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Abstract

Digital planarity is defined by digitizing Euclidean planes in the three-dimensional
digital space of voxels; voxels are given either in the grid point or the grid cube
model. The paper summarizes results (also including most of the proofs) about
different aspects of digital planarity, such as self-similarity, supporting or separating
Euclidean planes, characterizations in arithmetic geometry, periodicity, connectivity,
and algorithmic solutions. The paper provides a uniform presentation, which further
extends and details a recent book chapter in (Klette and Rosenfeld 2004).
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1 Introduction

In this paper we review various concepts and results of digital planarity and
exhibit relations of the subject to other disciplines. Some of the considered
matters are partially familiar from studies on digital straightness. However,
digital planarity issues appear to be more challenging, due to further signifi-
cant applications in pattern recognition and volume modeling, and to certain
theoretical obstacles caused by the higher dimension. We conform to tradi-
tional terminology adopted in digital geometry. For some basic notions the
reader is referred to (Klette and Rosenfeld 2004).

A plane in R3 whose z-coefficient is not 0, is defined by an expression of the
form

Γ(α1, α2, β) = {(x, y, z) ∈ R3 : z = α1x + α2y + β}
where α1, α2, β ∈ R. The symmetry of the grid allows us to assume 0 ≤ α1 ≤ 1
and 0 ≤ α2 ≤ 1 throughout this paper; we also assume 0 ≤ β < 1 for
convenience using an argument similar to that for digital straight lines.
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A digital plane can be defined from such a plane in Euclidean space R3 by
applying a specific model of digitization. It is common to choose either outer
3D Jordan digitization (also known as supercover digitization) which assigns
all grid cubes having a non-empty intersection with the given plane, or 3D
grid-line intersection digitization which assigns all those grid points which are
nearest to an intersection of the plane with a grid line; or simply by applying
the floor or ceiling function to the coordinates of the points in Γ(α1, α2, β).

We start with the grid-point model and assume grid-line intersection digitiza-
tion in this case. Under the above assumptions for α1, α2, β, it is sufficient to
consider only intersections with grid lines parallel to the z-axis. Let Γ(α1, α2, β)
intersect the vertical grid line (x = m, y = n) at pm,n where m, n ≥ 0. Let
(m, n, Im,n) be the grid point closest to pm,n. Then a digital plane quadrant is
a set of grid points which is defined as follows:

Iα1,α2,β = {(m, n, Im,n) : m, n ≥ 0 ∧ Im,n = bα1m + α2n + β + 0.5c}

If there are two closest grid points, then we choose the upper one. If m, n
are not required to be nonnegative, we have a digital plane. The set Iα1,α2,β

uniquely determines both the slopes α1 and α2 and the intercept β if α1 or
α2 is irrational. If both α1 and α2 are rational, Iα1,α2,β uniquely determines
α1 and α2, but determines β only up to an interval. This can be proved by a
3D generalization of the proof of Bruckstein’s Theorem (Bruckstein 1991) as
stated in (Rosenfeld and Klette 2001).

In analogy with the chain codes for digital curves (Freeman 1961), and follow-
ing (Brimkov 2002), we define step codes, starting with iα1,α2,β(0, 0) = I0,0 ∈
{0, 1}, as follows:

iα1,α2,β(0, n + 1) = I0,n+1 − I0,n =
{

0 if I0,n+1 = I0,n

1 if I0,n+1 = I0,n + 1
for n ≥ 0

iα1,α2,β(m + 1, 0) = Im+1,0 − Im+1,0 =
{

0 if Im+1,0 = Im,0

1 if Im+1,0 = Im,0 + 1
for m ≥ 0

Fig. 1. (Brimkov 2002) Left: I1
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In addition to these “initial values,” we also define column-wise step codes

i
(c)
α1,α2,β(m, n + 1) = Im,n+1 − Im,n =

{
0 if Im,n+1 = Im,n

1 if Im,n+1 = Im,n + 1
for m ≥ 1

and row-wise step codes

i
(r)
α1,α2,β(m + 1, n) = Im+1,n − Im,n =

{
0 if Im+1,n = Im,n

1 if Im+1,n = Im,n + 1
for n ≥ 1

Values in the 0th row and 0th column are used in both the column-wise and
row-wise step codes; see Figure 1. Assumptions 0 ≤ α1 ≤ 1 and 0 ≤ α2 ≤ 1
guarantee that codes 0 and 1 are sufficient. Based on the additional assumption
α1 ≤ α2, we will only use row-wise step codes in the sequel, and will omit the
superscript (r).

Definition 1 (Brimkov 2002) iα1,α2,β = {(m, n, iα1,α2,β(m, n)) : m, n ≥ 0} is
a step code of a digital plane quadrant (in the grid point model), or, for short,
a quadrant step code, with slopes α1 and α2 and intercept β.

If we do not require m,n to be nonnegative integers, we obtain a step code of
a digital plane. For short, we call it a plane step code.

Digital planes and plane quadrants have analogous properties, as plane and
quadrant step codes do. To simplify our notation, we will use Iα1,α2,β to denote
both digital planes and plane quadrants, and iα1,α2,β for plane or quadrant step
codes.

For D ⊆ R2, let

iDα1,α2,β = {(m, n, iα1,α2,β(m, n)) : (m, n) ∈ D ∩ Z2}

If α1 or α2 is irrational, then we speak about an irrational digital plane or an
irrational plane step code, respectively; otherwise it is a rational digital plane,
resp. a rational plane step code.

(Lunnon and Pleasants 1992) shows that rational digital straight lines are
translation-equivalent if they have identical slopes. Rational digital planes
with identical slopes are also translation-equivalent; see (Brimkov and Barneva 2003).
This implies that translation-invariant properties of rational digital planes are
independent of intercepts; the translation equivalence classes of all rational
digital planes can be uniquely identified by Iα1,α2 or iα1,α2 .
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A digital plane is a special case of a digital surface. An early definition of a
digital surface is the following.

Definition 2 (Kim 1984) A 26-connected set S ⊆ Z3 is called a digital surface
iff each p = (i, j, k) ∈ S has at most two 8-adjacent grid points in at least
two of the sets {(y, z) : (x, y, z) ∈ S ∧ x = i}, {(x, z) : (x, y, z) ∈ S ∧ y = j},
or {(x, y) : (x, y, z) ∈ S ∧ z = k}; if it has two, then they are not mutually
8-adjacent; and if p has in one of these sets, say, {(x, y) : (x, y, z) ∈ S∧z = k},
more than two 8-adjacent grid points, or two 8-adjacent grid points that are
mutually 8-adjacent, then (i, j, k − 1) and (i, j, k + 1) are not in S.

Theorem 3 (Kim 1984) A digital plane is an unbounded digital surface.

PROOF. Let p = (i, j, k) be a point of digital plane Iα1,α2,β, and consider
Iα1,α2,β ∩ {(x, y, z) ∈ S : x = i}. Let p′ = (i, j − 1, k′) and p′′ = (i, j + 1, k′′) be
the only two points of Iα1,α2,β on the vertical lines x = i and y = j−1 and x = i
and y = j + 1, respectively. Since α1 ≤ α2, we have 0 ≤ |k − k′|, |k − k′′| ≤ 1.
Thus (j− 1, k′) and (j +1, k′′) are the only two points defined by p and x = i,
which are 8-adjacent to (j, k), but not mutually 8-adjacent. Similarly, p and
y = j define only two 8-adjacent points in Iα1,α2,β ∩ {(x, y, z) ∈ S : y = j},
which are not mutually 8-adjacent. In Iα1,α2,β ∩ {(x, y, z) ∈ S : z = k}, p and
z = k may define more than two 8-adjacent points. However, (i, j, k − 1) and
(i, j, k+1) are not both in Iα1,α2,β since p = (i, j, k) is the only point of Iα1,α2,β

on the vertical grid line x = i, y = j. Thus it follows that Iα1,α2,β is a digital
surface. 2

A grid point p = (i, j, k) of a digital surface S is called a border point of S iff
it has only one 26-neighbor in {(x, y, z) ∈ S : x = i}, {(x, y, z) ∈ S : y = j},
or {(x, y, z) ∈ S : z = k}. p is called an inner point of S iff it is not a border
point. A simple digital surface is a digital surface that has no border points; it
can be either unbounded or bounded hole-free simple digital surface. A digital
surface patch is a finite digital surface whose border points are 26-connected.

Corollary 4 Let D ⊂ Z2 be a 4-region; then ID
α1,α2,β is a digital surface

patch.

Such a patch is called a digital plane segment (DPS), defined in the grid-point
model with respect to grid-line intersection digitization.

For an alternative discussion of digital planarity in the grid cube model we
can uniquely identify each grid point as being the centroid of a grid cube,
and we can stay in this case with the previously introduced notations. This
way, a cellular digital plane is defined by a digital plane in the grid point
model. (Alternatively, a cellular digital plane could also be defined by outer
Jordan digitization of a plane Γ. However, if Γ passes through a grid vertex

4



or contains a grid edge, then outer Jordan digitization would produce “locally
thicker” cellular planes).

The grid cell model also allows to introduce further notions in the context
of digital planarity. Let C(m)

3 be the class of all m-dimensional grid cells in
R3, for m = 0, 1, 2, 3. An incidence grid C3 is defined by these classes and
the incidence relation between all cells. We have that two cells f1 and f2 are
incident iff f1 is a facet of f2 or vice versa. For example, a single 1-cell (i.e., a

grid edge in C(1)
3 ) is incident with exactly two 0-cells (i.e., grid vertices), one

1-cell (the grid edge itself), four 2-cells (i.e., grid squares), and four 3-cells
(i.e., grid cubes).

Consider the union of all grid cubes contained in a cellular digital plane, within
the Euclidean topology of R3. Its frontier consists of two “parallel layers” of
frontier faces, which define an upper and a lower digital frontier plane in the
incidence grid C3. Note that these are analogous to lower and upper digital
lines defined in (Rosenfeld and Klette 2001). Upper and lower digital frontier
plane share 0- and 1-cells, but not 2-cells.

Definition 5 A set S ⊂ C(2)
3 of 2-cells in the incidence grid is called a digital

plane of 2-cells iff it is either an upper or a lower digital frontier plane defined
by a cellular digital plane.

A finite 1-connected subset of a digital plane of 2-cells is called a digital plane
segment (DPS) of 2-cells in the 3D incidence grid.

After this brief introduction of basic notions, in the following sections we re-
view concepts and results related to digital planarity. The paper is structured
as follows. In Section 2, we give some alternative definitions in terms of the
chordal triangle property and evenness of surfaces. In Section 3, we character-
ize digital planes through supporting and separating planes, as well as in the
framework of arithmetic geometry. In Section 4, we introduce height and re-
mainder maps that are instrumental in studying periodicity and connectivity
properties of digital planes. In Section 5, we review results on digital plane pe-
riodicity and self-similarity, while in Section 6 we address connectivity issues.
In Section 7, we summarize a few algorithms for digital plane recognition,
digital surface segmentation, and polyhedral surface generation. We conclude
with some final remarks in Section 8.

2 Alternative Definitions

We use the Minkowski metric L∞. If applied to Z3, it is identical to the grid
point metric d26.
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Definition 6 (Kim and Rosenfeld 1982) S ⊆ Z3 is said to have the chordal
triangle property iff for any p1, p2, p3 ∈ S, every point on the triangle p1p2p3 ⊂
R3 is at L∞-distance < 1 from some point of S.

Obviously, a simple digital surface which satisfies the chordal property cannot
be bounded.

Theorem 7 (Kim 1984) A simple digital surface is a digital plane iff it has
the chordal triangle property.

The original proof is too long to be part of this review, therefore we only
sketch it. First, Kim shows that, given a digital plane, there is a coordinate
plane (the plane z = 0 according to our assumptions) such that the projection
of the digital plane onto its grid points is a one-to-one and onto mapping
(Kim 1984, Lemma 9). This lemma allows to reduce the dimension of the
considered problem and to perform all considerations in such a coordinate
plane rather than in 3D. Then the first implication (a digital plane has the
chordal triangle property) can be easily derived (Kim 1984, Lemma 10). A key
point is the existence of a Euclidean plane Γα1,α2,β defining the given digital
plane.

The proof of the converse proposition (a simple digital surface with the chordal
triangle property is a digital plane) is more complicated. As a first step, it is
shown that if a simple digital surface has the chordal triangle property, then
there is a one-to-one and onto coordinate projection plane (Kim 1984, Lemma
11). Then the proof is completed by exhaustive analysis of different cases,
conditioned by the distance between the supporting plane of a triangle and
the points of the simple digital surface (Kim 1984, Lemma 12).

For any p = (px, py, pz) ∈ Z3, let pz=0 = (px, py, 0) be the projection of p onto
the xy-plane.

Definition 8 S ⊆ Z3 is called even iff its projection onto the xy-plane
{(x, y, 0) : (x, y) ∈ Z2} is one-to-one, and for every quadruple (p, q, r, s) of
points in S such that pz=0−qz=0 = rz=0−sz=0, we have |(pz−qz)−(rz−sz)| ≤ 1.

Defining evenness with respect to the xy-plane is consistent with our previous
assumptions about digital planes. By requiring a one-to-one mapping onto
the xy-plane, we consider only unbounded sets S ⊆ Z3 as being even. The
following theorem does not make use of our general assumption that α1 ≤ α2.

Theorem 9 (Veelaert 1993) A simple digital surface is a digital plane iff it
has the evenness property.

Again we only sketch the original proof. As a first step, digital planarity is
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characterized in terms of linear programming: a set S of voxels is a subset of
a digital plane if there exist (α1, α2, β) ∈ [0, 1]× [0, 1[ such that

0 ≤ α1m + α2n + β − Im,n < 1

for all (m, n, Im,n) ∈ S. Hence, to decide whether S is a subset of a digital
plane, we have to solve a system of linear inequalities with unknowns α1, α2,
and β. Given a voxel (m, n, Im,n), an elementary convex open set associated
with the given voxel is defined by two linear inequalities in three unknowns.
S is a subset of a digital plane if the intersection of these elementary convex
open sets is non-empty.

Next, one takes advantage of the following fundamental theorem of Helly:
Let F be a finite family of n + 1 or more convex subsets of Rn. If every
subfamily, consisting of n + 1 sets of F , has a non-empty intersection, then
F has a non-empty intersection. Thus, in dimension 3, the system induced by
the elementary convex sets has a solution if and only if each subsystem with
four inequalities has a solution.

Finally, Veelaert proves that the evenness criterion can be used as a “Helly
subsystem criterion.” Note that the original result is valid for arbitrary dimen-
sions. Moreover, it is shown that Kim’s chordal triangle property is actually
another Helly criterion.

(Veelaert 1994) also shows that for specific types of finite sets S of voxels (e.g.,
such that the projection onto the xy-plane is a rectangle), S is a subset of a
digital plane iff S is even.

3 Supporting and Separating Planes

A supporting plane of a set S ⊆ Z3 divides R3 into two (open) half-spaces
such that S is completely contained in the closure of one of them. For the
next theorem note that any metric in R3 induces a Hausdorff distance between
subsets of R3. We use the Minkowski metric L∞.

Theorem 10 (Kim 1984) S ⊆ Z3 is a digital plane iff it has a supporting
plane Γ such that the L∞-Hausdorff distance between S and Γ is less than 1.

PROOF. Let Γ(α1, α2, β) be a supporting plane for S ⊆ Z3. We assume
without loss of generality that Γ is above S with respect to the z-axis. Let the
L∞-Hausdorff distance between S and Γ be < 1. Then the vertical distance
from any point of S to Γ is < 1, as well. Denote by Γ′ the plane obtained
by translating Γ by a vector (0, 0,−1

2
)T . Then Γ′ is such that S ⊂ Iα1,α2,β− 1

2

and so, S is a digital plane. Conversely, suppose that S is a digital plane.
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Then there exists a plane Γ(α1, α2, β) such that S ⊂ Iα1,α2,β. By definition of
a digital plane, the vertical distance from any point of S to Γ is less than 1

2
.

Let Γ′ be the plane obtained by translation of Γ by a vector (0, 0, 1
2
)T . Then

any point of S is below Γ′ and the L∞-Hausdorff distance between S and Γ′

is < 1. Hence, Γ′ is a supporting plane of S. 2

In (Kim 1984) it was claimed that if S ⊆ Z3 is a (finite) DPS, then the points of
S are at L∞-Hausdorff distance < 1 from at least one Euclidean plane incident
with one of the faces of the convex hull of S. Then one of these planes is a sup-
porting plane in the sense of Theorem 10. However, (Debled-Rennesson 1995)
gave a counter-example: for D = [0, 6]× [0, 7], the L∞-Hausdorff distance be-
tween ID

5/29,9/29,1/2 and any plane incident with one of the faces of the convex

hull of ID
5/29,9/29,1/2 is greater than 1.

Let S ⊂ Z3 and Sz+1 = {(x, y, z+1) : (x, y, z) ∈ S}. A plane Γ ⊂ R3 separates
the sets S1, S2 ⊂ Z3 iff S1 and S2 are in opposite open half-spaces defined by
Γ.

Theorem 11 (Stojmenović and Tosić 1991) A set S ⊂ Z3 is a subset of a
digital plane iff there exists a plane that separates S from Sz+1.

PROOF. We first suppose that S is a subset of a digital plane. Let Γ(α1, α2, β)
be the plane such that S ⊂ Iα1,α2,β and Γ′ the plane with parameters (α1, α2, β+
1
2
). We consider the points r = (rx, ry, rz) ∈ S, p = (rx, ry, pz) ∈ Γ, p′ =

(rx, ry, p
′
z) ∈ Γ′, and rz+1 = (rx, ry, rz + 1) ∈ Sz+1. From the definition of

3D grid-line intersection digitization and the definition of Γ′, it follows that
p′z−1 < rz ≤ p′z < rz+1. Hence, the number p′z “separates” the numbers r and
rz+1. Since this property is valid for every point of S, it follows that Γ′ separates
S from Sz+1, even if S is not finite. Conversely, let Γ(α1, α2, β) be a separating
plane for S and Sz+1. We consider r ∈ S, rz+1 = (rx, ry, rz + 1) ∈ Sz+1 and
p = (rx, ry, pz) ∈ Γ. We have rz ≤ pz < rz + 1, i.e., rz − 1

2
≤ pz − 1

2
< rz + 1

2
.

Thus we obtain that the digital image of Γ′ with parameters (α1, α2, β − 1
2
) is

such that S ⊂ Iα1,α2,β− 1
2
. This means that S is a subset of a digital plane. 2

Arithmetic geometry, as briefly indicated in (Forchhammer 1989) and devel-
oped in (Reveillès 1991), provides a uniform approach to the study of digi-
tized hyperplanes in n dimensions. Basic definitions follow the general idea
of specifying lower and upper supporting planes. We discuss here the three-
dimensional case. Let a, b, c be relatively prime integers and let µ and ω ≥ 0
be integers.

Definition 12 Da,b,c,µ,ω = {(i, j, k) ∈ Z3 : µ ≤ ai+ bj + ck < µ+ω} is called
an arithmetic plane with normal n = (a, b, c)T , approximate intercept µ, and
arithmetic thickness ω.
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An arithmetic plane is a generalization of an arithmetic line Da,b,µ,ω = {(i, j) ∈
Z2 : µ ≤ ai + bj < µ + ω}. From Reveillés’ Theorem on arithmetic lines
(Reveillès 1991) we know that naive lines (with ω = max{|a|, |b|}) are the
same as digital lines (which are 8-paths), and standard lines (with ω =
|a| + |b|) are the same as upper or lower digital lines (which are 4-paths,
see (Rosenfeld and Klette 2001)). If ω = max{|a|, |b|, |c|}, then the arithmetic
plane Da,b,c,µ,ω is called a naive digital plane; and if ω = |a| + |b| + |c|, it is a
standard plane.

The following theorem was proved in (Andres et al. 1997) by employing results
from (Veelaert 1993). We provide a considerably simpler proof.

Theorem 13 (Andres et al. 1997) Every digital plane with rational slopes is
a naive plane and vice versa.

PROOF. Consider the following identities:

µ ≤ ai + bj + ck < µ + ω ⇐⇒ µ

|c|
≤ a

|c|
i +

b

|c|
j + k <

µ

|c|
+

ω

|c|
=

µ

|c|
+ 1

⇐⇒ k ≥ − a

|c|
i− b

|c|
j +

µ

|c|
> k − 1

⇐⇒ k ≥ α1i + α2j + β > k − 1

For the last identity we have used

α1 = − a

|c|
, α2 = − b

|c|
, β =

µ

|c|

which is equivalent to k = dα1i + α2j + βe = bα1i + α2j + β + 0.5c. 2

Now assume in the definition of supporting planes that S is a set of cells in
the incidence grid C3. We characterize upper or lower frontier planes in the
grid cell model. Each 0-cell of a 3-cell c is incident with three 2-cells of c.
The normals to these 2-cells form a tripod. There are eight different tripods.
It follows that the normals of all 2-cells of any upper or lower digital frontier
plane belong to one tripod.

The main diagonal v of a pair of parallel planes in R3 is the diagonal vector
in a grid cube that has the greatest dot (inner) product with the outward
pointing normal n of the planes (i.e., v has one of the eight possible directions
(±1,±1,±1) and length ‖v‖ =

√
3; if there is more than one such a direction,

we can choose one of them arbitrarily). The distance between both planes in
main diagonal direction is called their main diagonal distance.

Recall (see (Rosenfeld and Klette 2001)) that in 2D, a 4-path is a 4-DSS iff its
cells lie between or on a pair of supporting lines whose main diagonal distance
is less than

√
2.
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Corollary 14 A finite 1-connected set of frontier faces of a set of 3-cells is a
DPS iff all the face normals belong to one tripod, and the faces are contained
between or on a pair of parallel planes whose main diagonal distance is less
than

√
3.

PROOF. Theorem 13 shows that a finite DPS G in the grid point model
is characterized (besides connectivity) by the property that it is between two
supporting planes

ai + bj + ck = µ and ai + bj + ck = µ + c

The upper supporting plane is a translation of the lower supporting plane (by
translation vector (0, 0, 1)). The main diagonal direction of both (under the
assumption 0 < a ≤ b ≤ c) is (−1,−1, +1), and the main diagonal distance is
less than or equal to

√
3.

Note that points of G can lie on the lower supporting plane ai+bj+ck = µ but
not on the upper one ai + bj + ck = µ + c. In the corollary we also allow that
points in G are on both supporting planes. It follows that the upper supporting
plane is actually allowed to be translated towards the lower supporting plane
(now with main diagonal distance less than

√
3), such that all points in G are

between or on both supporting planes.

Altogether we have a necessary and sufficient characterization of DPSs in the
grid point model based on connectivity and main diagonal distance

√
3.

Now consider a set of 2-cells in the grid point model. A translation by (.5, .5, .5)
maps all vertices of these 2-cells into grid point positions. The main diago-
nal distance between two parallel planes is invariant with respect to such a
translation. 2

Note that both parallel planes used in the above proof, are supporting planes
for the given DPS in the grid cell model.

4 Height and Remainder Maps

From Theorem 13 we know that for any digital plane Iα1,α2,β with rational α1

and α2, there exist relatively prime integers a, b, c and an integer µ such that
Iα1,α2,β = Da,b,c,µ,max{|a|,|b|,|c|}; and for any Da,b,c,µ,max{|a|,|b|,|c|} there exist ratio-
nal slopes α1, α2 and an intercept β such that Da,b,c,µ,max{|a|,|b|,|c|} = Iα1,α2,β.

Now assume 0 < a ≤ b ≤ c. Without loss of generality, we consider digitiza-
tions of Euclidean planes which are incident with the origin (e.g., by assuming
µ = 0). If Da,b,c,0,ω is a naive plane, then each voxel (x, y, z) ∈ Da,b,c,0,c projects
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Fig. 2. (Brimkov and Barneva 2003) Two height maps, for D6,7,16,0,16 on the left,
and D6,9,16,0,16 on the right.

onto a pixel (x, y) in the xy-plane. The condition 0 < a ≤ b ≤ c implies
that there is exactly one voxel (x, y, z) ∈ Da,b,c,0,c, for every (x, y) ∈ Z2. The

height map M
(h)
a,b,c is defined on Z2 by assigning a value z to (x, y) such that

(x, y, z) ∈ Da,b,c,0,c.

Figure 2 illustrates two height maps of naive planes Da,b,c,0,c. Let La,b,c(z0) =
{(x, y) ∈ Z2 : (x, y, z0) ∈ Da,b,c,0,c}, for z0 ∈ Z. It follows that La,b,c(z0) is an
arithmetic line D(a, b, µ, ω) with µ = −cz0 and ω = c; D(a, b, µ, ω) is standard
if c = a+b, “thicker than standard” if c > a+b, and “thinner than standard,”
but “thicker than naive” if c < a+ b. The arithmetic lines La,b,c(z0), with z0 ∈
Z, partition Z2 into equivalence classes, which are all translation equivalent 1

iff a, b are relatively prime (Brimkov and Barneva 2003). See Figure 2 on the
left for relatively prime integers a, b, and on the right for an example where
a, b are not relatively prime.

Furthermore, 0 < a ≤ b ≤ c implies that the projections L
(x)
a,b,c(x0) = {(y, z) ∈

Z2 : (x0, y, z) ∈ Da,b,c,0,c} and L
(y)
a,b,c(y0) = {(x, z) ∈ Z2 : (x, y0, z) ∈ Da,b,c,0,c},

for some x0, y0 ∈ Z, are naive lines with approximate intercept µ = −ax0 or
µ = −by0, respectively. The arithmetic lines L

(x)
a,b,c(x0), for x0 ∈ Z, partition Z2

into translation equivalent equivalence classes. The same holds for the arith-
metic lines L

(y)
a,b,c(y0), for y0 ∈ Z; see (Debled-Renesson and Reveillès 1994)

and (Debled-Rennesson 1995). 2

Naive planes can also be represented by arrays of remainders (Debled-Rennesson 1995).
Let (x, y, z) ∈ Da,b,c,0,c. We assign a value ax+ by + cz to the grid point (x, y),

i.e. the remainder modulo c. This results into a remainder map M
(r)
a,b,c. See

Figure 3 for two examples. On the left we have a = 6 and b = 7, i.e. both inte-
gers are relatively prime, which results into remainders in the whole range of
0, . . . , 15, for c = 16. On the right we have a = 6 and b = 9, i.e. remainders in
one equivalence class of the height map are all identical modulo gcd(6, 9) = 3.

1 A,B ⊂ Zn are translation equivalent iff there is a translation vector t ∈ Zn such
that A = t⊕B.
2 In these works the considerations are under the restriction gcd(a, b) = gcd(a, c) =
gcd(b, c) = 1. The general case has been handled in (Brimkov and Barneva 2003).
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Fig. 3. Two remainder maps for the symmetric naive planes shown in Figure 2
(Brimkov and Barneva 2003).

(Brimkov and Barneva 2003) shows

Proposition 15 M
(r)
a,b,c = M

(r)
c−a,b,c = M

(r)
a,c−b,c = M

(r)
c−a,c−b,c, for 0 < a ≤ b ≤ c.

PROOF. We prove the first equivalence, by definition of the remainder maps:

M
(r)
c−a,b,c = [(c− a)x + by + cz] (mod c)

= [(c− a)x (mod c) + by (mod c) + cz (mod c)] (mod c)

= [ax (mod c) + by (mod c) + cz (mod c)] (mod c)

= [ax + by + cz] (mod c)

= M
(r)
a,b,c

The other equivalences can be easily deduced using the same decomposi-
tions. 2

This is called the Symmetry Lemma in (Brimkov and Barneva 2003), which
defines a special type of symmetry between naive planes Da,b,c,0,c, Dc−a,b,c,0,c,
Da,c−b,c,0,c, and Dc−a,c−b,c,0,c (see Figure 3). If one or both parameters a and
b are larger than c/2, then the Symmetry Lemma allows to consider w.l.o.g.
symmetric naive planes Da,c−b,c,0,c or Dc−a,c−b,c,0,c where the two first param-
eters do not exceed c/2. This may be useful for studying the connectivity
number of a digital plane (see Section 6).

5 Periodicity and Self-Similarity

A position (i, j) in an array X = (X(i, j))0≤i,0≤j is defined by a row i and a
column j; X(i, j) is the element of X at position (i, j). The elements of X
are letters in an alphabet A. We continue to assume 0 ≤ α1, α2 ≤ 1, i.e. in a
quadrant step code we have A = {0, 1}.

12



Let S ⊆ Z2
+ = {(i, j) ∈ Z2 : i, j ≥ 0}. The restriction X[S] of X to positions

in S is called a factor of X on S. If S = Z2 or S = Z2
+, we will write X instead

of X[S], for short.

Definition 16 A vector v in Z2 is called a symmetry vector for X[S] iff
X(i, j) = X(v + (i, j)) for all (i, j) ∈ S such that v + (i, j) ∈ S. v is called a
periodicity vector or a period for X[S] iff for any integer k the vector kv is a
symmetry vector for X[S].

An infinite array X on Z2
+ is called 2D-periodic iff there are two linearly

independent vectors u and v in Z2 such that w = iu + jv is a period for
X for any (i, j) ∈ Z2 and w ∈ Z2

+. X is called 1D-periodic iff all periods of
X are parallel vectors. Periodicity of a 3D set X[S] where S ⊆ Z3 is defined
analogously.

Let X be a 2D-periodic infinite array on Z2
+. The set of symmetry vectors of

X defines (by additive closure) a sublattice Λ of Z2. Any basis of Λ is a basis
of X. We say that an infinite array X on Z2

+ is tiled by a (finite) rectangular
factor W if X is a pairwise disjoint repetition of W . Evidently, any 2D-periodic
array on Z2

+ can be tiled.

It is well known that chain codes of rational digital lines are periodic while
those of irrational digital lines are aperiodic (Brons 1974). About quadrant
step codes we have the following result.

Theorem 17 Any rational quadrant step code is 2D-periodic. Any irrational
quadrant step code is either 1D-periodic or aperiodic.

The formal proof of this statement is too lengthy to be included in the present
survey (see (Brimkov 2002)). It particularly relies on the following well-known
fact: For any rational Euclidean plane P there are (infinitely many) pairs of
linearly independent “rational directions” (i.e., vectors with rational coordi-
nates that are collinear with P ). In this case the corresponding digital plane
quadrant and its step code are 2D-periodic. For any irrational Euclidean plane
P one of the following conditions is met. (i) P has no rational direction, i.e.,
there is no rational vector that is parallel to P . Note that in this case P may ei-
ther contain no integer or rational points, or may contain a single point of this
kind. (ii) P has a rational direction. In this case P either contains infinitely
many equidistant integer points lying on a line, or P is parallel to such a line.
One can show that in Case (i) the digital plane quadrant of P is aperiodic,
while in Case (ii) it is 1D-periodic. The same applies to the corresponding
quadrant step codes.

Any integer basis of a rational plane quadrant defines a lattice whose cells
are parallelograms. Obviously the same applies to the corresponding quadrant
step code. Let ax + by + cz = d be a rational plane where a, b, c, d are integers
and a, b, c are relatively prime.

13



Theorem 18 (Brimkov 2002) The lattice cells of all bases of a rational quad-
rant step code have constant area max{|a|, |b|, |c|}.

PROOF. Without loss of generality, consider a plane P : ax + by + cz = 0
through the origin with 0 ≤ a ≤ b ≤ c and c = max{a, b, c}. Let Λ be the lat-
tice of the integer points in P . It is well-known that, given two figures in P with
equal area, their orthogonal projections over the coordinate xy-plane have the
same area, as well. It is also a well-known fact that all bases of Λ generate cells
with equal area. Hence, it is enough to estimate the area of a parallelogram
that is the orthogonal projection of a cell determined by an arbitrary basis of
Λ. As a first basis vector one can chose u = (0, c/gcd(b, c),−b/gcd(b, c)). Then
clearly a second basis vector can be v = (gcd(b, c), y∗, z∗), where y∗, z∗ form a
solution of the linear Diophantine equation a·gcd(b, c)+by+cz = 0, as y∗ is the
minimal positive integer with this property. Then the orthogonal projections
of u and v over the xy-plane are respectively the vectors u′ = (0, c/gcd(b, c))
and v′ = (gcd(b, c), y∗). Then the area of the corresponding cell generated by
u′ and v′ equals |det(u′|v′)| = c. 2

Let X be an array on Z2
+. An m×n rectangle S ⊂ Z2

+ defines an m×n-factor
of X. Given two integers k, l ≥ 0, we call a (k, l)-suffix of X the sub-array of
X determined by its rows and columns with indexes greater than or equal to
k and l, respectively. k, l-prefix of X is determined by the rows and columns
with indexes not greater than k and l, respectively. Digital 2D ray X is called
ultimately periodic if there are integers k, l ≥ 0 such that the (k, l)-suffix of X
has a period vector. X is uniformly recurrent if for every integer n > 0 there
is an integer N > 0 such that every square factor of size N×N contains every
square factor of size n× n.

Let PX(m,n) be the number of m×n-factors of X. For example, PX(0, 0) = 1
for any X and PX(1, 1) is the number of distinct letters in X. We consider
binary words on the alphabet A = {0, 1}. PX generalizes the complexity func-
tion P (w, n) defined (e.g.) in (Rosenfeld and Klette 2001) for 1D words w.
Recall that the complexity function Pw(n) of such a word w is defined as
the number of different n-factors of w. A binary word w with Pw(n) ≤ n
for some n, is (ultimately) periodic. Sturmian words are the words that have
lowest complexity among the non-ultimately periodic words, i.e., of complex-
ity Pw(n) = n + 1 for any n ≥ 0. It is also well-known that any Sturmian
word is a chain code of an irrational straight line and is uniformly recur-
rent. In higher dimensions the situation is more complicated. For instance,
it is still unknown whether a notion of minimal complexity can be reason-
ably defined (see (Berthé and Vuillon 2000a) and the discussion therein). To
a certain extend the same applies to the notion of 2D Sturmian word. Ini-
tially it has been expected that 2D words of minimal complexity are step
codes of irrational planes with no rational direction. Such words were believed
to have complexity mn + 1. However, it has been recently shown that a 2D
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word of complexity mn + 1 cannot be uniformly recurrent and does not ap-
pear to be a step code of any plane (Cassaigne 1999). Therefore, it makes
sense to call 2D Sturmian words the ones that appear to be step codes of
irrational planes which do not have a rational direction. Such kind of words
obtained within a number of diverse digitization schemes have been investi-
gated by S. Ito, M. Ohtsuki, L. Vuillon, V. Berthé, R. Tijdeman among others.
See, e.g. (Vuillon 1998), (Arnoux et al. 2001), (Berthé and Vuillon 2000a),
(Berthé and Vuillon 2000b), (Cassaigne 1999), (Berthé and Vuillon 2001) for
recent contributions. Here we present some results in the framework of the
plane step codes defined in Section 1.

An aperiodic irrational plane step code X still possesses certain “quasiperiod-
icity” and self-similarity properties. Thus every rectangular block appearing
in X, appears in it infinitely many times. Moreover, all step codes of irrational
planes with the same coefficients contain the same set of rectangular factors,
and any rectangular factor of an irrational plane step code is also a factor of
a rational plane step code. We also have that if X is an irrational plane step
code, then PX(m, n) is unbounded.

An important array characteristic is its balance. Let h(U) denote the number
of 1’s in a binary array U . Given two binary arrays U and V of the same size
m×n, δ(U, V ) = |h(U)−h(V )| is their balance. A set X of arrays is said to be
α-balanced for a certain constant α > 0, if δ(U, V ) ≤ α for all pairs of (m×n)-
arrays U, V ∈ X, where m and n are arbitrary positive integers. An infinite ar-
ray A is said to be α-balanced if its set of factors is α-balanced. Array balances
are familiar from studies in number theory, ergodic theory, and theoretical
computer science. For recent study on balance properties of multidimensional
words on two or three letter alphabets see, e.g., (Berthé and Tijdeman 2002).
One can show that if X is a row-wise plane step code, then δ(U, V ) ≤ m for
any pair of (m × n)-factors of X, m, n ≥ 0 (Brimkov 2002). This bound is
reachable, hence the step codes of digital planes are, overall, non-balanced.

Before presenting some other results, we provide a brief discussion on the
structure of a digital plane quadrant. Recall that an (m, n)-window at a point
(p, q) ∈ Z2 is a set of points (i, j) ∈ Z2 with p ≤ i < p + m and q ≤ j < q + n.
An (m, n)-cube at a point (i, j) ∈ Z2 of a digital plane P is the set {(x, y, z) ∈
P : i ≤ x ≤ i + m − 1 and j ≤ y ≤ j + n − 1}. Two (m, n)-cubes at two
different points (i, j) and (i′, j′) of a digital plane are geometrically equivalent
if each of them can be obtained from the other by an appropriate translation.
By CX(m,n) we denote the number of different (m,n)-cubes over the points
of a digital plane X. CX(m, n) is an important parameter characterizing a
digital plane structure (see, e.g., (Reveillès 1995)) and is closely related to
the complexity function of a plane step code. In particular, we have that
CX(m, n) ≤ mn. If X is rational, then CX(m, n) ≤ lcm(q1, q2), where q1 and
q2 are the denominators of the coefficients of x1 and x2 in the analytical plane
representation. We always have PX(m,n) ≥ CX(m, n). If X is irrational and
aperiodic, then PX(m, n) ≥ mn.
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Fig. 4. Illustration to the proof of Theorem 20.

We conclude this section by listing some results related to a conjecture by M.
Nivat about periodicity of infinite binary 2D words. He conjectured that if for
some integers m, n ≥ 0 an infinite bi-dimensional 0/1 array A has complexity
PA(m, n) ≤ mn, then A has at least one period vector (Nivat 1997). Note
that the converse is not true, in general: an array may be periodic but its
complexity may be higher than mn (see (Berthé and Vuillon 2000a)). Only
partial results for small values of m and n have been proved regarding this
conjecture. In (Epifanio et al. 2003) a weaker statement is proved under the
condition PA(m,n) ≤ 1

100
mn. For the special case of arrays that are plane step

codes, we have the following results (Brimkov 2002).

Theorem 19 A quadrant step code X has a period vector if and only if for
some integers m, n ≥ 0, PX(m, n) < mn.

If for some m, n ≥ 0 an equality PX(m, n) = mn holds, it seems to imply
the condition PX(m, n + 1) < m(n + 1), under which Theorem 19 applies. To
prove this remains as a further task.

The next theorem provides an asymptotic result in terms of CR(m, n).

Theorem 20 Let R be an Euclidean plane quadrant and IR the correspond-
ing digital plane quadrant. Then IR has at least a 1D-period if and only if
limm,n→∞

CR(m,n)
mn

= 0.

PROOF. Let first limm,n→∞
CR(m,n)

mn
= 0. Then there exist positive integers

m0, n0 such that for any pair of integers m, n with m ≥ m0 and n ≥ n0, we
have CR(m,n)

mn
< 1, i.e., CR(m, n) < mn. Then by Theorem 19, the quadrant

step code iR corresponding to R has a period vector, as IR does.

Now let v = (p, q, r), p ≥ q, be a period vector for IR, where p, q and r are fixed
integers. Let v′ = (p, q) be its projection on the coordinate xy-plane. Because
of the symmetry of the discrete space, we can assume without loss of generality
that R makes with the xy-plane an angle θ with 0 ≤ θ ≤ arctan

√
2. Then

there is a one-to-one correspondence between the voxels of IR and the points
of Z2

+. So to obtain quantitative estimations, one can work with projections of
(m, n)-cubes over the xy-plane rather than with the (m, n)-cubes themselves.
Consider the set of nonnegative integer points of the form u(i) = i ·v = (ip, iq)
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for i = 0,±1,±2, . . .. They are projections on the xy-plane of points of IR,
generated by the period v. The points u(i) belong to a line determined by v′

and induce a partition of Z2
+ into a set S of vertical strips delimited by the

vertical rays x = ip, y ≥ 0, for i = 0,±1,±2, . . . (Figure 4 (Left)). Since v is
a symmetry vector of IR, any two strips from S correspond to regions of iR
that are equivalent up to translation by vector v.

Now consider an (m,n)-window W = A1A2A3A4 of Z2
+ with m = jp and

n = jq (see Figure 4 (Right)). It corresponds to an (m, n)-cube C of IR. Par-
tition W into j rectangles Wt (t = 1, 2, . . . , j) of width p and height jq and
consider their pre-images Ct (t = 1, 2, . . . , j) from IR under the orthogonal
projection onto the xy-plane. We notice with the help of Figure 4 (Right)
that the set of voxels from C1 corresponding to W1 completely determines
(through translation by the vector v) all the other Ct’s portions that corre-
spond to Wt’s portions over the diagonal A1A3. Similarly, the set of voxels
from Cj corresponding to Wj completely determines (through translation by
vector (−v)) all the other Ct’s portions that correspond to Wt’s portions below
the diagonal A1A3. Thus the sets of voxels from C1 and Cj are sufficient to
completely recover the whole (m, n)-cube C. Because of the one-to-one corre-
spondence between voxels from IR and elements of Z2

+, the number of voxels
in a set Ct equals the number of integer points in a strip Wt, so C1 and Cj

contain overall 2(p · jq) voxels. From this last fact and taking advantage of
the above-mentioned inequality CR(m, n) ≤ mn, one can easily obtain that
vertical perturbations of the plane R through the window W can induce no
more than 2(p · jq) different (m,n)-cubes. Then for the ratio of CR(m, n) and
mn we have the upper bound

CR(m, n)

mn
≤ 2pjq

j2pq
=

2

j
=

2p

n

which approaches 0 as n approaches infinity. 2

6 Connectivity

An arithmetic line becomes 8-disconnected iff ω < max{|a|, |b|}. Similarly, an
arithmetic plane Da,b,c,µ,ω no longer has grid points on all the vertical grid
lines iff ω < max{|a|, |b|, |c|}.

Definition 21 Let M ⊆ S ⊆ Zn (n = 2, 3). M is called α-separating in S iff
S \M is not α-connected (α = 4, 6, 8, 18, 26). Let M be α-separating in some
superset of S but not β-separating in S where β = 4, 6, 8, 18, 26 and α < β.
Then M is said to have β-gaps. A set M that has no β-gaps is called β-gapfree
and a set that has no β-gaps for any β is called gapfree.

The empty set is α-connected; it follows that M is not α-separating in itself.
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Fig. 5. From left to right: for n = 2 a 0-gap and a 1-gap; for n = 3 two 0-gaps, a
1-gap, and two 2-gaps (Brimkov et al. 2000a).

If S = M ∪{p}, then M can also not be α-separating in S. Let p, q be any two
points in Zn\M which are not α-connected; then M is α-separating M∪{p, q}.

In the cell model we have α, β ∈ {0, 1, 2}, and M has β-gaps iff it is α-
separating in some superset of S but not β-separating in S, for α > β.

Figure 5 illustrates gaps. An arithmetic line is gapfree (which is equivalent to
8-gapfree) iff it is 4-connected; and it is 4-gapfree iff it is 8-connected. A naive
line is 8-connected and 4-separating in Z2, and a standard line is 4-connected
and 8-separating in Z2. Consider arithmetic lines Da,b,µ,ω = {(i, j) ∈ Z2 : µ ≤
ai+ bj < µ+ω}, for relatively prime integers a, b with 0 ≤ a ≤ b, and integers
ω ≥ 0, µ. We have

(i) D is 8-disconnected iff ω < b (i.e. D has 4-gaps, see Definition 21).
(ii) D is 8-connected and has 8-gaps iff b ≤ ω < a + b.
(iii) D is 4-connected and gapfree iff a + b ≤ ω.

A standard arithmetic plane is 26-separating and gapfree; it has no 6-, 18-,
or 26-gaps. A naive arithmetic plane is 6-separating but not necessarily 18- or
26-separating; it can have 18- or 26-gaps. Note that if S is not α-connected,
any of its subsets is α-separating in S.

Theorem 22 (Andres et al. 1997) Let Da1,a2,a3,µ,ω be an analytical plane with
0 ≤ a1 ≤ a2 ≤ a3 and 0 ≤ µ. If ω < a3, the plane has 6-gaps; if a3 ≤ ω <
a2 +a3, it has 18-gaps and is 6-separating in Z3; if a2 +a3 ≤ ω < a1 +a2 +a3,
it has 26-gaps and is 18-separating in Z3; and if a1 + a2 + a3 ≤ ω , it is
26-gapfree.

PROOF. We want to show that ω =
∑n

i=k+1 ai, where n = 3 and k = 2 or 3,
is the least value for which Da1,a2,a3,µ,ω has no k-gaps. First we show that there
is at least one k-gap for ω =

∑n
i=k+1 ai − 1. Since gcd(a1, a2, a3) = 1, there is

y = (y1, y2, y3) ∈ Z3, such that a1y1 +a2y2 +a3y3 = 1. For a given digital plane
Da1,a2,a3,µ,ω, we define its control value at the integer point x = (x1, x2, x3)
as Π(x, Da1,a2,a3,µ,ω) = µ + a1x1 + a2x2 + a3x3. Consider the integer point
p = (p1, p2, p3) with pi = yi, i = 1, 2, 3. We have Π(p, Da1,a2,a3,µ,ω) = −1. Now
consider the integer point q = (q1, q2, q3) with qi = pi for 1 ≤ i ≤ k and
qi = pi + 1 for k + 1 ≤ i ≤ n. By construction, p and q are k-neighbors. We
have Π(q, Da1,a2,a3,µ,ω) =

∑n
i=1 aiqi =

∑n
i=1 aipi +

∑n
i=k+1 ai = ω. This proves

that a plane with thickness ω =
∑n

i=k+1 ai − 1 has k-gaps. Now we show
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that if ω =
∑n

i=k+1 ai, then Da1,a2,a3,µ,ω has no k-gap. Consider two integer
points p = (p1, p2, p3) and q = (q1, q2, q3) such that Π(p, Da1,a2,a3,µ,ω) = −1
and q is a k-neighbor of p. The latter means that qi = pi + ei, where |ei| ≤ 1
and

∑n
i=1 |ei| ≤ n − k. Then Π(q, Da1,a2,a3,µ,ω) =

∑n
i=1 aipi +

∑n
i=1 ei ≤ −1 +∑n

i=k+1 ai, i.e., Π(q, Da1,a2,a3,µ,ω) ≤ ω− 1. Hence q cannot be on the same side
of Da1,a2,a3,µ,ω as p and, therefore, Da1,a2,a3,µ,ω has no k-gap. 2

Clearly, the above proof applies also to arbitrary dimensions n.

(Reveillès 1991) stated for arithmetic lines equivalences between 8-gapfreeness
and 4-connectedness, and 4-gapfreeness and 8-connectedness. This cannot be
repeated for arithmetic planes. Connectivity is a translation-invariant prop-
erty. W.l.o.g. we consider grid-line intersection digitizations of rational planes
ax + by + cz = 0 which are incident with the origin, and Da,b,c,ω is the cor-
responding arithmetic plane with thickness ω ∈ Z+ and a, b, c ∈ Z+ with
gcd(a, b, c) = 1. In case of a naive plane (i.e., ω = max{a, b, c}) we simply
write Da,b,c.

Definition 23 For α = 6, 18, 26 and a, b, c ∈ Z+, let

Ωα(a, b, c) = max{ω : Da,b,c,ω is α− disconnected}

be the α-connectivity number of the class of all arithmetic planes Da,b,c,ω, with
ω ∈ Z+.

In other words, ω = Ωα(a, b, c)+1 is the smallest integer such that Da,b,c,ω is α-
connected. Evidently, Ωα(a, b, c) ≤ Ωβ(a, b, c) if α ≥ β, with α, β ∈ {4, 18, 26}.
Naive planes are always 26-connected, i.e. Ω26(a, b, c) ≤ max{a, b, c}, and stan-
dard planes are always 6-connected, i.e. Ω6(a, b, c) ≤ a + b + c. Connectivity
numbers remain constant when permuting a, b, c, e.g., Ωα(a, b, c) = Ωα(b, c, a).

Assume the grid cell model. A pair of voxels p = (i, j, k) and q = (i + 1, j +
1, k + 2) (see Figure 6 (Left)) defines a jump. A naive plane Da,b,c,µ,c (with
c = max{a, b, c}) contains a jump iff c < a + b (Brimkov and Barneva 2002).

Fig. 6. Left: A jump; Right: Height map of the naive plane D5,7,11,0,11: the 8-con-
nected set of pixels (shown in gray) is a projection of a 26-disconnected set of voxels
of this naive plane (Brimkov and Barneva 2003).
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Figure 6 (Right) illustrates a naive plane where 8-connected sets of pixels in a
height map may be projections of 26-disconnected sets of voxels in the naive
plane. The Symmetry Lemma (Proposition 15) allows to transform such naive
planes into symmetric (in the sense of the Symmetry Lemma) naive planes
where c < a + b is not true anymore, which also allows to conclude:

Proposition 24 Ω26(a, b, c) = Ω26(c − a, b, c) = Ω26(a, c − b, c) = Ω26(c −
a, c− b, c), for relatively prime integers a, b, c with 0 < a ≤ b ≤ c.

The rest of this section reviews some results from
(Brimkov and Barneva 2003). The following theorem provides reachable
upper and lower bounds for the connectivity number.

Theorem 25 a− 1 ≤ Ω26(a, b, c) ≤ b− 1, if a + b < c < a + 2b.

(Brimkov and Barneva 2003) also provides an algorithm computing
Ω26(a, b, c) with O(a log b) arithmetic operations, where 0 ≤ a ≤ b ≤ c.
Within a model with a unit cost floor operation, the algorithm complexity is
O(a).

Theorem 26 (Brimkov and Barneva 2003) Let a, b, c be relatively prime in-
tegers with c ≥ a + 2b and a > 0. Then Ω26(a, b, c) = c− a− b + gcd(a, b)− 1.

PROOF. Let A be a 2D array (finite or infinite) and p = (x0, y0), q =
(xm, ym) two points of A. Let, for definiteness, x0 ≤ xm and y0 ≤ ym. The
sequence of points P = 〈(x0, y0) = p, (x1, y1), (x2, y2), . . . , (xm, ym) = q〉 is a
stairwise path between p and q if the coordinates of two consecutive points
(xi, yi) and (xi+1, yi+1), 0 ≤ i ≤ m− 1, satisfy either xi+1 = xi, yi+1 = yi + 1,
or xi+1 = xi + 1, yi+1 = yi. The number m is the length of the path. For all
other possible mutual locations of p and q, a stairwise path is defined similarly
(see Figure 7 (Left)).

Consider now the remainder map M
(r)
a,b,c together with its equivalence classes

described above. The points of M
(r)
a,b,c which contain the value Ω26(a, b, c) are

called the plugs of M
(r)
a,b,c. The points containing the maximal possible value

c−1 are the maximal points of M
(r)
a,b,c. Assume for a moment that c is “enough

large” compared to a and b. More precisely, suppose that c ≥ a + 2b. Then
the discrete lines corresponding to the equivalence classes are thicker than
standard. In particular, if c = a+2b = (a+b)+b, then a particular equivalence
class C is a disjoint union of one standard and one naive line. Note that in this
case there are two different possible partitions of this kind: one can consider
the standard line to be above the naive, and vice versa. In the first case we
call the standard line upper standard line for the class C, while in the second
case we call it lower standard line for C. Similarly, if c > a+2b, then C can be
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partitioned in two different fashions into disjoint union of one standard line
and another line which is thicker than naive. Consider then a class C which
contains maximal points of M

(r)
a,b,c, where c ≥ a + 2b. We have C = S ∪ L,

where S is the standard line containing maximal points of M
(r)
a,b,c, and L is a

discrete line that is naive or thicker than naive. A point P ∈ S with a minimal
value is called a core of the class C (see Figure 7 (Right)). Keeping in mind

the properties of M
(r)
a,b,c, we can state the following lemma.

Lemma 27 Let P1 and P2 be two consecutive maximal points belonging to an
equivalence class C. Let S ⊆ C be the standard line containing P1 and P2, and
S̄(P1, P2) ⊂ S the stairwise path between P1 and P2. Then:

(1) All points of S have different values;

(2) S̄ contains a+b
gcd(a,b)

points with values c − 1, c − 1 − gcd(a, b), c − 1 −
2 gcd(a, b), . . . , f , where the last value f is equal to

f = c− 1−
(

a + b

gcd(a, b)
− 1

)
gcd(a, b) = c− a− b + gcd(a, b)− 1

See Figure 7 (Right). To complete the proof of the theorem, let the points
P1, P2 ∈ C, the standard line S, and the stairwise path S̄(P1, P2) be as in
Lemma 27. This last lemma implies that S̄ contains a unique core of C. Clearly,
when ω decreases starting from c − 1 and going downwards, first the points
from the standard line S will vanish from M

(r)
a,b,c. Consider first what happens

when c = a + 2b. As already discussed above, the complement of S to C is
a naive line L which is “below” S. Moreover, the mutual location of S and
L within the class C implies the following property: The 4-neighbors of any
pixel from S are points which belong either to S or to L. See Figure 7 (Right).

P3

P2

P1

25 5 12 19 26 6 13 20 0 7 14 21 1 8
15 22 2 9 16 23 3 10 17 24 4 11 18 25
5 12 19 26 6 13 20 0 7 14 21 1 8 15

22 2 9 16 23 3 10 17 24 4 11 18 25 5
12 19 26 6 13 20 0 7 14 21 1 8 15 22
2 9 16 23 3 10 17 24 4 11 18 25 5 12

19 26 6 13 20 0 7 14 21 1 8 15 22 2
9 16 23 3 10 17 24 4 11 18 25 5 12 19

26 6 13 20 0 7 14 21 1 8 15 22 2 9
16 23 3 10 17 24 4 11 18 25 5 12 19 26
6 13 20 0 7 14 21 1 8 15 22 2 9 16

23 3 10 17 24 4 11 18 25 5 12 19 26 6
13 20 0 7 14 21 1 8 15 22 2 9 16 23
3 10 17 24 4 11 18 25 5 12 19 26 6 13

Fig. 7. Left: Two stairwise paths marked by shadowed × sign: one between the
points P1 and P2, and another between the points P1 and P3; Right: A stairwise
path between two maximal points of value 26 in array A(7, 10, 27). The path (in
dark gray) is a part of an upper standard line (in gray) through the two maximal
points. The core of the class has value 10. It coincides with a plug of A(7, 10, 27).
A core is marked by © and a plug by 3.
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Therefore, if the points of S are removed from C, all points of the naive line
L will be disconnected from the points of the next equivalence class “above”
C. Obviously, this will also hold when c > a + 2b. All equivalence classes are
discrete lines and therefore are periodic. The period length of a class is equal to
a + b which is the length of the path between two consecutive maximal points
of C. Therefore, the disconnectedness considered above propagates along all
the class C. On the other hand, the array of remainders M

(r)
a,b,c is periodic, as

the class C appears periodically in a way that if we start counting from it,
every gcd(a, b)th class is equivalent to C. Thus we obtain that if c ≥ a + 2b,

the array M
(r)
a,b,c becomes disconnected when the points of the standard line S

are removed from it.

What remains to show is that Ω26(a, b, c) = c− a− b + gcd(a, b)− 1. Clearly,
the value of Ω26(a, b, c) is equal to the value of a core of a class C that con-

tains maximal values. In other words, we have that the set of plugs of M
(r)
a,b,c

coincides with the set of the cores of all classes containing maximal elements.
If gcd(a, b) = 1, then Ω26(a, b, c) = c− a− b = c− a− b + gcd(a, b)− 1, since

M
(r)
a,b,c becomes disconnected when points with values c− 1, c− 2, . . . , c− a− b

are removed from it. Now let gcd(a, b) = d 6= 1. Consider again the points
in a stairwise path S̄(P1, P2) between two consecutive maximal points in
a class C. Then part 2 of Lemma 27 implies that if c ≥ a + 2b, then
Ω26(a, b, c) = c− a− b + gcd(a, b)− 1. 2

This theorem combined with Proposition 24 allows to derive further explicit
solutions, such as

Ω26(a, b, c) = b− a + gcd(a, c− b)− 1 , if c < 2b− a

Ω26(a, b, c) = b + a− c + gcd(c− b, c− a)− 1 , if c < a + b/2

and the lower bound

Ω26(a, b, c) ≥ c− a− b + gcd(a, b)− 1 for any and a, b, c

7 Algorithms

Theoretical research on digital planarity is naturally driven by important prac-
tical applications in image analysis, pattern recognition and volume modeling.
In this section we review some basic algorithms for digital plane recognition,
digital surface segmentation, and digital polyhedra generation.
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7.1 DPS Preimage Analysis

Let S be a digital plane segment defined by an Euclidean plane Γ(α1, α2, β)
with 0 ≤ α1 ≤ 1, 0 ≤ α2 ≤ 1 and 0 ≤ β < 1.

Definition 28 The preimage of a DPS S is the set of points (α1, α2, β) ∈
[0, 1]2 × [0, 1[, such that S ⊂ Iα1,α2,β.

In other words, the preimage is the set of Euclidean planes whose digitizations
contain S. According to this definition and the discussion related to Theorem
9, the preimage is the solution of a system of linear inequalities with unknowns
α1, α2, and β. Thus it is a convex polyhedron (possibly empty).

In dimension 2, the analysis of the preimage structure allowed to design
efficient recognition algorithms (Dorst and Smeulders 1984) (McIlroy 1985)
(Lindenbaum and Bruckstein 1993). Indeed, the preimage associated to a
given 8-arc has a robust arithmetic structure (describable by means of Farey
cells). Moreover, the number of vertices of this domain is bounded by 4. Be-
side the arithmetic properties of the preimage, the bound on the number of
vertices induces a linear-time (i.e., the processing time for each new vertex is
a constant) on-line algorithm to compute and update the 2D preimage, and
thus to decide whether an 8−arc is a digital straight segment or not.

In 3D, few works have studied the arithmetic properties of the preimage and
its geometry. Consider the digital plane segment S ⊂ Da,b,c,µ,c (again, without
loss of generality, we suppose that 0 ≤ a ≤ b < c). From the remainder
map associated to S (see Section 4), we can define the lower (resp. upper)
leaning points whose remainder r = ax + by + cz is µ (resp. µ + c − 1). For
the sake of clarity, we suppose that S contains at least three upper and three
lower leaning points. The analysis from (Coeurjolly et al. 2003) is based on
the following proposition.

Proposition 29 (Coeurjolly et al. 2003) Let S ⊂ Da,b,c,µ,c be a piece of a
naive plane. Then, the preimage of S, denoted P(S), containing all the Eu-
clidean planes in the parameter space has the following properties :

• The points vl = (a
c
, b

c
, µ

c
) and vu = (a

c
, b

c
, µ+1

c
) are vertices of P(S). They

correspond to the lower and the upper supporting planes ax + by + cz = µ
and ax + by + cz = µ + c in the primal space;

• The preimage faces adjacent to vl (resp. vu) result from the vertices of the
2D convex hull of lower (resp. upper) leaning points in S.

An illustration to the 2D convex hulls is given in Figure 8. As a consequence of
this proposition, the number of preimage faces is at least the number of vertices
of the convex hull of the upper 2D leaning points plus the number of vertices of
the convex hull of the lower 2D leaning points. In (Coeurjolly et al. 2003), the
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authors also prove that for a given class of digital plane segments, the preimage
does not have other faces than those induced by leaning points. However, a
general result with a specific recognition algorithm is still a challenging work.

Fig. 8. Illustration of a subset of a digital plane D7,17,57,0,57 with its lower and upper
convex hulls on the supporting planes.

7.2 DPS Recognition and Digital Surface Segmentation

Theorem 11 has been used in (Stojmenović and Tosić 1991) to suggest a DPS
recognition algorithm based on convex hull separability. The recognition of
DPSs in grid adjacency models, i.e. considered to be subsets of Z3, is also dis-
cussed in (Veelaert 1994) (applying the characterization by evenness as given
above), (Klette et al. 1996) (recognition by least-square optimization), and
(Megiddo 1984)(Preparata and Shamos 1985)(Vittone and Chassery 2000)(Buzer 2002)
(linear programming when the dimension is fixed).
(Debled-Renesson and Reveillès 1994) proposes an approach based on
tests for existence of lower and upper supporting planes (called lower and
upper oblique planes) for the given set of points.

Table 1 sums up different algorithms and their computational costs. All com-
plexity bounds are given with respect to the number n of grid points in S. The
fourth column indicates if the algorithm perform a coplanarity test (T ) or may
lead to a complete recognition (R). The references are sorted chronologically.

(Françon et al. 1996) suggests a recognition method for DPSs by converting
the problem to a system of n2 linear inequalities, where n is the cardinality
of the given set of points. The system is solved by the Fourier elimination
algorithm. One can also apply CDD algorithm for solving systems of linear
inequalities by successive intersection of half-spaces defined by inequalities
(Fukuda and Prodon 1996). A very efficient incremental algorithm based on a
similar approach is proposed in (Klette and Sun 2001). Typical timing results
for these three versions are shown in Figure 9, using a polyhedrized digital
ellipsoid at grid resolutions ranging from 10 to 100. In what follows we present
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Main reference Description Complexity T or R Comments

(Kim 1984) Detection of a
support plane

O(n4) T based on an in-
correct theorem

(Megiddo 1984) Linear program-
ming

O(n) T

(Preparata and
Shamos 1985)

Linear program-
ming

O(n log n) R

(Kim 1991) Detection of a
support plane

O(n2 log n) T optimization
of (Kim 1984),
also based on
an incorrect
theorem

(Stojmenović and
Tosić 1991)

Convex hull sep-
arability

O(n log n) T

(Veelaert 1994) Evenness prop-
erty

O(n2) T rectangular DP

(Debled-Renesson
and Reveillès
1994)

Arithmetic
structure

n.a. R rectangular DP

(Reveillès 1995) Arithmetic geo-
metry

O(n) R rectangular DP

(Vittone and
Chassery 2000)

Linear program-
ming and Farey
series

O(n3 log n) R preimage compu-
tation with arith-
metic solutions

(Buzer 2002) Linear program-
ming for DPS
recognition

O(n) T on-line algorithm

Table 1
Algorithms for DPS recognition.

more in detail the algorithm from (Klette and Sun 2001), which appears to be
superior to the others.

Algorithm KS2001

Π is called a supporting plane of a finite set of faces if the faces are all in one
of the closed halfspaces defined by Π and their diagonal distances to Π are all
less than

√
3. If the set of faces has n ≥ 4 vertices, Π must be incident with

three non-collinear vertices and all the other vertices must lie on or on one
side of Π. A set of faces can have more than one supporting plane.

In other words, a DPS in the incidence grid can be assumed to be a 1-connected
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Fig. 9. Running times of three DPS recognition algorithms on a PIII 450 running
Linux. (L. Papier provided the Fourier elimination program.)

Fig. 10. A DPS; the main diagonal distance between the two parallel planes is less
than

√
3.

set of 2-cells in the frontier of a 6-region of voxels; considered together with its
incident 0- and 1-cells, it is a 2D Euclidean cell complex. A simply-connected
DPS consists of faces whose union is homeomorphic to the unit disk, i.e. it
is a 1-simply-connected set of 2-cells. Figure 10 shows a DPS; n is its normal
and v is the vector in the main diagonal direction.

If we are given the frontier of the projection of the DPS onto one of the two
parallel planes, it is possible to reconstruct the DPS in 3D space (up to a
translation in the normal direction to the planes).

Let v be the vector of length
√

3 in main diagonal direction and let n be an
outward pointing normal to the pair of parallel planes. Furthermore, for grid
vertex p incident with the DPS, let v ·p = dp be the equation of a plane with
normal v and incident with p. The vertices p of the grid faces of a DPS must
satisfy

0 ≤ n · p− dp < n · v (1)

Let n = (a, b, c). The scalars a, b, c may have different signs, but since n and v
must point in the same direction “modulo a directed diagonal,” we can assume
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w.l.o.g. that a, b, c > 0. Equation (1) then becomes

0 ≤ ax + by + cz − dp < a + b + c (2)

Hence, a DPS in the grid-cell model is equivalent (by mapping vertices into
grid points) to a finite 6-connected set of grid points in a standard digital
plane (see Definition 12), with ν = dp and ω = a + b + c.

In addition to checking the tripod condition (which is easy), the task of DPS
recognition (in the grid cell model) can be solved by answering the following
question: Given n vertices {p1, p2, . . . , pn}, does each pi with di = v · pi satisfy
Equation (1), i.e. do we have

0 ≤ n · pi − di < n · v for i = 1, . . . , n ? (3)

The incremental algorithm repeatedly updates a list of supporting planes; if
the list is empty, the set of points is not a DPS. The updating step is as
follows: If we have n ≥ 0 points, we add an (n + 1)st point iff the list of
supporting planes remains non-empty. To test this, we first check the new
point against each of the listed supporting planes to see if it is on the same
side of the plane as the other points and within the allowed diagonal distance.
If these conditions are not satisfied, we delete the plane from the list. We then
construct new supporting planes by combining the new point with pairs of
existing points. A new supporting plane is added to the list if all n + 1 points
satisfy the conditions. The set of points is accepted as a DPS iff the final list
of planes is non-empty. The updating step is time-efficient because we can
restrict the tests to points that have extreme positions in any of the eight
diagonal directions.

A given surface S consists of edge-connected faces. These faces can be repre-
sented by a face graph whose nodes are the faces and where each node has

Fig. 11. Agglomeration into DPSs of the faces of a sphere and an ellipsoid (grid
resolution h = 40).
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Fig. 12. A polyhedrized sphere and ellipsoid.

four pointers to its edge-adjacent faces. The face graph can be constructed
using (e.g.) the Artzy-Herman surface tracing algorithm.

We can perform a breadth-first search of the face graph to agglomerate the
faces into DPSs. The second process is implemented using two queues. The
first is called a seeds queue; it contains all the faces found by the search which
do not belong to any yet recognized DPS.

A face is inserted into the seeds queue if it cannot be added to the current
DPS. The next DPS starts from a face chosen from the seeds queue; the choice
of this face determines how the DPS “grows.” The second queue is used to
maintain the breadth-first search. “Growing a DPS” looks like propagating a
“circular wave” on S from a center at the original seed face.

We try to add an adjacent face to the current DPS by testing each vertex of
the face that is not yet on the DPS. If all four vertices pass the test, the face is
added to the DPS and deleted from the seeds queue (if it was on that queue).
Otherwise, we insert the face into the seeds queue and try another adjacent
face. If no more adjacent faces can be added, we start a new DPS from a face
on the seeds queue.

Fig. 13. The polyhedrized sphere and ellipsoid where the breadth-first search depth
is restricted to 7.
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A list of the frontier vertices of each DPS is maintained during the agglomer-
ation process, not only to simplify the tests of whether a new vertex can be
added, but also to maintain the topological equivalence of the DPS to a unit
disk. This ensures that the frontier always remains a simple polygon, so that
the algorithm constructs only simply-connected DPSs. (This condition can be
removed, if desired.)

Figure 11 illustrates results of the agglomeration process for a digitized sphere
and for an ellipsoid with semi-axes 20, 16, and 12. Faces that have the same
gray level belong to the same DPS. The numbers of faces of the digital surfaces
of the sphere and ellipsoid are 7,584 and 4,744 respectively. The numbers of
DPSs are 285 and 197; the average sizes of these DPSs are 27 and 24 (faces).

To complete the polyhedrization process, we set all the face vertices that are
incident with at least three of the DPSs to be vertices of the polyhedron.
Figure 12 shows the final polyhedra for the sphere and ellipsoid. Note that
these polyhedra are not simple; their surfaces are not hole-free.

Restricting the depth of the breadth-first search changes the polyhedrization
from global to local and results in “more uniform” polyhedra. Figure 13 shows
results when the depth is restricted to 7. The number of small DPSs is reduced
and the sizes of the DPSs are more evenly distributed. The respective numbers
of DPSs are 282 and 180 and their average sizes are 27 and 26; note that these
are nearly the same as in the unrestricted case.

As mentioned above, the output of Algorithm KS2001 may not be a valid
polyhedron from a topological point of view. Therefore, the next action to
perform is making-up this polyhedron while preserving the reversibility (up
to a digitization process) of all elements – faces, edges, and vertices. Below we
sketch an algorithm from (Coeurjolly et al. 2004) that addresses the problem
of a topologically correct and reversible polyhedrization.

Algorithm CGS2004

The main idea is to simplify the polyhedron obtained by a Marching-
Cubes (MC) algorithm (Lorensen and Cline 1987), using informa-
tion about the digital surface segmentation. With a reference to
(Lachaud and Montanvert 2000), the triangulated surface obtained by
the MC algorithm is a combinatorial 2-manifold. In other words, the sur-
face is closed, hole-free and without self-crossing. Furthermore, the object
boundary quantization (OBQ) of this polyhedron is exactly the input binary
object.

Let us consider a voxel p from the object boundary and a voxel q from the
background, such that the L1 distance between p and q is 1. Both voxels de-
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Fig. 14. A {0, 1}-binary object and a Marching-Cubes surface obtained with an
iso-level in ]0, 1[.

fine a segment ]pq[ (see Figure 15-left). Note that every MC vertex belongs
to a distinct ]pq[ segment 3 . More precisely, a MC vertex can be attached
to each boundary surface element. In (Lachaud and Montanvert 2000) it is
proved that the MC surface is a combinatorial 2-manifold, independently of
the position of the vertices in the ]pq[ segments. Furthermore, a vertex dis-
placement along the ]pq[ does not change the reversibility property.

To link all these properties to the polyhedrization problem, we consider a set S
of voxels from the object boundary such that S is a DPS, and π is a Euclidean
plane from the DPS preimage (we also suppose that π does not belong to
the preimage boundary). It can be proved that π crosses each segment ]pq[
for each p in S. Let P be the polyhedron given by projecting the MC vertices
associated to S onto π along the ]pq[ segments. Then it can be proved that P is
a combinatorial 2-manifold that still has the reversibility property. Moreover,
all the triangles associated to the set S are coplanar. Finally, the next step of
the algorithm consists of merging the coplanar triangles associated to S while
preserving the topological property of the surface. We repeat the projection
operation and merging steps for every recognized digital plane.

The output of the algorithm is a polyhedron such that a large facet is as-
sociated to each recognized DPS. The facets of the polyhedron are stitched
together by strips of triangles. Those triangles are called non-homogeneous
in (Coeurjolly et al. 2004) because their three vertices do not belong to the
same digital plane. Finally, the polyhedron is a combinatorial 2-manifold and
possesses the reversibility property.

7.3 Digital Polyhedra Generation

In this section we briefly consider certain problems that are in a sense re-
verse to those of the previous section. One of these is DPS generation. Usually
straightforward methods for its solution directly follow from the particular

3 ]pq[ denotes an open segment, i.e. the extremities are excluded.
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Fig. 15. From left to right: links between MC vertices and ]pq[ segments, final result
on the object of Figure 14, and result on a sphere of radius 25.

definition of a digital plane. See, e.g., (Debled-Renesson and Reveillès 1994)
for an algorithm based on Reveillès definition of arithmetic planes. A related
problem is the digitization (scan-conversion) of a given space polygon. An ef-
ficient practical algorithm has been proposed in (Kaufman 1987). Algorithms
involving “supercovers” (i.e., “thick” digitizations including all voxels inter-
sected by the given polygon) have been proposed in (Andres et al. 1997a).
Discrete linear manifolds within a “standard model” (i.e., based on standard
planes) have been defined in (Andres 2003).

For various applications in surface modeling it is reasonable to work with
an appropriate polyhedral approximation of a given surface rather than with
the surface itself. Often this is the only possibility since the surface may not
be available in an explicit form. Thus having suitable algorithms for digi-
tizing a polyhedral surface is of significant practical importance. The above-
mentioned supercover approach has been applied to polyhedra digitization
(Andres et al. 1997b). The faces of the obtained digital polyhedra admit an-
alytical description. They are portions of planes’ supercovers that are thicker
than the (naive) digital planes. As discussed in the literature, the optimal
ground for polyhedra digitization is naturally provided by the naive digital
planes. However, it has been unclear for a long time how to define a “naive”
digital polygon and especially its edges, so that the overall discretization to ad-
mit no gaps along the edges of the resulting digital polyhedron. These theoret-
ical obstacles have been recently overcome by employing relevant mathematic
approaches. Specifically, three different algorithms have been proposed. The
first one (Barneva et al. 2000) is based on reducing the 3D problem to a 2D
one by projecting the surface polygons on suitable coordinate planes, next dig-
itizing the obtained 2D polygons, and then restoring the 3D discrete polygons.
The generated discrete polygons are portions of the naive planes associated
with the facets of the surface. Another algorithm (Brimkov and Barneva 2002)
is based on introducing new classes of 3D lines and planes (called graceful)
which are used to approximate the surface polygons and their edges, respec-
tively. The algorithm from (Brimkov et al. 2000b) approximates directly every
space polygon by a discrete one, which is again the thinnest possible, while the
polygons’ edges are approximated by the thinnest possible naive 3D straight
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lines defined algorithmically in (Kaufman and Shimony 1986) and analytically
in (Figueiredo and Reveillès 1995) and (Brimkov et al. 2000b). All these algo-
rithms assure 6-gapfree discretizations. They run in time that is linear in the
number of the generated voxels, which are stored in a 2D array. Moreover, the
generated 3D discrete polygons admit analytical description.

In the remainder of this section we briefly describe the algorithm from
(Brimkov et al. 2000b). Our choice is dictated by the fact that this algorithm
provides an “optimal solution” while being optimally fast and using memory
space of optimal order. In fact, the obtained discretization appears to be min-
imally thin, in a sense that removing an arbitrary voxels from the discrete
surface leads to occurrence of a 6-gap in it.

Algorithm BBN2000

For the sake of simplicity, consider a polyhedral surface which is a mesh of
triangles. As mentioned, the triangles’ sides are modeled by naive 3D lines
and their interiors by naive planes. Naive 3D lines have been first defined
algorithmically in (Kaufman and Shimony 1986). Given a Euclidean straight
line L determined by the vector (a, b, c) with 0 ≤ a ≤ b ≤ c, the digitization
of L by truncation is the set of voxels (x, y, z) with coordinates x = bai

c
c, y =

b bi
c
c, z = i, i ∈ Z. This digital line is 26-connected and “minimal” in a sense

that the removal of any element splits the set into two separate 26-connected
components. It can analytically be defined by 0 ≤ −cx + az + b c

2
c < c, 0 ≤

−cy + bz +b c
2
c < c. Such a digital 3D line is called regular and denoted by LR.

It is centered about the continuous line L and every voxel of LR is intersected
by L. A regular naive line through two points A and B is denoted LR(AB).
See Figure 16 (Left).

The construction of the triangle interior is somewhat more sophisticated. Re-
call that an arithmetic plane P = Pa,b,c,µ,ω is functional over a coordinate
plane, say, xy, if for any pixel (x, y) from xy there is exactly one voxel belong-
ing to P . The coordinate plane xy is called functional plane for P and denoted
by πP . Consider first a 2D Euclidean triangle 4A′B′C ′ in the xy-plane. We
define the integer set I2D4A′B′C ′ of 4A′B′C ′ as the set of all integer points
which belong to the interior or the sides of 4A′B′C ′ . Thus, in particular, the
vertices A′, B′, and C ′ belong to I2D4A′B′C ′ (see Figure 16 (Middle). The
3D triangle is a portion of a special kind of naive plane Pa,b,c,µ+[ c

2
],c), centered

about the Euclidean plane and called regular. A regular plane through the
points A, B, C is denoted PABC

R . Then an integer set of a 3D triangle 4ABC
is defined as follows. Let A′, B′, and C ′ be the projections of A, B and C
onto πP ABC

R
and I2D4A′B′C ′ the integer set of 4A′B′C ′. Then the integer

set I3D4ABC of 4ABC is the set of voxels belonging to PABC
R and whose

projections on πP ABC
R

constitute exactly the set I2D4A′B′C ′. Note that the
centers of the voxels of the integer set of 4ABC do not necessarily belong
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Fig. 16. Left: A regular naive 3D line between the points A = (0, 0, 0) and
B = (11, 13, 18); Middle: Projection of digital triangle T (ABC) on the functional
plane. The white pixels belong to I2D4A′B′C ′ but do not correspond to sides of
T (ABC). Dark gray pixels correspond to sides of T (ABC) but do not belong to
I2D4(A′B′C ′). Light gray pixels are in I2D4A′B′C ′ and correspond to sides of
T (ABC); Right: Mesh of two 3D digital triangles T (ABC) and T (ABD), obtained
by the described algorithm. The mesh vertices are A = (1, 8, 6), B = (−8,−2, 0),
C(7,−8,−4), and D(14,−4,−5).

to 4ABC. With this preparation, a 3D digital triangle T (ABC) is defined
as the union of its sides LR(AB), LR(AC), and LR(BC) and the integer set
I3D4ABC. Note that the discrete sides of T (ABC) and the integer set of
4ABC may contain common voxels (see Figure 16 (Middle).

The above constructive definition infers an algorithm for digitization of trian-
gles and meshes of triangles. Let a mesh of a finite number of 3D triangles be
given. Each triangle is specified by its three vertices that are supposed to be
integer points. A triangle 4ABC in the 3D space is then digitized as follows.

(i) Approximate the sides AB, AC, and BC by the corresponding regular 3D
lines LR(AB), LR(AC), and LR(BC);

(ii) Determine the regular plane PABC
R ;

(iii) Find the functional plane πP ABC
R

of PABC
R ;

(iv) Find the respective projections A′, B′, and C ′ of A, B, and C on πP ABC
R

;

(v) Determine the integer set I2D4A′B′C ′ of 4A′B′C ′;
(vi) Generate the integer set I3D4ABC of 4ABC from I2D4A′B′C ′.

The union of the sides and the integer set constitutes the digital triangle
T (ABC). Then the triangular mesh voxelization is obtained by digitizing every
triangle of the mesh. It is proved that a digital triangle generated by the above
algorithm is 6-gapfree and that the obtained triangular mesh voxelization is
6-gapfree, as well. Moreover, removal of an arbitrary voxel from the obtained
digital polyhedral surface causes occurrence of a 6-gap. The algorithm has
linear time and space complexity in the number of the generated voxels. An
example of a mesh of two digital triangles obtained through the proposed
algorithm, is outlined in Figure 16 (Right).
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8 Conclusions

Digital planarity is expected to be an even more challenging subject than
digital straightness. It seems to be far from fully explored, and the authors
expect further valuable contributions to this subject in near future. This article
may help to focus research on important open issues such as number-theoretic
characterizations or a wider collection of recognition algorithms with a more
detailed comparative evaluation. Segmentations of 3D surfaces into DPSs will
become increasingly important. Characterizations of such segmentations (e.g.,
“balanced in size,” or “approximating convex faces”), as well as algorithms
that optimize such kind of properties, are of significant interest.
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