
The Advene Model for Hypervideo Document

Engineering

Olivier Aubert, Pierre-Antoine Champin, Yannick Prié

LIRIS FRE 2672 CNRS - Lyon 1 University

69622 Villeurbanne Cedex

2004-05

Abstract

The Advene (Annotate DVd, Exchange on the NEt) project1 is aimed
towards communities exchanging discourses (analysis, studies) about au-
diovisual documents (e.g. movies) in DVD format. This requires that
audiovisual content and hypertext facilities be integrated, thanks to an-
notations providing explicit structures on audiovisual streams, upon which
hypervideo documents can be engineered.

The Advene framework provides models and tools allowing to de-
sign and reuse annotations schemas; annotate video streams according
to these schemas; generate and create Stream-Time Based (mainly video-
centred) or User-Time Based (mainly text-centred) visualisations of the
annotations. Schemas (annotation- and relation-types), annotations and
relations, queries and views can be clustered and shared in units called
packages. Hypervideo documents are generated when needed, both from
packages (for annotation and view description) and DVDs (audiovisual
streams).

This article is mainly dedicated to introducing the various elements
of the Advene model, illustrated with a use scenario, and the Advene
prototype, composed of an augmented video player with DVD capabilities
for Stream-Time Based Visualisation, while user time based visualisation
takes place in a standard web browser, thanks to the XML based template
language TAL.

Keywords: Annotation, Document template, DVD, Sharing, Video,
Visualisation modes, Advene

1 Introduction

Digital audiovisual (AV) documents are getting more and more common on our
computers. They are being used in various domains, such as news, entertain-
ment, videoconferencing, surveillance, teaching, etc. Moving images are being
streamed across the Internet, digital TV is getting interactive, and fictions,
documentaries, or many kinds of live performances now benefit from a digital
diffusion on DVD medium.

1A work done at LIRIS: Lyon Research Center for Images and Intelligent Information Sys-
tems, FRE 2672 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université Lumière
Lyon 2/Ecole Centrale de Lyon

1



In the same time, digital video data is more and more used in the human-
ities [AP99] and video analysis systems (e.g. [Kip01]) are being designed for
humanities corpus study (e.g. sociology, linguistics, speech acts, ...) or sport
analysis.

The context of our work is related to working with movies on DVD medium
and sharing this work inside communities: filmic analysis for film enthusiasts
or researchers, use in classroom for teachers and pupils (e.g. in movie, foreign
language or literature domains). We want to consider uses of video documents
that are different from simple visualisation and consumption. This means that
these uses rely on interfaces for using extended AV documents (hypervideos2),
whose characteristics reside in the possibility of interacting with the stream in
a non trivial way. This also means that users should be able to annotate the
streams and build their own hypervideos.

It then becomes necessary to have structured descriptions of audiovisual
material — that should be set up during an annotation process —, and tools
enabling their edition, as well as their reading/visualisation. Document models
are needed, that permit first to localise fragments that are relevant for a certain
analysis (hence for a certain use based on this analysis); second to qualify them
(hence to attribute semantics to them, and a place in the structure of a document
model); finally to use them in graphical interfaces using the document structures
related to the video stream.

Although in past years numerous systems, offering audiovisual description
models and their associated prototypes, have been designed, they are generally
limited to specific domains and precise uses (e.g. gestural analysis, transcrip-
tion...). Innovative uses of hypervideos are currently emerging, but no widely
used killer application for digital (hyper)videos seems to exist, nor do attested
widespread usages (if we except subtitling), and almost everything remains to
be invented.

We think that the development of new usages (hence of new document mod-
els) should be based upon user communities. The Advene project (Annotate
DVds, Exchange on the NEt) relies on this assumption, and our goal is therefore
to provide tools for active reading [AP99] and work on DVD-based audiovisual
documents. These tools should, among other things: be adapted to communities
having interest in exchanging documentary descriptions; permit the production
of new documents from others; allow the assisted analysis of AV documents.

Furthermore, audiovisual right is very restrictive. Hence, we consider it
vital to separate the description of AV documents from the actual streams so
that it is possible to work on the description without the streams (e.g. for
information retrieval), and to let dissemination of streams be independent of
their descriptions. The medium we have chosen for our project (DVD) allows us
to manipulate high quality video documents (fiction, documentaries,...), around
which communities can structure themselves, while reading rights are acquired
by the actual readers of the streams.

Involving user communities and taking into account audiovisual rights are
two primary concerns of the Advene project. We have identified several func-
tionalities that our system should provide (and that our model for describing
AV documents and designing hypervideos documents should support):

2The term hypervideo comes from the Hypercafe experimentation [SBS96], but we will use
it in a extended way: it will denotate both videos with hypertext capabilities, and hypertext
documents with video controls, into which video plays a non anecdotic role.

2



• editing annotations of various types, that are related to the AV stream, and
linked by relations, forming a structure that can be used for hypervideo
rendering;

• editing annotation schemas, ie. modelling the structure imposed on the
annotation, hence the hypervideo document structural part (the other
part being the modelling of hypervideo visualisation with views);

• visualising hypervideo documents built from the AV stream and the an-
notations (through views), constructed from templates that can be reused
or specifically designed. Indeed, there are two main ways of considering
the visualisation of an audiovisual document extended with an annotation
structure (or of an annotation structure together with the AV stream it
is related with): yielding to the temporality of the stream, or spatialising
(delinearising) it. In the first case, the visualisation will concentrate on a
video player with hypervideo annotation-based capabilities (Stream-Time
Based Visualisation, noted STBV). In the second case, it will mainly rely
on standard hypertext representation of the annotations together with
standard hypertext content, with limited video capabilities (User-Time
Based Visualisation, noted UTBV).3 As a first approximation, we can
consider STBV as annotation-enhanced video and UTBV as annotation-
based generation of HTML documents.

• tools and models for querying the database composed of the annotation
structure, but also of the annotation schemas, the visualisations, etc.

• tools and models for sharing the annotations and the hypervideos docu-
ment they allow to visualise.

Figure 1 presents an overview of the annotation process: using a given source
(DVD) and the appropriate (i.e. dedicated to the task at hand) schema, the user
creates supplementary information in the form of annotations and relations. As
a second step, hypervideos are generated by views that use the video source and
the edited annotations as data.

This article is dedicated to presenting the Advene model and architecture as
a powerful way of creating, engineering and sharing hypervideo documents. The
following section (second) deals with the architecture and the design needs of the
Advene framework. The third section present the Advene model. The working
prototype that we developped is described in section four, with screenshots and
some details about the ongoing experiments. In the fifth section, related works
are compared to our approach along several aspects.

2 Scenario and needs

We present an example use scenario of our framework, based upon real exper-
iments, upon which we will explain various points. Miss X, a foreign language

3This distinction can be related to the one between “video centred pages” and “text centred
pages” in [CG02]. In STBV, the temporal reference of the resulting hypervideo is mainly
given by the (original) video stream time. In UTBV, the temporal reference of the resulting
hypervideo is more dependant of the user actions (mainly hyperlink activation), hence of his
time.

3



Figure 1: Process overview

teacher wants to use a movie as a pedagogical exercise. Her class consists in
two steps:

• Have the pupils watch the movie by sequences. While the movie plays,
watching tips are displayed on the screen (important vocabulary, grammar
points, ...). At the end of each sequence, the video player automatically
stops.

• Give an exam about the movie. The questions are illustrated by some
screen captures of the movie, and the important vocabulary is given again
on the exam sheet.

To prepare this class, Miss X uses the Advene prototype. She has to define
a structure of annotations relevant for her pedagogical activity, annotate the
movie according to this structure and eventually use the result with her pupils.

An educational institution provides on its web server annotation schemas
designed for this kind of activity. Each schema defines various annotation types
and relation types, related to the activity (denoting a specific dimension of anal-
ysis). For example, the watching-tips schema defines the following annotation
types: character (annotating a meaningful occurrence of a character), vocabu-
lary (annotating the occurrence of a difficult word, with its definition), caption
(holding subtitles for the studied movie).

Generic views are also bundled with the schemas, displaying some of the an-
notations in a meaningful way. For instance, a User-Time Based View vocabulary-
list produces a hypertext document listing all the difficult words of the movie,
and allows to visualise the moment of occurrence of each word. A Stream-Time
Based View with-watching-tips produces an augmented playback of the stream
with subtitles and visual cues added (from the watching-tips schema) to the
original movie.

Mr Y, one of Miss X’s colleagues, already studied the movie in his class
and thus created vocabulary annotations and defined video sequences, using
the same schemas. He gives her the XML file holding his annotations, for her
to reuse. They do not have to exchange DVDs, both of them having their own
copy.

4



Using the same schemas as Mr Y, Miss X can reuse, by copying or referenc-
ing, some of his annotations. She can add her own annotations (for instance,
vocabulary more relevant to the level of her class). She can even design and
use her own schema, corresponding to a kind of exercise not covered by the
institution’s schemas. Finally, she writes another document as a UTBV, illus-
trated with movies screenshots and annotation contents, that she will use as an
exercise sheet for her pupils.

Figure 2 represents the different steps of the preparation process described
above.

Figure 2: Editing scenario

At the beginning of the class, the teacher distributes a sheet with the dif-
ficult vocabulary list, generated by the generic UTBV vocabulary-list from the
institution’s schemas, so that the pupils can have a written support.

Then the pupils watch the STBV with-watching-tips which displays the
movie enriched with the watching-tips annotations and stops at the end of each
sequence. Finally, the teacher distributes the exercise sheet that she wrote,
enriched with annotation data and movie screenshots.

Figure 3 represents the different steps of the use scenario described above.

From this simple scenario, we can identify some of the issues that our frame-
work has to deal with.

First, the user must have the ability to reuse existing annotation schemas as
well as define her own. The reuse of existing schemas enables the user to share
her annotations with other users. The possibility to define additional schemas
does not confine the user to a closed set of schemas (i.e. of analysis dimensions),
but allows her to express the most relevant information in her analysis.

Second, beyond schema reusing, data sharing is a crucial issue, as it provides
the opportunity to build upon existing work. Data sharing may involve any kind
of element (schemas, annotations, views...). It can be done by copying data, or
by referencing it.

Third, we are aiming at providing tools to a large community. The wide use
of the software depends on its easy installation and use. It especially should

5



Figure 3: Use scenario

run on personal computers with common software and hardware.
Finally, as mentioned in our introduction, such a scenario shows the necessity

of two modes of visualisation. The first one consists in viewing the movie with
accompanying annotations (STBV), while the other one, as the exercise sheet,
relies on the annotation data as primary base (UTBV).

In the next section, we will see how the proposed model addresses these
issues. The following section will present the status of the prototype that already
implements a great number of the functionalities discussed in the scenario.

3 The Advene model

Advene aims at providing a simple yet extensible framework. The focus has been
put on the external structure of annotations, i.e. how they are constrained, re-
lated with each other, and rendered as hypervideos. Indeed, annotations are
not considered as undistinguishable pieces of data randomly linked to audiovi-
sual documents. They are structured, according to annotation schemas, which
are specific to a particular annotation task. Groups of related annotations are
therefore bundled with their schemas and views for rendering them, the whole
being called a package.

On the other hand, as few assumptions as possible have been made on the
internal structure of annotations, i.e. what kind of data is used to annotate
audiovisual documents (plain or formatted text, XML, audio...). Advene relies
on externally defined content types and languages, as well as a plugin mechanism
in order to edit and render such data.

3.1 Overview

The central notion of the Advene model is the notion of package. A package
is a relevant (from its author’s point of view) set of Advene elements grouped
together, in order to be stored and shared as a whole. Figure 4 shows a UML

6



Package

+uri

+meta

Schema

+id

+meta
AnnotationType

+id

+meta

+contentType

RelationType

+id

+meta

+contentType

Annotation

+id

+meta

+fragment

+context

+content

Relation

+id

+meta

+content

Query

+id

+meta

+content

View

+id

+meta

+content

schemas 1..* relationTypes 0..*

annotationTypes 0..*

annotations

0..*

relations

0..*

views

0..*

queries

0..*

members 0..*2..*

memberTypes 0..*2..*

type

0..*

type

0..*

Figure 4: UML diagram of the Advene model

diagram of the different classes of elements one can find in an Advene Pack-
age, and the associations between them. Annotations and Relations between
them hold the data annotating audiovisual documents. All annotations are not
equivalent (nor are the relations): they all belong to a particular type, Anno-
tationType or RelationType, belonging in turn to a particular Schema from
the same package. To manipulate and present the data, packages also define
queries and views. Queries are used to select a subset of the package’s elements.
Views produce new multimedia documents by combining parts of the annotated
audiovisual medium and components of the package.

Defined and imported elements It is worth noting that this diagram is
actually simplified. Each component of a package can actually be either defined
inside the package itself (i.e. explicitely described), or imported from another
package (i.e. described only by referencing its real description in that other
package). Similarly, a schema can either define or import AnnotationTypes and
RelationTypes. By providing a unified access to defined and imported elements,
packages ensure an easy exchange and sharing of all the necessary information4

to generate hypervideos from annotations.

3.2 Model elements

3.2.1 Common features

All the components of packages are identified by a name, denoted id. This
identifier is bound to be unique in the package defining the component (in
opposition to packages importing the component, i.e. making a reference).

All the components of the model (annotations, relations, schemas, views,
...), as well as the package itself, have additional attributes described by a set
of metadata, named meta. Any number of metadata schemes can be used in

4 The AV stream itself is referenced by each annotation, although not contained in the
package.

7



this set. The Advene framework strongly encourages the (non exclusive) use of
the Dublin Core metadata element set5. For each component described below,
a number of recommended Dublin Core fields is specified.

3.2.2 Packages

A package is the grouping in a single document of all the Advene elements
(schemas, views, annotations, etc.) produced or used during the active reading
of one (or potentially several) DVD, in order to ease the use and sharing of these
elements. It is identified by a URI. The author and creation date of the package
should be represented as metadata using the Dublin Core vocabulary.

A package also holds a list of all packages from which it imports components
(which is not represented in the diagram). Among other good properties, this
enables a clear statement of dependancies between packages. Another important
role of this list is to assign a namespace identifier to each imported package;
this enables to prevents name clashes components from different packages, by
prefixing imported component identifiers with the namespace name, similarly
to what is done with XML namespaces [BHL99].

3.2.3 Annotations, Relations

Annotations are pieces of data (the content of the annotation) linked to a frag-
ment of the audiovisual document. It is worth noting that identifying a fragment
in an audiovisual medium depends on the specific structure of that medium. In
standard digital movies, only timepoints or bytecounts can be addressed. DVDs,
on the other hand, are structured in titles and chapters. The MPEG-4 standard
even enables the addressing of spatio-temporal fragments. The Advene proto-
type currently defines a fragment as the interval between two timepoints, but is
extensible to other fragment types.

The DVD medium offers a number of visualisation options: the same movie
can be watched in different languages, with or without subtitles, even sometimes
with different camera angles. Those parameters define a visualisation context.
An annotation defined in a particular context will not always be relevant in
other ones: for instance, an annotation about the quality of the french dubbing
is no more relevant when the movie is watched with the english soundtrack. In
the Advene prototype, the context of an annotation may optionally specify the
soundtrack, subtitles and angle for which the annotation is relevant. However,
as for fragments, the Advene model is extensible with other context types.

By definition, annotations are in relation with the audiovisual medium, by
means of their fragment. It can also be useful to express the fact that annota-
tions are in relation with one another. For that purpose, Advene has a Relation
class, which is not directly linked to the video, but is linked to several annota-
tions (the members of the relation). Relations may also have a content, in order
to provide additional information.

A package can define its own annotations and relations, and import some
from other packages. However, each annotation and relation must match one of
the package’s schema (see below).

5http://dublincore.org/ , Dublin Core Metadata Initiative

8

http://dublincore.org/


3.2.4 Types

All annotations or relations are not equivalent. AnnotationTypes and Relation-
Types identify and constrain different kinds of annotations or relations.

Annotation types have a contentType defining the kind of content their an-
notations may have. This is achieved in the Advene prototype by means of
a MIME type [FB96] (text/xml, audio/*, etc.). If the type is text/xml, it
can be more precisely constrained by, e.g., a DTD, XML Schema or Relax NG
schema6. For basic needs, a simple, non-constrained text content is used. For
more elaborate needs, the content can be a document conforming to a specific
XML schema, such as the definition of a thesaurus in MPEG-7.

Relation types define the number of members, i.e. the number of participat-
ing annotations, of the corresponding relations, as well as the annotation types
to which the members must belong (via the memberTypes association). Since
relations may have a content, relation types also have an optional contentType,
similar to the one in annotation types.

3.2.5 Schemas

Annotation Schemas constrain the kind of annotations and relations that a
package can contain. More precisely, it defines a collection of annotation types
and relation types. Those types are grouped on the basis of the task they help
to perform. For example, annotation types useful for editing a movie will be
grouped in a given schema (e.g. annotation types Shot and Sequence, relation
type Transition); another schema will contain types useful for analyzing filming
techniques (e.g. Camera Move, Lights...); a third one will contain useful types
for showing the movie in a language class; etc.

Note that this grouping is not exclusive, though: a schema can import types
from other schemas. For example, the annotation type Shot, defined in the
Edition schema, will also be used in the Filming Techniques schema, in order
to point shots where some camera moves occur.

Note also that schemas do not have to be highly structured. The Advene
prototype provides a very simple schema named SimpleText, providing a single
annotation type, with plain text content. We envision that many annotation
tasks would start with this “note taking” schema, should the annotations be
further converted into more structured schemas with semantically richer types.

3.2.6 Queries

A Query is used to get a list of Advene elements (of either type described here).
It can be given a number of parameters. The content of the Query object
describes the query in a query language identified by its MIME type. The
Advene prototype only implements Python as a query language for the moment
(a straightforward implementation since the prototype is written in Python).
More user-friendly query languages will have to be implemented in the future.

Queries can be defined by an end user as a convenient way of accessing a
relevant collection of elements from the package. However, their use becomes
more valuable combined with the import mechanism of packages: a package

6 Although XML is the most popular data format providing additional mechanisms for
constraining its instances, the same could be applied to any other data type providing a
similar mechanism.

9



defining a number of reusable schemas (like the one on the institutional Web
server in the previous scenario) will usually provide, in the same package as the
schemas, a number of queries which are relevant to annotations conforming to
those schemas. When importing the schemas, users will import the queries as
well and get a full schema-specialized “toolbox” enabling them to handle and
view their annotations in useful ways.

3.2.7 Views

Views are the final components in the chain enabling to produce various hy-
perdocuments from Advene packages. As described above, queries are used to
filter and select packages elements. Views are then used to render those ele-
ments under various forms, either Stream-Time Based or User-Time Based, as
discussed earlier in the paper. Conforming to the genericity goal of Advene,
views can be described in any formatting language identified by its MIME type.
The Advene prototype currently implements two view languages, which will be
described and discussed later in this paper (section 4.2 and 4.3).

As with queries, reusable schemas will probably be provided together with
dedicated views for rendering, e.g., annotations of the types they define. Specific
views can also be defined by end users in their packages.

3.3 Packages and documents

We conclude here this presentation of the Advene model by demonstrating how
it can be considered as a document model.

The Advene package is in itself a document: it is a consistent set of infor-
mation about one or several AV streams, written by an author with a given
purpose. It can be refered to (e.g., by another package), and exchanged.

The Advene package with the DVD is also a multimedia hyperdocument,
resulting from the rendering of all its views. This document is multimedia since
it can be composed of text, images or AV extracts, and can be either User-Time
Based or Stream-Time Based. It is also a hyperdocument since it can contain
links from one part to another, or links to external resources. It is worth noting
that some views may not require the DVD at all to be rendered.

Finally, the rendition of a particular view can also be seen as a standalone
document (e.g., the exercise sheet in the scenario from section 2). Views are not
limited, in their goal, to what one usually expects from a style sheet. For exam-
ple, a virtual video document [LV98] can be generated on the fly by imposing
the structure of annotations to the original stream (e.g. following the narrative
chronology). A structured discourse about an annotated movie, using annota-
tion contents or snapshots, is also considered as a view of the corresponding
package. An important part of the content of such a discourse may not come
from the annotations but from the view itself. Indeed, such views should rather
be thought of as document templates than styles sheets. This demonstrates the
complementarity of views and annotations in the production of documents from
an Advene package.

10



4 The Advene prototype

In this section, we present a global overview of the Advene prototype, before
presenting in more details the two implemented view mechanisms, based on the
TAL description language and on the ECA paradigm. Eventually, we detail the
status of the prototype and its current and future uses.

4.1 Global software architecture

The global software architecture of the Advene prototype is shown in figure 5.

Figure 5: Overview of the prototype architecture

A library has been designed to ease the access to the data representing Ad-
vene packages and stored in XML files. It provides high-level programming ele-
ments such as Packages, Schemas, Annotations, etc. The applications (the Ad-
vene interface and the integrated webserver) access the package’s data through
this library.

A software DVD player provides the movie playback functionality. The
Advene framework can remotely control the player7. Among the control possi-
bilities are the display of textual data on the video display, and the ability to
capture low-resolution screenshots of the movie.

Annotations are created and edited through the Advene GUI during the
movie playback. The current version only allows textual annotation editing,
but the underlying architecture does not restrict the annotation types in any
way, and we plan to provide a plugin architecture to deal with other types of
data (for instance, an audio recorder to record audio comments).

7 This has been achieved by extending an existing DVD player with a CORBA control
plugin. Using CORBA brought remote control, language independance as well as the definition
of a precise interface to interact with the player. Supporting another DVD player only necessits
to make it provide the same interface.

11



Editing assistants can also help in the process of annotation editing. For in-
stance, an assistant can generate a set of annotations based on the chapter/title
structure of the DVD, in order to give a working base. Building on previous
work in the field of image processing, a more sophisticated assistant could au-
tonomously detect scene changes in the movie, and generate annotations based
on this information, that the user could then edit to suit her needs.

Once the annotations are created, the user can access them through the in-
terface, for instance by playing the movie and having some annotations displayed
as captions on the movie display (Stream-Time Based View).

The Advene framework also integrates an embedded webserver, which pro-
vides access to the package’s data through a standard web browser, dynamically
generating hypertext document from the views defined in the package (or im-
ported packages).

These views (User-Time Based Views) are generated by the TAL engine of
the Advene software, which integrates Advene elements into view templates.
Image inlining is achieved by generating a specific URL which is queried from
the embedded Advene webserver. Upon receiving a query for such an URL, the
Advene software dynamically makes a screenshot for a given frame of the movie.
For performance reasons, an in-memory cache has been implemented in order
to alleviate the access times.

As the webserver is embedded in the Advene core, it also allows the user to
control the movie player through the web browser.

Figure 6 shows a screenshot of the application, demonstrating different views,
and involving the main Advene prototype components: the enhanced video
player and the embedded web server. The displayed example is taken from the
use scenario presented in section 2, a pedagogical use by a language teacher.

4.2 Hypertext view based on TAL

As said before, any formatting language, such as XSLT, can be used in Advene.
However, for our prototype, we have chosen to implement another formatting
language, named TAL (Template Attribute Language). It has originally been
designed for the Zope platform8 as a language for producing dynamic HTML
documents, but is not limited to this purpose since it can be used to produce
any kind of XML document. We will first present how it works, then explain
why we have chosen it.

Principle The principle of TAL is to define a template document, i.e. a
document very similar to the final one (the HTML or XML document to be
produced). The main difference in both documents is the occurrence, in the
template, of special XML attributes from the tal: namespace. These attributes
are used as processing instructions (replacement, iterative, conditional, etc.) by
a TAL engine, which transforms the template into the final document. The use
of a dedicated namespace implies that the template documents are still valid
XML documents, with only extra attributes added. Thus we can produce and
manipulate them with standard XML tools (GUI or scripting).

The values of the tal: attributes are the parameters to the TAL instruc-
tions. They are expressed using an extensible syntax named TALES (TAL Ex-

8http://www.zope.org/Wikis/DevSite/Projects/ZPT/TAL

12

http://www.zope.org/Wikis/DevSite/Projects/ZPT/TAL


Figure 6: Advene screenshot

pression Syntax ). TALES expressions look like pathnames inside a hierarchical
view of the data. For instance, the duration of the fragment linked to the first an-
notation in the package is expressed as /package/annotations/first/fragment/duration.

Figure 7 shows an example in HTML with its source, how the template
would be rendered if passed directly to a browser, and how the final document
is rendered.

TAL is mostly used to produce HTML documents, i.e. User-Time Based
Views in the Advene terminology. However, TAL has the ability to produce
any kind of XML document. It is therefore possible to generate SVG, SMIL
or MPEG-7 documents, to interoperate with other applications or to use as
another output format.

Rationale We have chosen to implement TAL/TALES instead of other for-
matting languages (the first of them being XSLT combined with XPath) for a
number of reasons.

First, we want to explore the capabilities of TAL and analyse the reasons
of its success in the context of the Zope platform. It does not claim to be as
comprehensive and powerful as XSLT, but tries to make it simple to achieve
simple tasks. The targeted audience of Advene being non-expert end-users,
simplicity is very important. The template-based nature of TAL is also an
advantage in this area: it was designed to allow designers to compose page
templates with their favourite WYSIWYG editor, giving them a good overview
of the rendered result. The fact that TAL documents are valid XML documents

13



Figure 7: TAL example

allow the use of standard XML tools, GUI or scripting.
Furthermore, the TALES languages provides an abstraction of our model.

A minimum understanding of the Advene model is the only requirement since
TALES is addressing the model structure rather than its XML representation
(which XPath would do). Hence expressions can be customized with relative
ease, even by someone not aware of the full TALES syntax. Its similarity with
path expressions, used in filesystems and also in URls, is expected to make it
seem more familiar to the user.

4.3 Enhanced video based on the ECA paradigm

The current Advene prototype implements STBV views through a view mech-
anism inspired by the Event-Condition-Action (noted ECA) paradigm [Pat99]
used most notably in active-databases, but also in other domains like workflow
management, publish/subscribe technology or e-mail applications. The dynamic
nature of Stream-Time Based Views makes the ECA paradigm well fit.

An Advene view is a set of rules, which defines a specific way of rendering
the document. Each rule consists in an event, an (optional) condition and
a set of actions. A package can define multiple sets of rules (i.e. multiple
views). During the playing of the stream, a number of events are generated.
One of the most common is AnnotationBegin, which indicates the beginning of
an existing annotation has been reached. The ECA-engine is then notified of
the occurrence of the event, and checks if any rule matches it, i.e. both its event
and its (optional) rule condition match. Each matching rule’s action is then
executed.

Figure 8 gives an example of a rule, using the scenario described in section 2.
Its can be stored in an Advene package by using a representation language such
as RuleML.

This language is not meant as a full-fledged multimedia composition lan-

14



Rule Display watching tips:
When the event AnnotationBegin occurs,
If the type of the annotation is ’watching-tip’
Then display the content of the annotation as a caption on the video and

pause the player.

Figure 8: An example rule

guage, but is rather aimed at end users. Indeed, they are already familiar with
this kind of framework frequently met in e-mail applications to define filters
for instance. No coherency checks are applied to the rule: the user has the
responsibility to define coherent and non-exclusive rules.

4.4 Prototype status and uses

The prototype currently implements most of the functionality presented in this
article, with the exception of the query language that we are investigating. The
interaction with the user is done through the main application (for application
editing and STBV rendering) and web forms (for UTBV editing and rendering).
Epoz[Jab03], a WYSIWYG HTML editor which runs in web browsers, has been
integrated in order to ease the editing of views.

An experiment is being carried out with cinema studies teachers, in order
to use the prototype in a real context. We are first experimenting the use of
Advene as a study tool for preparing courses. A second step will test the use
of Advene as a teaching tool. Another experiment has been launched with
language teachers who would like to use the prototype in class.

The current main objectives of the project are to improve the robustness and
ease-of-use of the prototype, and to design and implement a query language.

5 Related works

Some aspects of our work have been partially covered by a number of projects.
We will briefly describe them along three different angles: document models,
authoring tools and systems, and document rendering.

5.1 Document models

The first aspect concerns document models. Vane [CLAL97] is one of the first
attempts to provide a domain-independant model for AV documents annota-
tions, based on SGML. Since then, technologies and standards have evolved, and
the main candidate in the multimedia content description is MPEG-7 [SKP02],
formally named Multimedia Content Description Interface, which provides a
rich set of standardized tools to describe multimedia content. The goal of the
MPEG-7 standard is to allow interoperable searching, indexing, filtering and
access of audio-visual content, and the Advene implementation aims at inter-
operating with MPEG-7 as well as possible. MPEG-7 defines a representation
of the information associated to an AV stream, as well as a means (through
XML Schema) to specify description schemes, which we can relate to Advene’s
schemas. The design of Advene takes into account the existing work done in

15



MPEG-7, though we do not natively use all of MPEG-7 as a representation for
the sake of simplicity. The fragment model is based upon the similar notion
of MediaOccurence found in MPEG-7, and we plan to reuse some MPEG-7
Description Schemes, such as the Classification Scheme to define a thesaurus.

We have formerly developed another audiovisual annotation model called
Annotation Interconnected Strata [EZPMP00] in which fragments are annotated
by keywords organized in a graph. Compared to Advene, AI-Strata is more
focused on knowledge representation than on the documentary and rendering
aspect.

Many video annotation models are dedicated to a single domain. One of the
most prolific area is the linguistics domain, where the models range from the
simple transcription of video [Tho02] to more elaborated annotation models,
such as Anvil [Kip01], able to describe gestures and other deictic features of an
AV stream. The ATLAS framework [LFGP02] aims at providing an abstraction
over the diversity of linguistic annotations, and offers interoperability through
this common framework. It is built upon the Annotation Graph model [BL01],
which is a formalism directed towards linguistic annotations. One of the interest-
ing elements of ATLAS is their very flexible definition of regions (the equivalent
of Fragments in the Advene model), which can accomodate very different types
of data (audio or video streams, geometric areas, 3D-areas, ...).

The OPALES project [NN01] allows a group of users to work collaboratively
on a video corpus. Its largely reflexive model allows the annotation of any ele-
ment in the system, including video segments, but also other annotations and
users. This makes it an interesting platform, but rather complex and necessiting
a huge technical infrastructure (video and annotation servers).

5.2 Authoring tools and systems

Another aspect of video annotation projects is document authoring tools and
systems.

Many used video annotation frameworks and tools are dedicated to a specific
domain, such as linguistics. In this field, the applications range from simple
transcription tools such as Transana [Tho02] or TransTool [Kum02] to more
complete applications providing a richer set of annotations [Kip01] and the
possibility to define specific annotation structures. Other interesting authoring
tools are dedicated to producing multimedia documents but do not include
an underlying document model: LimSee2 [Wec03] for instance is a powerful
SMIL authoring tool designed to ease the manipulation of time-based scenarios,
which requires that the user provides the presented data from an external, non-
integrated source.

However, none of them are aimed at DVD interaction. They all necessit the
availability of the video through a software player that does not support DVDs,
thus exhibiting licence issues. Furthermore, they are aimed at analysing videos
to gather raw information about them, and do not deal with the annotation
processing for visualisation, as we do with queries and views. We argue that, in
the field we are interested in (end-users annotating and building a discourse),
the processing and display of annotations is bound to the annotations and the
annotation schemas to a large extent.

16



5.3 Rendering

The third aspect deals with the mechanisms that we use to render our native
data into the chosen representation.

Concerning UTBV, the main format that we expect to use is (X)HTML,
due to its simplicity and the large availability of tools for editing and visualising
such content. But any language featuring a good integration of hypertext data
along with ease of generation would be a good candidate.

The dynamic nature of Stream-Time Based Visualisation makes the number
of available formats more reduced. Some ad hoc solutions have been devised,
by extending an existing standard such as HTML [SRM00] or integrating with
a video player like Quicktime Player, which allows the integration of hypertext
links into quicktime video streams. The more generic and open solution seems
to be SMIL [W3C01], which defines a language to write interactive multimedia
presentations, one of the goals being the reuse of its features in other XML-based
languages such as XHTML or SVG. The MAGpie application [MAG03], a tool
for creating closed captions and audio descriptions of videos, is an example of
an application using SMIL as a target dynamic language. In Advene, SMIL
is used as an export language (TAL templates can generate SMIL documents)
with the limitation that, to the best of our knowledge, no multiplatform SMIL
player can read DVDs.

6 Conclusion and perspectives

In this paper, we have presented the Advene framework for creating, using and
sharing annotations on videos in DVD format. This framework has been de-
signed to provide a general annotation model and corresponding tools, enabling
communities of users to share and reuse annotations, annotation schemas and
ways to render annotations as hypervideo documents (enriched playback, illus-
trated discourses, etc.).

The choice of the DVD format is the first originality of our approach, since it
addresses a large and widespread corpus of videos. Users owning their own copy
of the DVD can share their annotations without having to share copyrighted
movies. Another contribution of our approach is that it makes annotation shar-
ing easy by bundling all the useful information in a single XML document:
an Advene annotation package, around which the whole Advene model is cen-
tred. Packages contain not only annotations but also schemas and views, ei-
ther User- or Stream-Time Based (UTBV, STBV), specifying how annotations
can be rendered. The view mechanism makes packages both hyperdocuments
and hyperdocument generators. To demonstrate the capabilities of the Advene
model, a prototype has been developed, based on standard, open and portable
technologies (including XML and Python).

A salient feature of digital audiovisual documents is the lack of common uses
around them, besides plain visualisation and simple navigation. Annotation is
often presented with the goal of indexing, in order to efficiently retrieve poorly
structured content. However, we believe that any non-trivial use of videos can
produce reusable annotations (active reading, editing, etc.). Most of the uses
are still to be invented, which requires versatile and open tools. The Advene
framework aims at providing such tools. General purpose annotation schemas

17



and views have to be designed in order to bootstrap annotation practices. Then,
more specialized uses will be able to emerge, together with associated annota-
tion tools. As we already mentioned, some scientific communities already have
precise practices, which can also be implemented over the Advene framework.
This is why we plan to release our framework as an open source projet, so that
users may extend it with plugins adapted to their needs.

References

[AP99] Gwendal Auffret and Yannick Prié. Managing Full-indexed Au-
diovisual Documents: a New Perspective for the Humanities.
Computer and the Humanities, special issue on Digital Images,
33(4):319–344, 1999.

[BHL99] Tim Bray, Dave Hollander, and Andrew Layman. Namespaces in
XML. Recommendation REC-xml-names-19990114, Word Wide
Web Consortium, 1999.

[BL01] Steven Bird and Mark Liberman. A formal framework for linguistic
annotation. Speech Communication, 33:23–60, 2001.

[CG02] Teresa Chambel and Nuno Guimaraes. Context perception in
video-based hypermedia spaces. In Proceedings of the thirteenth
conference on Hypertext and hypermedia, pages 85–94. ACM Press,
2002.

[CLAL97] M. Carrer, L. Ligresti, G. Ahanger, and T.D.C. Little. Multime-
dia Tools and Applications 5, chapter An Annotation Engine for
Supporting Video Database Population, pages 233–258. Kluwer
Academic Publishers, 1997.

[EZPMP00] Elöd Egyed-Zsigmond, Yannick Prié, Alain Mille, and Jean-Marie
Pinon. A graph-based audiovisual document annotation and brow-
ing system. In RIAO’2000, volume 2, pages 1381–1389, Paris, apr
2000.

[FB96] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions
(MIME) Part Two: Media Types. RFC 2046, Internet Engineering
Task Force, 1996.

[Jab03] Maik Jablonski. Epoz, a cross-browser WYSIWYG editor for Zope,
2003. http://epoz.sourceforge.org/.

[Kip01] Michael Kipp. Anvil - A Generic Annotation Tool for Multimodal
Dialogue. In Proceedings of Eurospeech 2001, pages 1367–1370,
Aaborg, Sept 2001.

[Kum02] Sujai Kumar. Transtool user guide. Cognitive Development Labo-
ratory, University of Illinois at Urbana Champaign, 2002.

[LFGP02] Christophe Laprun, Jonathan G. Fiscus, John Garofolo, and Syl-
vain Pajot. A practical introduction to ATLAS. In Language Re-
sources and Evaluation Conference (LREC), 2002.

18

http://epoz.sourceforge.org/


[LV98] Craig A. Lindley and Anne-Marie Vercoustre. Virtual Document
Models for Intelligent Video Synthesis. In International Confer-
ence on Computational Intelligence and Multimedia Applications
(ICCIMA’98), pages 661–666, Melbourne, Australia, 1998.

[MAG03] Media Access Generator (MAGpie), 2003.
http://ncam.wgbh.org/webaccess/magpie/.

[NN01] Marc Nanard and Jocelyne Nanard. Cumulating and sharing end
users knowledge to improve video indexing in a video digital li-
brary. In Proceedings of the first ACM/IEEE-CS joint conference
on Digital libraries, pages 282–289, Virginia, USA, Jun 2001.

[Pat99] Norman W. Paton, editor. Active Rules in Database Systems.
Springer, 1999.

[SBS96] Nitin Nick Sawhney, David Balcom, and Ian E. Smith. Hyper-
Cafe: Narrative and Aesthetic Properties of Hypervideo. In UK
Conference on Hypertext, pages 1–10, 1996.

[SKP02] José Mara Martnez Sanchez, Rob Koenen, and Fernando Pereira.
MPEG-7: The Generic Multimedia Content Description Standard,
Part 1. IEEE Multimedia, 9(2):78–87, 2002.

[SRM00] L.F.G. Soares, R.F. Rodrigues, and D.C. Muchaluat. Authoring
and Formatting Hypermedia Documents in the HyperProp System.
Multimedia Systems Journal,, 8(2):118–134, 2000.

[Tho02] C. Thorn. Creating New Histories of Learning for Math and Science
Instruction: Using NVivo and Transana to manage and study large
multimedia datasets. In Conference on Strategies in Qualitative
Research. Institute of Education, University of London, 2002.

[W3C01] W3C. Synchronized Multimedia Integration Language (SMIL 2.0).
W3C, 2001. http://www.w3.org/TR/smil20/.

[Wec03] Daniel Weck. LimSee2 Tutorial, 2003.
http://wam.inrialpes.fr/software/limsee2/tutorial.html.

19

http://ncam.wgbh.org/webaccess/magpie/
http://www.w3.org/TR/smil20/
http://wam.inrialpes.fr/software/limsee2/tutorial.html

	Introduction
	Scenario and needs
	The Advene model
	Overview
	Model elements
	Common features
	Packages
	Annotations, Relations
	Types
	Schemas
	Queries
	Views

	Packages and documents

	The Advene prototype
	Global software architecture
	Hypertext view based on TAL
	Enhanced video based on the ECA paradigm
	Prototype status and uses

	Related works
	Document models
	Authoring tools and systems
	Rendering

	Conclusion and perspectives

