user. User
interfaces present data to the user in different modalities ac-
cording to the context situation. We use the MVC model [17]
to design the user interfaces. An interface consists of a view, a
model and a controller. The model is the set of business serv-
ices that interact with the view and the controller links be-
tween the services and the interaction components of the view.
It detects the interaction events from the view and invokes the
corresponding services in the model. The adaptation of user
interfaces mainly depends on the device capability and the
user facets of the context. We have proposed a framework —
based on adaptation rules at runtime and before runtime — to
adapt user interfaces to these two facets [3]. This framework
allows the user to describe the desired user interface for any
web service. The user begins by choosing the abstract widgets
that he/she wants to have on the display; then he/she selects a
service from the services registry of the application. Finally
the whole code of the user interface is generated to the specific
terminal of the user. While calling a service, its inputs and
outputs are also adapted to the context situation.

5.2 Content adaptation
Content adaptation consists in modifying some properties of
the data delivered to the user. In this section we give a non
exhaustive list of possible transformations to ensure content

adaptations; as we said in the introduction of this section,
every transformation can be implemented with Web services.

Format adaptation. This transformation consists in modify-
ing or completely changing the data format. For example, re-
ducing the number of colors of an image or synthesizing voice
from a text.

Language translation. A text can be translated to another
language to adapt to the user preferences. Translation services
can provide this type of adaptation.

Data compression. We distinguish two main types of data
compression: raw data compression (e.g., zip) for reducing
storage size and transmission time, and multimedia compres-
sion (e.g., jpeg) which is directly processed on the user termi-
nal. For text data, semantic compression can be used to com-
pute a summary of a document.

Data decomposition and aggregation. Data decomposition
consists in extracting some part of a media that is more prefer-
able or more significant to the user. The remaining part can be
displayed to the user if the terminal supports it. The user can
demand an aggregation of different media objects: e.g., a tour-
ist can demand a part of a map (decomposition) with a list of
the restaurants nearby (an aggregation of two media objects).
The decomposition and the aggregation transformations can
also be temporal; e.g., the user can be interested only in a few
animated sequences from a large video file. The service can
present them separately or together, after their aggregation.

5.3 Application’s behavior adaptation
From the perspective of the functional architecture, an applica-
tion is based on a number of business services that perform the
desired functionalities of the application. Business services
are not context-aware and their behavior remains the same in
the different context situations. In such applications each
service is described by a function f(x) getting input x and
computing some output values. Services may access the data
storage to produce changes in the application state.

A first adaptation level, the internal adaptation, can be done
by introducing context data as an extra entry to services: each
service manages context data and application data. Context
data ensure the functional adaptation in the built-in code of
the service. Application data are used in each code bloc for real
business service job. This can be represented as in Figure 3.

Internal adaptation uses functions that can be defined as f(x,
cf(c)), where x represents application data, and cf(c) selects the
part of the context situation that concerns the function f. The
cf function is managed by the context broker that selects the
useful context data for function f.

Application data

Business
service_2

Business
service_1

Business
service_3

Context data

Figure 3. Internal adaptation of services

5

Application data

Application data

Business
service_2

Business
service_1

Business
service_3

Context data Proxy_1

Proxy_2

Proxy_3

Figure 4. External adaptation of services

A second adaptation level, the external adaptation, external-
izes context data management from application data manage-
ment, by providing an intermediate service (proxy service) on
the business services (Figure 4). The proxy gets application
data and context data. It makes modifications on inputs and
outputs of the business service according to the context situa-
tion. In this case the business service is not context-aware: i t
gets application data only.

External adaptation uses functions that can be written p(x,
cf(c))/f, where p is the proxy function that gets the applica-
tion’s data x and cf(c) is the part of context concerning the
service f. p ensures the adaptation of the inputs and the out-
puts of the business service f. The notation “p/f” means “p
knowing f”. f is not a real entry parameter of p but it can be
considered as one of its members.

A third adaptation level, the polymorphic adaptation, con-
cerns the selection of service instances or versions according
to the context situation (Figure 5). Each service has different
versions or possible instances for different context situations
(a, b, ...), but some services may not exist in all versions. The
selection of a service among the available versions is made by
a tier service, as it is done in the design pattern strategy [12].
In general, different adaptations are not completely equivalent
at the outer level, e.g., due to the different types of handled
data. It can be written as s(x, cf(c))/fa, fb, ..., where s is the
strategist service that chooses among the fi according to the
current context situation, x is the application data, s knows the
list fa, fb, ..., of the available strategies for a given service f.

The situation is really more general, since services can use
other services, in a nested style. The execution of a service
therefore may be the result of a composition of services in the
style f(g[h(..., ch(c)), cg(c)], cf(c)). Each level of composition
requires its context values, using its context selection from
the broker.

The composition is not the only adaptation operator on serv-
ices. In the remainder of this section we present a non exhaus-
tive list of adaptation operators using the following nota-
tions: F = {f1, f2,…, fn} is the functional core of the application
composed by the set of its business services. Every service fi
can be polymorphic and can have many possible instances or
versions {fia, fib, ...}. R = {r1, r2, …, rn} is the set of data com-
posing the output of a service f. Each elementary output ri can
have many instances {ria, rib, …}.

Application data

Application data

BsnService_1a
BsnService_1b
BsnService_1c

Context data strategist_1

strategist _2

strategist _3

BsnService_2a
BsnService_2b
BsnService_2c

BsnService_3a
BsnService_3b

Figure 5. Polymorphic adaptation of services

Projection ()

This operator can be applied to the list of the business services
of the application. It consists in removing the access to some
services, e.g., for compatibility with user preferences or access
rights. E.g., let F = {f1, f2, …, fn} be the set of business services
of the application, and F’ = ({f2,…, fn}, F). The resulting
functional core F’ doesn’t include the f1 service. F’ is a projec-
tion of the original functional core on {f2,…, fn}.

This operator can also be applied to the output data of the

service, e.g., R’= ({r2, …, rn}, R) = {r2, …, rn}. In this case, the

elementary output information r1 of the corresponding service
is not returned to the user. This can be useful if we want to hide
some output values, or to prepare an entry data set for another
service that takes only a part of the output of the previous
service.

Join (join)

This operator can be used to augment the functional core of the
application F by an additional service h. F’ = join(F, h) = {f1,
f2, …, fn, h}. This operator can be applied to a set of input or
output data. In this case it is equivalent to the join operator of
a relational database.

Composition (o)

The composition can be applied to two services f1 and f2 and
can be serial (os), if the services are applied sequentially, or
parallel (op), if the services are applied independently and the
results are joined. Note that in general the serial composition
is not commutative: f1 os f2 is different from f2 os f1.

Selection or restriction ()

This operator can be used to remove some possible instantia-
tions {fia, fib, ...} of a certain service fi. For example, ({fia, fib},
fi) = {fia, fib}. In this case, fia and fib are he only possible in-
stances of fi. The selection can be applied to the outputs R of a
service to remove some non relevant instances of the output
data.

Union ()

This operator can be used to add another possible instance or
version of a polymorph service: (fi, fi) = { fi, fia, fib, …}. {
fia, fib, …} are the initial possible instances or versions of fi.
This operator can be applied to a set of input or ouput data of a
service. In this case, it is equivalent to the union operation in
the relational database domain.

6

6 CONCLUSIONS
In this paper, we have proposed a new definition of the context
that separates application data from context parameters. We
have classified context parameters in four facets (user, net-
work, device capability and metadata) to simplify its manage-
ment and its storage. The new definition helped us to make a
more precise study on how to guarantee context-awareness in
the application core. Finally we have given the guidelines of
adapting the three dimensions of an application (data, presen-
tation and behavior) to the context. We have proposed a solu-
tion based on Web services to guarantee these adaptations. A
set of operators on these services ensures the context-
awareness inside the application core.

The proposal is complete from the conceptual and methodo-
logical point of views, but needs to be evaluated in a set of
experiments. Therefore, we shall define some concrete rules to
map the context situations to an adaptation route using a
combination of our operators. Then, we shall develop a proto-
type following the schema of Figure 1 and including the be-
havioral adaptation detailed in Section 5. Among the domains
where such adaptation can be successfully tested, we plan to
approach the telemedicine domain, where the variance in offer
of services and the needs of its different users make adaptation
a valuable goal.

7 REFERENCES
[1] D. Austin, A. Barbir, C. Ferris, S. Garg. Web Services

Architecture Requirements, W3C Working Draft, 19
August 2002,
http://www.w3.org/TR/2002/WD-wsa-regs20020819.

[2] G. Banavar, J. Beck, E. Gluzberg, J. Munson, J. Sussman
and D. Zukowski. Challenges: An Application Model for
Pervasive Computing. Proc. 6th Annual Intl. Conf. on
Mobile Computing and Networking (MobiCom 2000), pp.
266-274, Massachusetts, USA, August 2000.

[3] ***. Génération et adaptation automatiques des interfaces
utilisateurs pour des environnements multi-terminaux. Le
projet SEFAGI : Simple Environment For Adaptable
Graphical Interfaces. ***

[4] H. Chen, T. Finin and A. Joshi. An Ontology for Context-
Aware Pervasive Computing Environments. IJCAI Work-
shop on Ontologies and Distributed Systems, IJCAI 2003,
Acapulco, Mexico, 2003.

[5] R. W. DeVaul, A. S. Pentland. The Ektara Architecture: The
Right Framework for Context-Aware Wearable and Ubiq-
uitous Computing Applications. MIT Technical Report,
2000.

[6] A. K. Dey, G. D. Abowd. Towards a Better Understanding of
Context and Context-Awareness. CHI 2000 Workshop on
the What, Who, Where, When, and How of Context-

Awareness, The Hague, The Netherlands, April 2000.
[7] A. K. Dey, D. Salber and G. D. Abowd. A Conceptual

Framework and a Toolkit for Supporting the Rapid Proto-
typing of Context-Aware Applications. Human-Computer
Interaction Journal 16(2-4), pp. 97-166, 2001.

[8] P. Dockhorn Costa. Towards a Services Platform for Con-
text-Aware Applications. Master Thesis. University of
Twente, The Netherlands, 2003.

[9] C. Efstratiou, K. Cheverst, N. Davies and A. Friday. An
Architecture for the Effective Support of Adaptive Con-
text-Aware Applications. Proc. 2nd Int. Conf. in Mobile
Data Management (MDM’01), Hong Kong, pp. 15-26,
January 2001.

[10] M. Esler, J. Hightower, T. Anderson, and G. Borriello. Next
Century Challenges: Data-Centric Networking for Invisi-
ble Computing. Proc. 5th Annual Intl. Conference on Mo-
bile Computing Networking (MobiCom’99), August 1999.

[11] K. Eustice, T. J. Lehman. A. Morales. M. C. Munson, S.
Edlund and M. Guillen. A Universal Information Appli-
ance. IBM Systems Journal, 38(4), pp. 575-601, 1999.

[12] E. Gamma, R. Helm, R. Johnson and J. Vlissied. Design
Patterns, Addison Wesley, 1995.

[13] A. Held. Modeling of Context Information for Pervasive
Computing Applications. Proc. 6th World Multiconfer-
ence on Systemics, Cybernetics and Informatics
(SCI2002), Orlando, FL, July 2002.

[14] J. Indulska, S. W. Loke, A. Rakotonirainy, V. Witana, A.
Zaslavski. An Open Architecture for Pervasive Systems.
Proc. 3rd Intl. Work. Conf. on Distributed Applications
and Interoperable Systems (DAIS 2001), Kraków, Poland,
pp. 175-188, 2001.

[15] J. Indulska, R. Robinson, A. Rakotonirainy, and K. Hen-
ricksen. Experiences in Using CC/PP in Context-Aware
Systems. Proc. 4th Intl. Conf. on Mobile Data Manage-
ment, Melbourne, Australia, pp. 247-261, January 2003.

[16] T. Kindberg and J. Barton. A Web-Based Nomadic Com-
puting System. Computer Networks, Elsevier, 35(4), pp.
443-456, 2001.

[17] G. Krasner and S. Pope. A Cookbook for Using the Model-
View-Controller User Interface Paradigm in Smalltalk-80,
Journa l o f Objec t Oriented Programming,
August/September 1988

[18] T. Strang and C. Linnhoff-Popien. Service Interoperabil-
ity on Context Level in Ubiquitous Computing Environ-
ments. Intl. Conf. on Advances in Infrastructure for Elec-
tronic Business, Education, Science, Medicine, and Mo-
bile Technologies on the Internet (SSGRR2003w),
L'Aquila, Italy, January 2003.

[19] R. Want, A. Hopper, V. Falcão, and J. Gibbons. The Active
Badge location system. ACM Trans. on Information Sys-
tems, 10(1), pp. 91-102, 1992

