LIRIS Research Report 2004

A Framework for Modeling, Animating and Morphing
Textured Implicit Models

Aurélien Barbier, Eric Galin, Samir Akkouche

LIRIS, CNRS, Université Claude Bernard Lyon 1, France

Abstract

This paper presents a framework for modeling, animating and morphing textured implicit models. Our hierarchical
skeletal implicit surface model incorporates key-frame animation and procedural solid texturing in a unified and
coherent way. Our system enables the designer to create complex special effects by synchronizing shape, animation

and texture transformations.

Keywords: implicit surface modeling, animation, interpolation, shape metamorphosis, texture metamorphosis.

1. Introduction

Metamorphosis, or morphing, can be defined as the pro-
cess of smoothly transforming an initial shape into a final
shape [7]. Metamorphosis has a vast variety of applications.
It has been successfully applied in some modeling systems
for generating a variety of models after a few control shapes,
and has been extensively used for creating special effects in
the entertainment industry.

Morphing techniques are often very complex. Given two
shapes, there is an infinity of transformations that create a
metamorphosis sequence. The visual aspect of the transfor-
mation is often the only relevant criterion to evaluate the
quality of the transformation in a key-frame animation sys-
tem.

In general, the transformation should be smooth and
continuous: shape coherence should be maintained when-
ever possible so as to preserve the characteristic features
of the source and target shapes. Unnecessary deformations
or changes in the topology should be avoided. Amorphous
or blobby intermediate shapes, which sometimes cannot be
avoided in complex morphing sequences, should be lim-
ited in time. Therefore, a metamorphosis technique should
provide some interactive user-control over the intermedi-
ate shapes. Although automating the metamorphosis process
may be effective for restricted class of shapes or models, user
control proves to be fundamental to produce convincing an-
imations.

1.1. Related work

Metamorphosis techniques are strongly connected to the un-
derlying geometric representation. A complete overview of
shape morphing is beyond the scope of this paper. An inter-
esting survey of existing metamorphosis techniques may be
found in [8]. The proposed classification exhibits two major
categories: triangle mesh morphing methods and volumet-
ric techniques, which further separate into voxel based ap-
proaches and implicit surface techniques.

Triangle meshes, which are prominently used in major
modeling and animation systems, are difficult to metamor-
phosize, especially when dealing with surfaces of different
topology. A good overview of triangle mesh morphing tech-
niques is presented in[1]. Most mesh metamorphosis tech-
niques first create a graph of correspondences matching the
vertices of the two models, possibly merging their topolo-
gies, and define the transformation by performing an inter-
polation between the geometries. The main challenge stems
from the fact that methods that operate triangle meshes need
to solve both the vertex correspondence problem to create an
intermediate triangle model that merges the topologies of the
argument shapes, and the vertex path problem to avoid self
intersections and pieces of the surface folding onto them-
selves during the transformation.

Metamorphosis techniques for voxel models can handle
the transformation of shapes with different topologies.Those
methods are memory consuming and computationally de-

2 A. Barbier, E. Galin, S Akkouche / A Framework for Modeling, Animating and Morphing Textured Implicit Models

manding however: good visual results cannot be obtained
unless using a fine sampling of the objects. The computation
cost becomes the more prohibitive as the size of the sampling
grid increases.

Implicit surface techniques avoid the computation of a
fixed size sampling grid and directly compute the metamor-
phosis by interpolating the parameters of the field functions
representing the objects. Implicit surfaces have proved to be
efficient as this representation implicitly deals with changes
in the topology. Automatic techniques that have been pro-
posed for general function representation [9] and variational
implicit surfaces [14] do not provide a good control over the
transformation and often create intermediate shapes that ex-
hibit a loss of shape coherence during the interpolation.

1.2. Contributions

Although a wide range of metamorphosis techniques have
been proposed for the past few years, existing methods that
operate on three dimensional objects only address the trans-
formation of the geometry of still objects and do not provide
simple methods for transforming the texture simultaneously
or synchronizing a metamorphosis with animation.

This paper presents a framework for controlling the
metamorphosis of two animated and textured models. Our
method relies on the BlobTree model [15] that has proved to
be particularly efficient for creating and controlling complex
transformations [6]. Our method extends and improves that
approach in several ways.

In[5, 6], the shape transformation between the skeletal
primitives was performed using a linear interpolation based
on Minkowski sums. This approach used to limit primitives
to polytopes (convex polygonal elements of arbitrary di-
mension) which both restricted modeling and could produce
amorphous intermediate shapes during the transformation.

In this paper, we present a vast variety of shapes including
curves, surfaces and volumes such as boxes or cone-spheres
that may be used as skeletal elements. Complex skeletal el-
ements extend the range of shapes that may be created. We
also propose an original technique for computing the trans-
formation between those skeletons. We also propose a co-
herent system for texturing the BlobTree by incorporating
procedural solid texturing nodes in our model. We present
a technique for interpolating texture nodes, which enables
us to synchronise texture interpolation with shape transfor-
mation. Eventually, we show that the parameterization of
the BlobTree by functions of time is a natural way to cre-
ate complex animations and transformations. This approach
encompasses the animation and metamorphosis in a unified
and coherent model.

The remainder of this paper is structured as follows. Sec-
tion 2 presents the fundamentals concepts of the BlobTree.
In particular, we detail the different types of nodes involved

in the hierarchy and present how textures and animation are
incorporated in the BlobTree model. Section 3 presents some
complex primitives with levels of detail management that
enables us to model complex shapes with a few control pa-
rameters. Section 4 presents the TextureTree system which
is used to incorporate procedural textures in the BlobTree
model. Section 5 presents the metamorphosis of animated
models: we focus on shape and animation coherence dur-
ing the transformation and describe how textures are trans-
formed simultaneously during a morphing sequence. Finally,
we conclude this paper with a presentation of examples, fol-
lowed by a discussion of our results and open problems for
future research.

2. TheBlobTree

An implicit surface is mathematically defined as the points in
space that satisfy the equation S = {p € R®, f(p) — T = 0}
where f(p) denotes a scalar field function in space and T
a threshold value. The BlobTree model [15] is characterized
by a hierarchical combination of primitives organized in a
tree data-structure. The nodes of the tree include blending,
Boolean and warping nodes, whereas the leaves are charac-
terized as skeletal elements.

Blend

//\\

@l ™

PERN

Hyper-Blend

/N

P =

Figure 1: A simplified representation of the tree structure of
a Tyrannosaurus Rex model.

The computation of the field function f(p) ata given point
in space is performed by recursively traversing the BlobTree
structure. The skeletal primitives at the leaves of the tree re-
turn potential field values, which are combined by the oper-
ators at the nodes of the tree.

Skeletal elements The leaves of the BlobTree are skele-
tal elements that are characterized by a skeleton, a distance
function and a potential field function with a compact sup-
port. The field functions f(p) are decreasing functions of

A. Barbier, E. Galin, S Akkouche / A Framework for Modeling, Animating and Morphing Textured Implicit Models 3

the distance to a skeleton f = god where g : R+ — Ris the
potential field function, and d : R® — R, refers to the dis-
tance to the skeleton. The skeleton and the distance function
d characterize the shape of the element, whereas the poten-
tial field function g defines the way elements blend together.

The potential field functions have a limited radius of in-
fluence, denoted as R. Therefore, every skeletal primitive
has a bounded region of influence in space, denoted as Q,
which may be defined by sweeping a sphere of radius R over
the skeletons. As the shape of Q may be complex for some
skeletons, every primitive incorporates a bounding box in its
data-structure so as to rapidly discard useless field function
evaluations when queries are performed in empty regions of
space.

Blending nodes Our system implements different types of
blending and includes a hyper-blending node. Global blend-
ing is defined by summing the field functions of the con-
tributing elements:

far8(p) = fa(p) + fa(p)

Our system includes a generalized hyper-blending node
which is useful for controlling the way elements blend to-
gether:

fars(p) = (fa(P)"+ fa(p))Y" neR;

We have adapted the local blending technique described
in [11] by implementing a new local blending node. This
operator has three children: the first two, denoted as A and
B, represent the two BlobTree models that will be partially
blended together, whereas the third, denoted as R, represent
the region of space where blending will occur. We define
the resulting field function as a weighted average between
blending and union as follows:

farg|r = fR(P) (fa(P) + fB(P)) + (1 — fr(P)) faus(P)

The field function fg that maps R® onto interval [0, 1] scales
the amount of blending between the two sub-trees A and B.

Boolean nodes Boolean operators are implemented in dif-
ferent ways. The min and max functions prescribed in [15]
for union and intersection are the most efficient:

faus(p) = max(fa(p), fa(p))

fans(p) = min(fa(p), fa(p))

The difference operator, denoted as \, is parameterised by
the threshold value: fa\g(p) = min(fa(p),2T — fa(p)).

Those operators produce gradient discontinuities in the
potential function, which results in visible unwanted normal
discontinuities on the surface. In contrast, R-Functions [9]
define a field function with C" continuity almost everywhere
in space so as to avoid gradient discontinuities. We have
adapted those functions to our model [3] as follows:

face(P) =T+ | (1a(p) =T+ () ~T)
(1)~ T2+ (fep) - T)?
face(p) =T+ 5= (1a(p) =) + (fa(p) - T)

— (1P T2+ (1alp) - T

Both representations produce the same implicit surface if
the Boolean nodes are located at the top of the tree structure.
In this case, the computation of the min and max is compu-
tationally inexpensive compared to R-Functions. In contrast,
we use the modified R-Function equations to create a contin-
uously differentiable potential field if blending nodes are lo-
cated above Boolean operators in the BlobTree. Our system
automatically adapts the function used to evaluate Boolean
operators depending on the context during the evaluation.

Warping nodes Warping operators implement deforma-
tions nodes that distort the shape of the implicit surface by
warping space in its neighbourhood. Generally speaking, a
warp is a continuous function w(p) that maps R® onto R3.
The evaluation of the field function is performed as follows:

fooga)(P) = faow™(p)

Translation and rotation nodes, which will be referred to
as frame nodes, deserve special attention as they are involved
in the definition of the animation skeleton. As we will see in
Section 5, frame nodes may be inserted in the structure of an
otherwise still BlobTree model for attaching an animation
skeleton to a shape and animating it.

3. Complex skeletal primitives

Our modeling system incorporates a vast variety of skele-
tal primitives such as line segment, circle, circular arc, tri-
angles, discs, boxes, cylinders or polyhedral shapes (Fig-
ure 2). In our framework, every primitive provides an algo-
rithm that computes the Euclidean distance to its skeleton,
denoted as d(p). Although the computation of the distance
d(p) between a point in space and a simple skeleton such as a
point or a line segment is straightforward and computation-
ally efficient, algorithms become the more sophisticated as
the complexity of skeletons increase. A complete description
of distance computation is beyond the scope of this paper. A
general overview on point to primitive distance computation
may be found in [12].

In this section, we present some complex primitives,
namely generalized cylinders, surface patches with variable
thickness and surfaces of revolution with variable thickness.
Those complex primitives extend the range of shapes that
may be created, are easy to control in our animation and

4 A. Barbier, E. Galin, S Akkouche / A Framework for Modeling, Animating and Morphing Textured Implicit Models

{‘r’ »’ h

Polygon Disc Hollow Hollow Cone-Sphere Cone
Cylinder Cone

Half-Sphere Cube Cylinder Cylinder-Box Tetrahedron Torus

Figure 2: Some skeletal primitives implemented in our sys-
tem.

metamorphosis system as they are defined by a small set of
parameters (Figure 3).

Figure 3: A Tyrannosaurus-Rex and a Dragon defined
with generalized cylinders and surface patches with varying
thickness.

Since computing the distance to those complex skeletal
elements is very difficult, we rely on a decomposition and in-
stantiation process that approximates the skeleton by a union
of simpler skeletal elements such as spheres, cylinders, tri-
angles or tetrahedral elements (Figure 2) organized in a tree
which may be processed efficiently. Using the union opera-
tor guarantees that no bulging effect appears. The BlobTree
generation process adapts the number of generated primi-
tives to the required level of detail.

3.1. Generalized cylinders

A generalized cylinder primitive is parameterized by a
sweeping curve, denoted as c(t), and a varying radius func-
tion, denoted as r(t), along the support curve (Figure 4). The
BlobTree generation process converts the curve into a set of
n line segments whose vertices are denoted as vj, i € [0,n],
depending on the required level of detail. For every vertex vj,
we compute the corresponding radius parameter r; and cre-
ate a cone-sphere primitive for every line segment [vjvi1].

The generation process can be optimized as follows. If
the end radii r; and riy; are the same, the system instan-
tiates a line-swept-sphere primitive which is faster to pro-
cess. An in depth overview of the evaluation of d(p) for
cylinders, cones, line swept spheres and cone-spheres is pre-
sented in[2]. If the end radii are null, a line segment prim-
itive is generated. Eventually, the generation process orga-
nizes primitives into an optimized hierarchy of union nodes

Figure 4. A generalized cylinder and its corresponding
BlobTree representation.

(Figure 4) so as to take advantage of spatial coherence and
reduce computations when performing potential field com-
putation queries.

3.2. Surfacewith variable thickness

Our system implements different types of surface primitives,
such as subdivision surfaces and parametric surface patches.
Subdivision surfaces as well as parametric surfaces generate
a set of triangles that approximate the surface at a given level
of detail. Those triangles are converted into triangle primi-
tives in the BlobTree generation process.

More complex shapes may be created by controlling the
thickness of the surface by a parameterized thickness func-
tion, denoted as t(u,v), where the tuple (u,v) refers to the
parameterization of the surface. The wings of the dragon
model (Figure 3) were created with Bézier surface patches
with a variable thickness: the end parts of the wing are rela-
tively thin compared to the section near the junction with the
body which is thicker.

Gjen Mijer

Figure5: A surface patch with varying thickness and its cor-
responding BlobTree representation.

The BlobTree generation process proceeds as follows
(Figure 5). First, we create a triangle mesh of the surface.
Then, for every vertex vjj, we compute the thickness param-
eter tj; and the vertex normal nj; by averaging the normals
of the neighbouring triangles. Finally, for every triangle, we
create a polyhedral primitive. The vertices of this primitive
are computed by offsetting the three vertices of the triangle
in the direction =tjj njj. The borders of the surface generate
generalized cylinders as detailed earlier.

As for generalized cylinders, the generation process is op-
timized to create simpler primitives whose distance func-
tions are faster to evaluate whenever possible. If the thick-
ness at the vertices of the base triangle are the same, then

A. Barbier, E. Galin, S Akkouche / A Framework for Modeling, Animating and Morphing Textured Implicit Models 5

the offset polyhedron has parallel faces and the general
polyhedron skeletal element is replaced by another specific
prism skeletal element. Triangles are generated if the thick-
ness function is null. Finally, two neighbouring prisms with
coplanar generating triangles and the same thickness param-
eters may be merged into a simple box primitive, which fur-
ther simplifies to a rectangle if the thickness is null.

3.3. Surface of revolution with variable thickness

Surfaces of revolution are generated by sweeping a two di-
mensional curve surface around an axis. In our implementa-
tion, we can add some thickness to the surface of revolution
by offsetting the generating curve by a variable thickness
parameter. The models in Figure 6 were created using this
technique.

Figure 6: Models created with surface of revolution primi-
tives with varying thickness.

The BlobTree generation process is similar to generalized
cylinders. First, the system converts the profile curve into
a set of n line segments whose vertices are denoted as vj,
i € [0, n]. For every vertex v, the system computes the curve
normal denoted as n;j and evaluates the corresponding thick-
ness parameter tj (Figure 7).

Figure 7: A surface of revolution and its corresponding
BlobTree representation.

Then, for every line segment, the vertices of the four sided
polygon v; £t nj and V41 £t 1 nj1 are computed. We rely
on single primitive of revolution which is a hollow cone
of varying radii. The system also generates torus primitives
with center vj, major radius R; that refers to the distance be-
tween v; and the axis, and minor radius tj to create smooth
junctions between hollow cones. The final shape is defined
as the union of those primitives.

As before, several optimization steps have been incorpo-
rated in this process. If the thickness parameter is null, we

instantiate simpler hollow cone primitives. If the end radii
are the same, we create the corresponding cylinder primi-
tives.

4. TexturingtheBlobTree

Texturing implicit surfaces is a challenging problem in com-
puter graphics. Several techniques have been proposed for
mapping a two dimensional texture image onto an implicit
surface by following the stream lines of the gradient V f in
space [13]. Those methods are slow, stretch and deform tex-
tures and do not provide a good control. Function representa-
tions may incorporate textures in a more natural way [?], but
are not suitable for our animation and morphing purposes.

Our implementation of the BlobTree model incorporates
texture nodes that assign a material, implemented as a proce-
dural solid texture, to a skeletal primitive or to a whole sub-
tree. Solid textures are defined by the TextureTree which is
characterized by a hierarchical combination of textured re-
gions organized in a tree data-structure. In our system, the
textured regions are defined by the same skeletal primitives
as for the BlobTree. The very difference is that those prim-
itives include texture and material parameters. Boolean and
blending operators combine textures together, producing dif-
ferent texturing effects. Blending nodes smoothly blend ma-
terials, whereas Boolean operators create sharp transitions
between two materials. Warping nodes deform both the re-
gions of influence and their corresponding solid texture.

Texture
Geometry TextureTree
\ \
Blend
/ \ Textured Model
Union

/N

® O

Figure 8: Controlling the texture of a simple shape with the
TextureTree

Every node in the TextureTree returns two different kinds
of information: a potential field value f(p) and the material
parameters ®(p). The potential field values f(p) are com-
puted the same way as for the BlobTree model and are used
to weight the characteristics of the different materials to cre-
ate blending effects as presented in Section 4.2. A textured
object is created by embedding its geometrical representa-
tion in the texture space defined by the TextureTree (Fig-
ure 4). The evaluation of the texture function at a given point
in space is further detailed in the next paragraphs.

6 A. Barbier, E. Galin, S Akkouche / A Framework for Modeling, Animating and Morphing Textured Implicit Models

Texture Textured Modelsi
Geometry TextureTree
//‘, n=1 n=2
P PL
80 T«

Figure 9: Blending textures with different parameter: the
transition between colors sharpens as n increases.

Hyper-Blend

4.1. Materials

Materials are implemented as a set of classes of solid tex-
tures [4] that are characterized by a parametrized procedu-
ral function, denoted as ®(p), p € R®. The function ®(p)
defines the characteristics of a material for any point p in
space. Material parameters include the color, the reflection
and transmittance coefficients denoted as p and T respec-
tively, and the index of refraction of the material o. Other
parameters may be incorporated in the definition of the ma-
terial, depending on the requirements of the illumination
model.

Although the texturing function @ may be of any type, we
rely on a few classes of parameterized solid textures such as
marble, wood, or granite [4]. As we will see in Section ??,
those classes will enable us to create complex special effects
such as texture animation and metamorphosis easily.

4.2. Overview of thetexturing algorithm

The evaluation of the texturing function in space is achieved
by recursively traversing the TextureTree, either evaluat-
ing the solid texture functions at its leaves, or combining
the characteristics of the materials returned by the children
nodes with Boolean, blending or warping nodes. The algo-
rithm may be outlined as follows:

1. If the node is a skeletal primitive, return the evaluation
of the solid texture function ®(p) and the potential field
value f(p) at point p.

2. If the node is a Boolean or blending node, evaluate the
texturing functions for its children nodes ®;(p) and com-
bine those parameters with the field function values of its
children fi(p), depending on the type of the node.

3. If the node is a warping node, evaluate the texturing
functions of its child node with the point transformed in
warped space w ™ 1(p).

Blending nodes The blending operator weights the param-
eters of the materials of its children A and B by computing
their weigted sum:

fa(p)Pa(p) + fa(P)Ps(P)
fa(p) + fa(p)

Pars(p) =

Blending produces a smooth transition between several
neigbhooring materials according to the regions of influence
and to the field function values returned by the child nodes.
Blending may be generalized to hyper-blending as follows:

(fa(P)"®a(P)" + fa(p)"P5(p)") /"
(fa(p)"+ fa(p))"

When n varies within the interval [1, 4+-oc0], argument textures

are smoothly mixed from smooth blending to sharp union

(Figure 9). Our system incorporates a local blending node in
the TextureTree as well:

*

neR;

PayB(P) =

Ppipr= fR(P) Pats+ (1 — fr(P)) Paus

Boolean nodes Boolean operators create a sharp transition
between two materials. The texturing functions for union,
intersection and difference nodes are defined by comparing
the field function values of its children:

[®a(p) if fa(p)> fa(p)
Paus(p) = {qu(p) otheerise i

_ [oalp) if fa(p) < fa(p)
Panp(p) = {qu(p) otheerise ’
Pa(
®s(

Ppa(p) = { a(P) it fa(p) <2T — fa(p)

B(p) otherwise

Warping nodes Warping operators distort geometrical
shapes and textures by warping space. The texturing func-
tion is defined as:

D) (p) = Paow *(p)

By evaluating texture parameters in warped space, the de-
signer can achieve various interesting special effects. Frame
nodes also influence the evaluation of the TextureTree,
which makes it possible to synchronize the animation of the
textures with the animation of the geometry.

5. Metamorphosis

In this section, we present the animorphosis of the Blob-
Tree that aims at creating a smooth animated metamor-
phosis between two freely animated 3D-objects. This prob-
lem is more complex than the metamorphosis between still
shapes. In general, a metamorphosis between two still ob-
jects is visually appealing and convincing if shape coher-
ence is preserved during the transformation. Both shape
and animation coherence should be preserved. As illus-
trated in Figurel6, the transformation between a walking
Tyrannosaurus-Rex and a flying Dragon should not only cre-
ate smooth interpolating shapes. The animation of the legs of
the Tyrannosaurus-Rex should smoothly transform into the
slow balancing movement of the legs of the Dragon. The
wings should not only progressively grow from its back but
should also start fluttering with an increasing amplitude as
the Dragon takes-off.

A. Barbier, E. Galin, S Akkouche / A Framework for Modeling, Animating and Morphing Textured Implicit Models 7

Figure 10: A walking Tyrannosaurus-Rex.

5.1. Animating the BlobTree

We animate the BlobTree model by defining parameters of
its nodes as functions of time. Therefore, the animated Blob-
Tree is characterized by a hierarchical generic tree data-
structure, denoted as A, and a set of time varying parame-
ters, denoted as Pa(t) (Figure 11). In this section, A(t) =
{A,Pa(t)} will refer to animated BlobTree.

The set of parameters Pa(t) includes the global time vary-
ing threshold parameter, denoted as Ta(t), as well as the set
of time varying parameters of the nodes A;(t) of the Blob-
Tree, denoted as Pa(t). Let pa(t) denote the jth time
varying parameter of the i™ node of the BlobTree. Every
parameter pa,;(t) has its own evolution function.

<~ Frame K(t)

\ AN ' <—— RadiusR(t)
Blend
/ \ Frame F(t)
‘ ‘ <~——— Strength I(t)

Generic Model Time varying parameters
Figure 11: The animated BlobTree model of the leg of the
Tyrannosaurus-Rex character.

Separating the animated BlobTree model into a generic
structure and a set of time varying parameters provides us
with a coherent framework for animating, deforming and
metamorphosizing shapes. The animation, deformation and
metamorphosis of our model will be performed by creating
instances of the generic BlobTree structure A using the pa-
rameters Pa(t) at a given time step t. The creation of those

instances is achieved by recursively traversing the nodes of
the generic BlobTree structure and computing the values of
the parameters of the nodes with the time varying parameters

Pa; (t)

Key-frame animation In our system, key-frame animation
is performed by attaching an animation skeleton to the Blob-
Tree. This process can be performed easily by inserting
frame nodes, i.e. rotation and translation nodes, in the Blob-
Tree structure. Frame nodes are functions of time which de-
fine the movement of the animation skeleton. Figure 11 illus-
trates the frame nodes that were inserted in the definition of
the leg of the Tyrannosaurus Rex model. The frames in Fig-
ure 12 outline the animation skeletons of the Tyrannosaurus-
Rex and Dragon models which include 21 and 49 frame
nodes respectively.

Figure 12: Animation skeletons: dots outline sets of skeletal
primitives deformed with time varying parameters (breath-
ing and vertical tail movements) whereas frames outline the
main articulations of the models.

The time varying parameters pA‘.,j(t) are characterized by
piecewise Hermite spline curves. At a given time step ty, a
parameter pa,;(tk) is characterized by a column vector of
its successive time derivatives. The value of pa,;(t) over the
interval [tx,tks1] is given by the interpolation of Hermite-
Ferguson of degree n which is a polynomial of degree 2n—1.

Deformations Shapes can be deformed either by modifying
the parameters of their warping nodes, or by directly chang-
ing the parameters of some skeletal elements in the Blob-
Tree.

8 A. Barbier, E. Galin, S Akkouche / A Framework for Modeling, Animating and Morphing Textured Implicit Models

Figure 13: A flying Dragon.

Figure 11 shows that the intensity and the radius param-
eters of some skeletal elements of the leg were defined as
functions of time to create a bulging effect during the ani-
mation. The pulsating belly was controlled by changing the
radius of influence of the sphere primitives through time to
fake breathing (Figure 12). The movement of the tail was
directly controlled by parameterizing the end vertices of the
generalized cylinders with periodic functions of time.

Application Figure 10 shows a walking Tyrannosaurus-Rex
controlled by a key-framing animation system. This model
has been created with 66 generalized cylinders combined by
local blending operators, and incorporates 21 frame nodes
for animation. The final instantiated models has 1835 skele-
tal elements (mostly cylinders and cone-spheres) and 201
Boolean and blending. The animation of the tail is controlled
by modifying the control points of the generalized cylinders.
It combines a rotation frame node that creates a left to right
balancing movement synchronized with the hips.

Figure 13 shows a flying Dragon made with 43 general-
ized cylinders and 12 surface patches. The animation is con-
trolled by 21 frame nodes and 30 control points for animat-
ing the tail and the wings.

5.2. General algorithm

Let A(t) = {A,Pa(t)} and B(t) = {B,Pg(t)} denote the
source and target models. We characterize the transforma-
tion by a new generic animated BlobTree model C(t) =
{C,Pc(t)}. The generic structure C is computed by invoking
the original BlobTree metamorphosis algorithm [6] between
the corresponding generic models A and B. This generic
structure will characterize the whole transformation. The
time varying parameters Pc(t) interpolate the parameters
Pa(0) and Pg(1). This last step is the most difficult, since
a tight control is required to preserve both shape and ani-
mation coherence. The overall algorithm may be outlined as
follows:

1. Define a graph of correspondences G¢(A — B) matching
two models A and B.

2. Create the generic structure C from the bijectively match-
ing graph derived from Gc(A — B).

3. Define the set of time varying parameter Pc(t) by inter-
polating the corresponding parent parameters Pa(t) and
Pa(t).

Creation of the generic tree structure The first two steps
of the algorithm are performed as presented in [6]. Given the
generic BlobTree structures A and B, we aim at creating two
new overlapping models, denoted as A’ and B, whose nodes
and leaves can be bijectively paired. This involves the cre-
ation of a graph of correspondences compatible with the tree
structure of both the source and the target animated models
(Figure 14).

tree structure A tree structure B

A
Equi\i/al ent Equi\+/al ent

tree structure A'< QVerlad _ tree structure B’

" Sver Overlap
er ap\\ P erlap
Generic tree structure C

Figure 14: Generic tree structure creation process

Starting from the roots of the models, we iteratively de-
scend down the tree structures and create a graph of corre-
spondences between the nodes at the same level. Whenever
a node of A holds several correspondence links, it is split
into sub-nodes and the BlobTree A is updated into an equiva-
lent form A’. The same process is simultaneously performed
on the nodes of B. The correspondence process ends at the
leaves of either structure. Multiply matched skeletal ele-
ments are processed as described in [5, 6]. The parameters at
the blending, Boolean, warping and texturing nodes P (t)
are defined as copies of their parent parameters Pa(t). In
contrast the parameters of the skeletal elements are derived
from Pa(t) as described in [5]. This correspondence process

A. Barbier, E. Galin, S Akkouche / A Framework for Modeling, Animating and Morphing Textured Implicit Models 9

/ Cube \ / Cylinder \

—
7

Cylinder-Box Line Segment Sphere Hollow Cylinder

AN / AN /

Cylinder Torus

Figure 15: Two interpolation graphs between some skeletal
elements.

may be either controlled by the animator or achieved auto-
matically through heuristics.

Skeletal primitive transformation In[5, 6], the transfor-
mation between skeletal primitives was performed using
a linear interpolation based on Minkowski sums. This ap-
proach limited primitives to polytopes (convex polygonal
elements of any dimension). The Minkowski sum can no
longer be used in the general case as the resulting shapes be-
come extremely complex which makes distance evaluation
computationally prohibitive or even impossible.

To overcome this problem and find a skeletal transforma-
tion for our set of primitives, we propose to rely on a graph of
skeletal elements whose arcs define the possible transforma-
tions between the nodes. An arc exists between two skeletal
shapes Sa and Sg if the geometrical parameters of Sa may
be set so that its geometry degenerates into the geometry and
topology of Sg.

Figure 15 illustrates this concept by representing two
interpolating graphs for a restricted set of skeletons. The
graphs implement two different ways of transforming a
cylinder into a box and a torus into a cylinder respectively.
There exists an arc between a cylinder and a segment since
the cylinder may degenerate into a segment by decreasing its
radius parameter to 0. The transformation between a cylinder
and a box can be achieved either using a deforming cylinder-
box primitive, or by first transforming the cylinder into line
segment and further transforming this line segment into a
box, which produces simpler intermediate shapes.

In our system, given an initial and a final shape, we au-
tomatically identify the intermediate shapes needed to cre-
ate a smooth transformation by finding a path in the inter-
polation graph connecting the two shapes. The arcs of the
graph are valuated by weights that characterize the complex-
ity of the interpolating shape. In general, the complexity of a
shape directly relates to its dimension and the computational
cost of its distance function d(p). Therefore, we automati-
cally search for the path with a minimal cost so as to avoid

complex intermediate skeletons with a high dimension that
tend to produce amorphous intermediate or blobby shapes as
demonstrated in [6].

Controlling the generic parameters The last step of the
algorithm controls the way parameters change throughout
time. The animated model C(t) should not only interpolate
the initial and final shapes A(0) and B(1) but also produce
a visually coherent interpolation between the animations of
A(t) and B(t): the animation of A(t) should smoothly disap-
pear while the animation of B(t) takes place. Therefore, we
are confronted with both shape and animation coherence.

In the following paragraphs, the time varying parameters
pa;(t) and pg,, (t) of the nodes A; and Bj will be denoted as
pa(t) and pg(t) for the sake of clarity. Without loss of gener-
ality, we will assume that the transformation takes place over
the interval of time [0, 1]. In our approach, we interpolate the
parameters pa(t) and pg(t) by using an evolution function
denoted as s(t) that weights the influence of the parent pa-
rameters in time:

pc(t) = (1 —s(t)) pa(t) +s(t) ps(t)

The evolution function s(t) characterizes the speed of trans-
formation between two parameters. In our implementation,
we use piecewise cubic Hermite Splines that provide a
simple intuitive control over the transformation. Figure 17
shows the control curve of the interpolation of the height
parameter of the Tyrannosaurus-Rex and the Dragon. This
curve constrains the model to the floor at the begining of
the transformation and raises the creature in the air when the
wings have grown enough.

s(t)

o
T

-

o : t
to ty [0%] ty

Figure 17: Controlling the height of the trajectory of the
transforming Tyrannosaurus Rex model with a piecewise in-
terpolation function s(t).

Thanks to the hierarchical structure of the BlobTree, only
a few parameters need to be interpolated to create complex
transformations. Still, every parameter in the generic ani-
mated BlobTree model C(t) may be tuned independently
with its own evolution function if need be.

5.3. Key-frame metamorphosis

In our system, animations are controlled by key-framing.
Therefore, we have developped an automatic technique that
creates a new key-frame animation given two input key-
frame animation models. Recall that we use Hermite spline

10 A. Barbier, E. Galin, S Akkouche / A Framework for Modeling, Animating and Morphing Textured Implicit Models

Figure 16: Metamorphosis between a walking Tyrannosaurus-Rex and a flying Dragon. The back legs of the creature progres-
sively stop moving while the wings grow and start fluttering as the creature takes off.

curves to define the evolution functions s(t). Therefore, since
all time varying parameters are defined by Hermite Splines,
we can constrain the computation of the parameters pc(t)
so that animorphosis should produce a consistent animation
model. Our goal is to define the intermediate shape as a sim-
ple key-frame animated BlobTree rather than an interpola-
tion of two animated BlobTrees at each time step.

Given an interpolation function s(t) and two key-frame
parameter functions pa(t) and pg(t), the following algo-
rithm automatically computes the interpolating key-frame
parameter function Pc(t) (Figure 18):

1. For every time interval [ty tx, 1] of the interpolation func-
tion s(t) defined by the animator, compute the set {t;} of
the time steps of pa(t) and pg(t) in [tk, tky1]-

2. For every time step t;, define the key steps of pc(ti) as
follows:

pe(ti) = (1 —s(ti)) pa(ti) +s(ti) pa(ti)

The key steps of pc(t) at the end times of the control
interval [ty, tx+1] are obtained by plugging tx and tx; 1 into
the previous equation, thus:

pc(tk) = (1 —s(ty)) paltk) + s(t) pa(tk)

pe(tk1) = (1 —S(tka1)) PA(tkt-1) + S(tke-1) PB (tka-1)

3. Evaluate the evolution function of pc(t) using the in-
terpolation of Hermite-Ferguson of the new key-steps

{pc(t)}

Let na, ng and ng denote the number of control knots in
the definition of pa(t), ps(t) and s(t) respectively. Our tech-
nique creates at most na + ng + ns key-frames for the pa-
rameter pc(t). This approach preserves the original control

to ty tk th

Figure 18: Merging two time varying key-framed parame-
ters pa(t) and pg(t) into an interpolating parameter pc(t).

points of the argument animations. Therefore, our method
defines the animation of the intermediate shape by a classical
key-frame description and takes into account each time step
of both the source and target models, which preserves both
shape and animation coherence. Extra control points may be
inserted to introduce specific steps in the transformation if
necessary.

Application Figure 16 shows the transformation between a
walking Tyrannosaurus-Rex and a flying Dragon. The over-
all hierachical graph of correspondence between the two
models is relatively simple since the initial and final shapes
have the same overall structure. The metamorphosis between
the heads of the two models required a tighter control. The
skulls and the jaws were finely tuned and controlled indepen-
dently to avoid unwanted blending during their metamorpho-
sis. It took us 2 hours to create the graph of correspondence
between the two models. Much time was spent finely match-

A. Barbier, E. Galin, S Akkouche / A Framework for Modeling, Animating and Morphing Textured Implicit Models 11

ing the jaws and the different parts of the skulls to ensure
shape coherence.

During the transformation, the animated wings grow
faster than other components so that the Tyrannosaurus-Rex
should take-off only when the wings get large enough. An-
other 4 hours were necessary to tune the important interpo-
lation parameters and tune the animation.

5.4. Texture metamorphosis

We compute the metamorphosis between two TextureTree
models A and B by defining a new generic TextureTree
model C whose nodes and leaves will be defined by time
varying parameters. Since our TextureTree model inherits its
structure from the BlobTree model, our approach is strongly
based on the original BlobTree metamorphosis algorithm
proposed in [6].

Let us recall the key steps of the method. The transforma-
tion between two TextureTree models is defined by a single
generic model, whose nodes and leaves parameters change
throughout time. The skeletal primitives are transformed by
interpolating their skeleton and field function as prescribed
in[6].

Figure 20: Metamorphosis between two marble textures: in-
terpolating the parameters preserving the overall texture co-
herence.

The metamorphosis of solid textures deserves special at-
tention. If both solid textures A and B are of the same type,
e.g. both represent marble but with different veining and col-
ors, they share the same parameters. Therefore, the generic
texture C(t) is defined as a time varying texture of the same
type with interpolating parameters denoted as P¢(t). Lets(t)
denote the speed of the transformation between the parame-
ters, we used:

Pe(t) = (1=s(t))Pa+s(t)Ps

As illustrated in Figure 5.4, this approach preserves texture
coherence during the transformation.

In the general case however, argument textures may be
of different type, e.g. a marble pattern may be transformed
into a wood pattern. Therefore, they do not share the same
parameters and the previous method can no longer apply.

Figure 21: The direct interpolation of the texture functions
creates a non-natural cross-dissolving effect.

In those cases, the metamorphosis between two solid tex-
tures is directly achieved by interpolating their correspond-
ing procedural functions ® and ®g. Let s(t) denote the
speed of the transformation between the two textures. The
time varying function ®c(p,t) representing the transform-
ing texture is directly defined as follows:

®c(p,t) = (1 —s(t))Pa(p) +5(t) P (P)

Although general, this approach generally creates cross dis-
solving effects as illustrated in Figure 21.

Application Figure 19 represents the awakening of a petri-
fied gargoyle into a living creature. Although the geometric
model of the gargoyle is rather complex, the Texture-Tree
model of the stone material is simply defined as a set of
blended spheres that hold the stone pattern parameters. The
de-petrifaction effect is achieved by slowly propagating flesh
texturing spheres through the geometric model, while mov-
ing stone texturing spheres away.

6. Conclusion

In this paper, we have presented a general framework for cre-
ating and controlling metamorphoses between textured and
animated implicit models. Our animated BlobTree model
encompasses animation and metamorphosis in a unified
and coherent fashion. Our metamorphosis system generates
convincing and visually appealing transformations between
complex objects while preserving both shape and animation
coherence.

The creation of a generic model is fundamental: generic-
ity enables us to use the same accelerated techniques to ray-
trace or polygonize any instance of the animated BlobTree.
Moreover, the computation time needed to create all the in-
stances through time is very fast and negligible compared
to the rendering time. More than 2000 complex objects may
be created in less than 1 second on a Pentium 4 2,4GHz.
In comparison, the polygonization of an instantiated model
with a few thousands of primitives takes 10 to 20 seconds.

In this context, the use of level of details in the design of

12

A. Barbier, E. Galin, S Akkouche / A Framework for Modeling, Animating and Morphing Textured Implicit Models

Figure 19: The gargoyle progressively starts moving as stone slowly turns to flesh.

complex BlobTrees could speed up rendering. Specific poly-
gonization techniques that take advantage of temporal coher-
ence will be needed in the creation of an interactive editor.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

M. Alexa. Recent Advances in Mesh Morphing. Com-
puter Graphics Forum, 21(2), 173-196, 2002.

A. Barbier and E. Galin. Fast distance computation be-
tween a point and cylinders, cones, line-swept-spheres
and cone-spheres. Journal of Graphic Tools, 9(2), 31—
39, 2004.

A. Barbier, E. Galin and S. Akkouche. Complex Skele-
tal Implicit Surfaces with Levels of Detail. Proceedings
of WSCG, 12(4), 35-42, 2004.

D. Ebert, F. Musgrave, D. Peachey, K. Perlin and S.
Worley. Texturing and Modeling - A Procedural Ap-
proach. AP Professional, 1998.

E. Galin and S. Akkouche. Soft Object Metamorphosis
based on Minkowski sums. Computer Graphics Forum
(Eurographics’96 Proceedings), 15(3), 143-153, 1996.

E. Galin, A. Leclercq and S. Akkouche. Morphing the
BlobTree. Computer Graphic Forum, 19(4), 257-270,
2000.

J. Gomes, L. Darsa, B. Costa and L. Velho. Warp-
ing and Morphing of Graphical Objects. Morgan Kauf-
mann, 1998.

F. Lazarus and A. Verroust. Three-dimensional meta-
morphosis: a survey. The Visual Computer, 14(8/9),
373-389, 1998.

A. Pasko, V. Adzhiev, A. Sourin and V. Savchenko.
Function representation in geometric modeling: con-
cepts, implementation and applications. The Visual
Computer, 11(8), 429-446, 1995.

[10]

[11]

[12]

[13]

[14]

[15]

A. Pasko,V. Adzhiev,B. Schmitt and C. Schlick. Con-
structive Hypervolume Modeling. Graphical Models,
63(6), 413-442, 2001.

G. Pasko, A. Pasko, M. lkeda and T. Kunii. Bounded
Blending Operations. Proceedings of Shape Modeling
International, 95-104, 2002.

P. Schneider and D. Eberly. Geometric Tools for Com-
puter Graphics. Morgan Kaufmann, 2003.

M. Tigges and B. Wyvill. Recent Advances in Mesh
Morphing. A Field Interpolated Texture Mapping
Algorithm for Skeletal Implicit Surfaces. Computer
Graphics International, 1999.

G. Turk and J. O’Brien. Shape Transformation Us-
ing Variational Implicit Functions. Computer Graphics
(Siggraph’99 Proceedings), 35, 335-342, 1999.

B. Wyvill, A. Guy and E. Galin. Extending the CSG
Tree (Warping, Blending and Boolean Operations in an
Implicit Surface Modeling System). Computer Graph-
ics Forum, 18(2), 149-158, 1999.

