
Research Report 2004

Fast Ray-Triangle Fan Intersection

Eric Galin

LIRIS, CNRS, Université Claude Bernard Lyon 1, France

Abstract
This paper presents an algorithm for computing the nearest intersection between a ray a fan of triangles. Our
approach speeds up computations by rapidly rejecting non intersecting triangles and reusing some intermediate
factors shared by neighbouring triangles. Source code is available online.

1. Introduction

Because of their mathematical simplicity and flexibility, tri-
angle meshes are the most widely used representation for
modeling three dimensional objects. Therefore, computing
the intersection between a set of triangles and a ray is an
important problem in many applications.

One approach consist in computing the intersection be-
tween the ray and the triangle’s plane and then testing if the
intersection point lies inside the edges [2, 3]. An alternative
approach that need not compute nor store the plane equation
or the normal of the triangle was proposed in [4].

Triangles may be organized in some three dimensional
structures such as Bounding Box hierarchies, Binary Space
Partitioning trees or Octrees so as to avoid unnecessary in-
tersection tests whenever possible. In practice, because of
memory limits and especially for large complex scenes in-
cluding millions of triangles, hundreds of triangles still exist
at the leaf nodes of those structures. Therefore, there is still
a need for techniques that compute the intersection between
a ray and a set of triangles efficiently.

Most techniques process every triangle independently and
do not take advantage of the shared information between
neighbouring triangles. An efficient ray-triangle mesh in-
tersection algorithm was presented in [5]. The proposed
method defines the ray as two intersecting planes and re-
lies on a simple shared vertex location scheme to reject most
nonintersecting triangles at an early step in the algorithm.
Several techniques have been proposed to factor the compu-
tations for two triangles sharing a common edge [1]. Those
methods are particularly adapted for processing rectangular
parametric patches discretized into triangles.

This paper presents an efficient algorithm to compute the

intersection between a ray and a set of triangles organized
into a fan structure. Our method incrementally builds upon
the algorithm presented in [4]. Optimizations are provided so
as to take advantage of shared information between neigh-
bouring triangles sharing a common edge and a common
center vertex.

2. Intersection algorithm

Let {p0, ...,pn} denote the vertex list of a triangle fan, where
p0 denotes the center vertex (Figure 1). We compute the
intersection between a ray and a triangle fan by iteratively
computing the nearest intersection between the ray and the
set of triangles Tk whose vertices will be denoted as p0, pk
and pk+1, k ∈ [1,n−1].

pk+1 pk

p2
p1

pn

p0

Figure 1: Notations for a triangle fan

To optimize the overall process, we not only factorize the
computation of constant terms, but also reuse computations
for two consecutive triangles that share a common edge.

2.1. Ray triangle fan intersection

Let us briefly recall the algorithm presented in [4]. A point
p(u,v) on a triangle Tk is given by the parametric equation:

p(u,v) = p0 +u(pk −p0)+ v(pk+1 −p0)

E. Galin / Fast Ray-Triangle Fan Intersection

The barycentric coordinates (u,v) should fulfil u ≥ 0, v ≥
0 and u + v ≤ 1. Let r(t) = o + d t denote the parametric
equation of a ray. Computing the intersection between a ray
and the triangle is equivalent to r(t) = p(u,v). Let e1 = pk −
p0 and e2 = pk+1 −p0 denote the edge vectors. Let s = o−
p0 denote the translation vector to the origin of the ray. The
solution to the previous equation is obtained by Cramer’s
rule using four determinants as described in [4]:

t
u
v

 =
1

|−de1 e2|

|se1 e2|
|−dse2|
|−de1 s|

Unlike [4], we rewrite the determinant so that constant
terms independent of the edge vectors should appear. From
linear algebra, we know that the determinant |abc| may be
rewritten as:

|abc| = (a∧b) · c = −(a∧ c) ·b = (c∧b) ·a

Therefore, we have:

t
u
v

 =
1

(e1 ∧ e2) ·d

−(e1 ∧ e2) · s
(s∧d) · e2
−(s∧d) · e1

This formulation enables us to perform the following op-
timizations in the computation of the intersection between a
ray and the set of triangles organized in a fan structure:

• We compute both the translation vector s = o − p0 and
the constant cross product n = s∧d once and for all the
triangles;

• We can share the computation of the edges ek = pk −p0
as well as the term (s∧ d) · ek between two consecutive
triangles.

2.2. Fast triangle rejection test

When testing the intersection between the ray and all the
triangles Tk of the triangle fan, it is possible to reject some
non intersecting triangles easily by classifying the vertices
pk against a plane.

Let Π denote the plane that contains both the ray and the
center vertex p0. The normal of the plane is simply defined
as n = s∧d = (o−p0) ·d. The equation of the plane is de-
fined by the equation Π(p) = (p−p0) ·n = 0. A triangle Tk
does not intersect Π if and only if the expressions Π(pk) and
Π(pk+1) have the same sign, i.e., if the two vertices pk and
pk+1 are on the same side of the plane (Figure 2).

Therefore, the ray may intersect the triangle Tk only if the
plane intersects Tk. Since the computation of the normal vec-
tor n = s∧d, the edge vectors ek = pk −p0 and n · ek are al-
ready needed in the computation of the parameters u, v and
t, we can compare the signs of Π(pk) and Π(pk+1) as an
inexpensive and efficient rejection test.

pk+1

pk+2

p0

o
d

Π

Figure 2: Intersection between the plane containing the ray
and the center vertex, and a triangle fan

2.3. Overall algorithm

The overall algorithm may be split into two parts: a pre-
processing step that evaluates the constant terms, followed
by an iteration over the triangles of the triangle fan.

p0

ds

ek
ek-1

k-1 pk

ek+1

pk+1

o

p

Figure 3: Intersection between a ray and a triangle fan

Let a and b denote two vectors that will be used to store
edge vectors. Let xa and xb two scalars that will store the dot
product between the edges a and b and n (Figure 3).

The pre-processing step may be outlined as follows:

1. Compute the constant translation vector s = o− p0 and
evaluate the cross product with ray direction n = s∧d.

2. Compute the edge vector a = pk −p0 and the dot product
xa = n ·a.

The second step of the algorithm iterates over the triangles
Tk for all k ∈ [1,n−1] as follows:

1. Evaluate the edge vector b = pk+1 −p0 and the dot prod-
uct xb = n ·b = (s∧d) · (pk+1 −p0);

2. If xa and xb have the same sign, then there is no intersec-
tion between the ray and the triangle so go to Step 4.

3. Compute the normal of the triangle nk = a∧b and eval-
uate the determinant δ = nk ·d.

3.1 If determinant is close to zero, then the ray lies in the
plane of triangle and no intersection occurs.

3.2 Otherwise, set α = 1/δ and calculate uk and vk param-
eters as well as the intersection depth tk:

uk = −αxb vk = αxa tk = −α(nk · s)

The intersection is valid if and only if uk ≥ 0, vk ≥ 0
and uk + vk ≤ 1.

E. Galin / Fast Ray-Triangle Fan Intersection

4. Loop to Step 1, reusing the previously computed values
by assigning b to a and xb to xa respectively.

The nearest intersection is obtained by selecting the min-
imum of positive valid intersection depths.

Some aspects of this algorithm deserve special attention.
The computation of the edge vectors can be performed on a
pre-processing step, with edges ek = pk−p0, k ∈ [1,n] stored
in place of vertices p in the structure of the triangle fan. This
is possible if the vertex locations are not required for other
computations or shared between triangles.

The normal nk = ek ∧ ek+1 of the triangle Tk may also be
stored in the data structure at the expense of an extra memory
usage, which is a classical memory-speed trade-off.

To ensure numerical stability, the test that eliminates par-
allel rays must compare the determinant to a small interval
around 0. We use the same constant ε = 10−5 as suggested
in [4] which makes the algorithm extremely stable.

3. Implementation and performance

The previous algorithms have been implemented in C++ as
member functions of a two triangle fan classes. We tried not
only to reduce the overall number of operations in the worst
case scenario, but also to identify specific cases that can be
processed very efficiently. The algorithms are robust and do
not involve divisions by small numbers which could produce
floating point overflows. Timings were performed on a Pen-
tium IV 2.4GHz workstation using g++ -O -s as com-
piler command and options.

Algorithm + × / ?

Möller [4] 24n 27n n 6n

Triangle Fan 11+13n 9+18n n 7n

Stored Normals 8+7n 9+12n n 7n

Table 1: Number of operations involved in the ray triangle
fan intersection algorithm in the worst case

We have compared our method with the implementation
of the reference algorithm proposed in [4]. The total number
of operations performed in the worst case are reported in
Table 1. The notation n refers to the number of triangles in
the triangle fan. The computational cost drops significantly
if the edge vectors ek and the normal vectors nk are stored
into the triangle fan structure.

Table 2 presents timings for ray tracing several models.
The number of triangles as well as the corresponding num-
ber of triangle fans is reported in Figure 4. Timings demon-
strate that using triangle fans speeds up intersections by al-
most 40%.

Algorithm Bunny Horse Victory Dragon

Möller [4] 42.26 69.51 88.23 125.78

Triangle Fan 33.66 54.98 69.70 102.74

Edges Normals 24.41 40.42 53.05 68.91

Table 2: Timings (in seconds) for ray tracing some complex
models

Victory
9747 Fans
49078 Triangles

Dragon
17021 Fans
86585 Triangles Bunny

5319 Fans
26330 Triangles

Horse
8014 Fans
39698 Triangles

Figure 4: Some models used to test our ray triangle fan in-
tersection algorithm

4. Conclusion

We have presented an algorithm for computing the intersec-
tion between a ray and a triangle fan efficiently. This algo-
rithm significantly speeds up computations by factoring con-
stant terms and reusing intermediate factors when iterating
over the neighbouring triangles of the fan.

Web information

A C++ implementation of the algorithm and tests are avail-
able online at:

http://liris.cnrs.fr/˜egalin/Triangles.

References

[1] J. Amanatides and K. Choi. Ray Tracing Triangular
Meshes. Proceedings of the Eighth Western Computer
Graphics Symposium, 43–52, 1997.

E. Galin / Fast Ray-Triangle Fan Intersection

[2] D. Badouel. An Efficient Ray-Polygon Intersection.
Graphics Gems, Academic Press, 390–393, 1990.

[3] E. Haines. Point in Polygon Strategies. Graphics Gems
IV, Academic Press, 24–46, 1994.

[4] T. Möller and B. Trumbore. Fast, Minimum Storage
Ray-Triangle Intersection. Journal of Graphic Tools,
2(1), 21–28, 1997.

[5] Z.-Y. Xu, Z.-S. Tang and L. Tang. An Efficient Rejec-
tion Test for Ray Triangle Mesh Intersection. Journal
of Software, 14(10), 1787–1795, 2003.

