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Abstract

This paper investigates the capabilities of the Ant Colony Optimiza-
tion (ACO) meta-heuristic for solving the maximum clique problem, the
goal of which is to find a largest set of pairwise adjacent vertices in a
graph. We propose two ACO algorithms for this problem. Basically,
these algorithms successively generate maximal cliques through the re-
peated addition of vertices into partial cliques, and both of them use
“pheromone trails” as a greedy heuristic to choose, at each step, the next
vertex to enter the clique. However, these two algorithms differ in the
way pheromone trails are laid and exploited, i.e., on edges or on vertices
of the graph.

We illustrate and compare the behavior of the two proposed ACO al-
gorithms on a representative benchmark instance and we study the impact
of pheromone on the solution process. We consider two measures —the
re-sampling and the dispersion ratio— for providing an insight into the
two algorithms performances. We also study the benefit of integrating a
local search procedure within the proposed ACO algorithms, and we show
that this improves the solution process. Finally, we compare ACO per-
formances with three representative heuristic approaches, showing that it
obtains competitive results.

1 Introduction

The maximum clique problem is a classical combinatorial optimization problem
that has important applications in different domains, such as coding theory, fault
diagnosis, or computer vision. Moreover, many important problems —such as
constraint satisfaction, subgraph isomorphism, or vertex covering problems—
are easily reducible to this maximum clique problem.

Given a non-directed graph G = (V,E), such that V is a set of vertices, and
E ⊆ V × V is a set of edges, a clique is a set of vertices C ⊆ V such that every
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pair of distinct vertices of C is connected with an edge in G, i.e., the subgraph
induced by C is complete. A clique is partial if it is strictly included in another
clique; otherwise it is maximal. The goal of the maximum clique problem is to
find a maximum clique, i.e., a clique of maximum cardinality.

The maximum clique problem is very closely related to the maximum in-
dependent (or stable) set problem, the goal of which is to find the maximum
subset of V such that no two vertices of the subset are pairwise adjacent: a
maximum clique of a graph G = (V,E) is a maximum independent set of the
complement graph G′ = (V, V × V − E) of G.

The clique problem, the goal of which is to decide if a graph contains a clique
of size k, is one of the first problems shown to be NP-complete in [24]. More
generally, the problem of finding a maximum clique is NP-hard, and does not
admit polynomial-time approximation algorithms (unless P=NP) [5]. Hence,
complete approaches —usually based on a branch-and-bound tree search— be-
come intractable when the number of vertices increases, and much effort has
recently been directed on heuristic incomplete approaches.

Heuristic approaches for the maximum clique problem

Heuristic approaches leave out exhaustivity and use heuristics to guide the
search towards promising areas of the search space. They run in polynomial
time and quickly find “rather good” solutions, that may be optimal, but there
is no formal guarantee of performance.

Many heuristic approaches are based on sequential greedy heuristics e.g.,
[22, 14, 3, 4, 21, 19]. The idea is to build maximal cliques, starting from an empty
clique, and then iterating through the repeated addition of vertices. Decisions
on which vertex to be added are made with respect to a greedy heuristic such as,
e.g., choosing the vertex that has the highest degree among candidate vertices.
To avoid the usual greedy traps, greedy heuristics can be improved by injecting
a mild amount of randomization, combined with multiple restarts. Also, weights
used by the greedy heuristic may be adapted from restart to restart as proposed,
e.g., in [21, 19].

To improve the quality of a constructed clique, local search can be used
to explore its neighborhood, i.e., the set of cliques that can be obtained by
removing and/or adding a given number of vertices: local search iteratively
moves in the search space composed of all cliques, from a clique to one of its
(best) neighbors. To avoid being trapped in local optima, where all neighbors
are cliques of smaller sizes, local search may be combined with some advanced
meta-heuristics. For example, in [2, 20], Simulated Annealing is used to jump
out of local optima by allowing moves towards smaller cliques with a probability
proportional to a decreasing temperature parameter; in [15, 18], Tabu Search
is used to prevent local search from cycling through a small set of good but
suboptimal cliques, by keeping track in a tabu list of forbidden moves between
cliques; in [4], Reactive Search enhances tabu search by reactively adapting the
size of the tabu list with respect to the need of diversification; in [27], local
search is combined with a Genetic Algorithm that allows to escape from local
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maxima by applying crossing-over and mutation operators to a population of
maximal cliques.

The Ant Colony Optimization meta-heuristic

In this paper, we investigate the capabilities of another meta-heuristic —Ant
Colony Optimization (ACO) [10, 9]— for solving the maximum clique problem.
The basic idea of ACO is to model the problem to solve as the search for a
minimum cost path in a graph, and to use artificial ants to search for good
paths.

The behavior of artificial ants is inspired from real ants: artificial ants lay
pheromone trails on components of the graph and they choose their path with re-
spect to probabilities that depend on pheromone trails that have been previously
laid; these pheromone trails progressively decrease by evaporation. Intuitively,
this indirect stigmergetic communication mean aims at giving information about
the quality of path components in order to attract ants, in the following iter-
ations, towards the corresponding areas of the search space. Indeed, for many
combinatorial problems, a study of the search space landscape shows a correla-
tion between solution quality and the distance to optimal solutions [23, 28, 33].

The first ant algorithm to be applied to a discrete optimization problem has
been proposed by Dorigo in [8]. The problem chosen for the first experiments
was the Traveling Salesman Problem and, since then, this problem has been
widely used to investigate the solving capabilities of ants [12, 11]. The ACO
meta-heuristic, described in [10, 9], is a generalization of these first ant based
algorithms, and it has been successfully applied to different hard combinatorial
optimization problems such as quadratic assignment problems [16, 26], vehicle
routing problems [6, 17], and constraint satisfaction problems [31, 32].

We have proposed in [13] a first ACO algorithm for the maximum clique
problem. The contribution of this paper with respect to this preliminary work
mainly concerns (i) the definition of a second ACO algorithm, that differs in
the way pheromone is laid and exploited; (ii) the introduction of diversity mea-
sures in order to provide an insight into algorithms performances; and (iii) an
investigation of the benefit of combining ACO with local search for this problem.

Overview of the paper

Section 2 describes the two ACO algorithms —Vertex-AC and Edge-AC— for
the maximum clique problem. In both algorithms, pheromone trails are used as
a greedy heuristic for choosing, at each step, the next vertex to enter the clique.
However, in Vertex-AC, pheromone trails are laid on vertices, and the choice of
vertices directly depends on the quantity of pheromone laying on them, whereas
in Edge-AC, pheromone trails are laid on edges, and the choice of vertices de-
pends on pheromone trails laying on edges connecting candidate vertices with
the vertices of the clique under construction.

In Section 3, we illustrate and compare the behavior of these two algorithms
on a representative benchmark instance. We introduce two measures in order
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to provide a deeper insight into algorithms behavior: the re-sampling ratio
allows us to measure how often algorithms re-sample the search space, whereas
the dispersion ratio allows us to quantify the differences between the cliques
successively computed during the solution process.

In section 4, we show how local search can be combined with our two ACO
algorithms, and we study on a representative benchmark instance the influence
of local search on the solution process.

Section 5 experimentally compares the four different ACO algorithms on a
set of benchmark graphs, showing that Edge-AC outperforms Vertex-AC, and
that the integration of local search improves solutions quality on a majority of
instances.

Finally, section 6 compares our approach with other heuristic approaches.
We have more particularly chosen for this comparison three recent and represen-
tative algorithms within different classes of heuristic approaches: RLS [4], which
uses reactive local search and obtains the best known results on most bench-
mark instances, DAGS [19], which combines an adaptive greedy approach with
swap local moves and obtains the best known results on some other instances,
and GLS [27], which combines a genetic approach with local search.

2 ACO for the maximum clique problem

In ACO algorithms, ants lay pheromone trails on components of the best con-
structed solutions in order to attract other ants towards the corresponding area
of the search space. To solve a new problem with ACO, one mainly has to
define the pheromone laying procedure —i.e., decide on which components of
constructed solutions ants should lay pheromone trails— and define the solu-
tion construction procedure —i.e., decide how to exploit these pheromone trails
when constructing new solutions.

Hence, to solve the maximum clique problem with ACO, the key point is to
decide which components of the constructed cliques should be rewarded, and
how to exploit these rewards when constructing new cliques. Indeed, given a
maximal clique Ci, one can lay pheromone trails either on the vertices of Ci, or
on the edges connecting every pair of different vertices of Ci:

• when laying pheromone on the vertices of Ci, the idea is to increase the
desirability of each vertex of Ci so that, when constructing a new clique,
these vertices will be more likely to be selected;

• when laying pheromone on the edges of Ci, the idea is to increase the desir-
ability of choosing together two vertices of Ci so that, when constructing
a new clique Ck, the vertices of Ci will be more likely to be selected if
Ck already contains some vertices of Ci. More precisely, the more Ck will
contain vertices of Ci, the more the other vertices of Ci will be attractive.

A goal of this paper is to compare these two different ways of using pheromone
and, therefore, we introduce two algorithms: Vertex-Ant-Clique (Vertex-AC),
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Search of an approximate maximum clique in a graph G = (V,E):
Initialize pheromone trails to τmax

repeat the following cycle:

for each ant k in 1..nbAnts, construct a maximal clique Ck as follows:

Randomly choose a first vertex vi ∈ V

Ck ← {vi}
Candidates ← {vj ∈ V | (vi, vj) ∈ E}
while Candidates 6= ∅ do

Choose a vertex vi∈Candidates with probability p(vi)

Ck ← Ck ∪ {vi}
Candidates ← Candidates ∩ {vj | (vi, vj) ∈ E}

end while

end for

Update pheromone trails w.r.t. {C1, . . . , CnbAnts}
if a pheromone trail if lower than τmin then set it to τmin

if a pheromone trail if greater than τmax then set it to τmax

until maximum number of cycles reached or optimal solution found

return the largest constructed clique since the beginning

Figure 1: Generic algorithmic scheme of Vertex-AC and Edge-AC

where pheromone is laid on vertices, and Edge-Ant-Clique (Edge-AC), where
pheromone is laid on edges.

In this section, we first describe the generic algorithmic scheme that is com-
mon to the two algorithms. Then, we describe the three points on which the
two algorithms differ, i.e., the definition of pheromonal components, the ex-
ploitation of pheromone trails when constructing cliques, and the pheromone
updating process. Finally, we compare time complexities of the two algorithms.

2.1 Generic Ant-Clique algorithmic scheme

The two algorithms, Vertex-AC and Edge-AC, both follow the same generic
algorithmic scheme displayed in Figure 1. At each cycle of this algorithm, every
ant constructs a maximal clique. It first randomly chooses an initial vertex
to enter the clique, and then iteratively adds vertices that are chosen within a
set Candidates that contains all the vertices that are connected to every vertex
of the partial clique under construction. This choice is performed randomly
with respect to probabilities that are defined in section 2.3. Once each ant has
constructed a clique, pheromone trails are updated, as described in section 2.4.
The algorithms stop either when an ant has found a maximum clique (when
the optimal bound is known), or when a maximum number of cycles has been
performed.

For both algorithms, we have more particularly borrowed features from the
MAX −MIN Ant System [33]: we explicitly impose lower and upper bounds
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τmin and τmax on pheromone trails (with 0 < τmin < τmax). The goal is to favor
a larger exploration of the search space by preventing the relative differences
between pheromone trails from becoming too extreme during processing. Also,
pheromone trails are set to τmax at the beginning of the search, thus achieving
a higher exploration of the search space during the first cycles.

2.2 Definition of pheromonal components

Pheromone trails are laid by ants on components of the graph G = (V,E) in
which they are looking for a maximum clique.

• In Vertex-AC, ants lay pheromone trails on the vertices V of the graph.
The quantity of pheromone on a vertex vi ∈ V is noted τi. Intuitively, this
quantity represents the learned desirability to select vi when constructing
a clique.

• In Edge-AC, ants lay pheromone trails on the edges E of the graph. The
quantity of pheromone on an edge (vi, vj) ∈ E is noted τij . Intuitively, this
quantity represents the learn desirability to select vi when constructing a
clique that already contains vj . Notice that since the graph is not directed,
τij = τji.

2.3 Exploitation of pheromone trails

Pheromone trails are used to choose vertices when constructing cliques: at each
step, a vertex vi is randomly chosen within the set Candidates with respect to
a probability p(vi). This probability is defined proportionally to pheromone
factors, i.e.,

p(vi) =
[τ fact(vi)]α∑

vj∈Candidates [τ fact(vj)]α

where α is a parameter which weights pheromone factors, and τ fact(vi) is the
pheromone factor of vertex vi. This pheromone factor depends on the quantity
of pheromone laying on pheromonal components of the graph:

• in Vertex-AC, it depends on the quantity of pheromone laid on the can-
didate vertex, i.e.,

τ fact(vi) = τi

• in Edge-AC, it depends on the quantity of pheromone laid on edges con-
necting the vertices that already are in the partial clique and the candidate
vertex: let Ck be the partial clique under construction, the pheromone fac-
tor of a candidate vertex vi is

τ fact(vi) =
∑

vj∈Ck

τij
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Note that this pheromone factor can be computed in an incremental way:
once the first vertex vi has been randomly chosen, for each candidate ver-
tex vj that is adjacent to vi, the pheromone factor τ fact(vj) is initialized
to τij ; then, each time a new vertex vk is added to the clique, for each
candidate vertex vj that is adjacent to vk, the pheromone factor τ fact(vj)
is incremented by τkj .

One should remark that, for both Vertex-AC and Edge-AC, the probability of
choosing a vertex vi only depends on a pheromone factor and not on some
other heuristic factor that locally evaluates the quality of the candidate vertex,
as usually in ACO algorithms. Actually, we have experimented the greedy
heuristic proposed, e.g., in [22, 4, 19], the idea of which being to favor vertices
with largest degrees in the “residual graph” (the subgraph induced by the set
of candidate vertices that can extend the partial clique under construction).
The underlying motivation is that a larger degree implies a larger number of
candidates once the vertex has been added to the current clique. When using no
pheromone, or at the beginning of the search when all pheromone trails have the
same value, this heuristic actually allows ants to construct larger cliques than a
random choice. However, when combining it with pheromone learning, we have
noticed that after a hundred or so cycles, we obtain larger cliques without using
the heuristic than when using it.

2.4 Updating pheromone trails

Once each ant has constructed a clique, the amount of pheromone laying on
pheromonal components is updated according to the ACO meta-heuristic. First,
all amounts are decreased in order to simulate evaporation. This is done by
multiplying the quantity of pheromone laying on each pheromonal component
by a pheromone persistence rate ρ such that 0 ≤ ρ ≤ 1. Then, the best ant of
the cycle deposits pheromone. More precisely, let Ck ∈ {C1, . . . , CnbAnts} be the
largest clique built during the cycle (if there are several largest cliques, ties are
randomly broken), and Cbest be the largest clique built since the beginning of
the run. The quantity of pheromone laid by ant k is inversely proportional to
the gap of size between Ck and Cbest, i.e., it is equal to 1/(1+ | Cbest | − | Ck |).

This quantity of pheromone is deposited on the pheromonal components of
Ck, i.e.,

• in Vertex-AC, it is deposited on each vertex of Ck,

• in Edge-AC, it is deposited on each edge connecting two different vertices
of Ck.
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2.5 Time complexity of Vertex-AC and Edge-AC

Let nbMaxCycles and nbAnts respectively be the maximum number of cycles and
the number of ants. In the worst case (if an optimal solution is not found), both
Vertex-AC and Edge-AC will have to construct nbMaxCycles.nbAnts maximal
cliques, and to perform nbMaxCycles pheromone updating steps.

To construct a maximal clique, the two proposed algorithms nearly perform
the same number of operations. Indeed, to construct a clique C, both algorithms
perform | C | −1 times the “while” loop. At each iteration of this loop, both
algorithms have to: (i) compute probabilities for all candidates, (ii) choose a
vertex with respect to these probabilities, and (iii) update the list of candidates.
These three steps take a linear time with respect to the number of candidate
vertices1. At the first iteration, the number of candidate vertices is equal to the
degree of the initial vertex, and it decreases at each iteration. Hence, in the
worst case, the complexity of the construction of a clique in a graph G, for both
Vertex-AC and Edge-AC, is in O(ω(G).maxd(G)), where ω(G) is the size of the
maximum clique of G, and maxd◦(G) is the maximum vertex degree in G. Note
that both ω(G) and maxd◦(G) are bounded by the number of vertices of G.

To update pheromone trails laying on pheromonal components of a graph
G = (V,E), the two algorithms perform a different number of operations:

• In Vertex-AC, the evaporation step requires O(| V |) operations and the
reward of a clique C requires O(| C |) operations. As | C |≤| V |, the whole
pheromone updating step requires O(| V |) operations.

• In Edge-AC, the evaporation step requires O(| E |) operations and the
reward of a clique C requires O(| C |2) operations. As | C |2≤| E |, the
whole pheromone updating step requires O(| E |) operations.

Hence, the overall time complexity of Vertex-AC is in

O(nbCycles(nbAnts.ω(G).maxd◦(G)+ | V |))

whereas the overall time complexity for performing one cycle of Edge-AC is in

O(nbCycles(nbAnts.ω(G).maxd◦(G)+ | E |))

3 Experimental study on the C500.9 instance

When solving a combinatorial optimization problem with a heuristic approach
such as evolutionary computation or ACO, one usually has to find a compromise
between two dual goals. On one hand, one has to intensify the search around the
most “promising” areas, that are usually close to the best solutions found so far.
On the other hand, one has to diversify the search and favor exploration in order

1Remember that, as pointed out in 2.3, pheromone factors in Edge-AC are computed in an
incremental way, i.e., each time a new vertex is added to the clique, the pheromone factor of
each candidate vertex is updated by a simple addition.
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to discover new, and hopefully more successful, areas of the search space. The
behavior of ants with respect to this intensification/diversification duality can
be influenced by modifying parameter values [1]. In particular, diversification
can be emphasized either by decreasing the value of the pheromone factor weight
α —so that ants become less sensitive to pheromone trails— or by increasing
the value of the pheromone persistence rate ρ —so that pheromone evaporates
more slowly. When increasing the exploratory ability of ants in this way, one
usually finds better solutions, but as a counterpart it takes longer time to find
them.

In this section, we first illustrate the influence of these two parameters on
solutions quality for the two proposed algorithms. Then, we provide an insight
into the influence of these parameters on intensification/diversification by means
of two diversity measures. This study is performed on instance C500.9 of the
DIMACS benchmark set. This instance, which has 500 vertices and 112, 332
edges, is a rather difficult one, for which our two ACO algorithms have difficulties
in finding the maximum clique (which contains 57 vertices).

3.1 Influence of α and ρ on the solution process

Figure 2 illustrates the influence of the pheromone factor weight α and the
pheromone persistence rate ρ when solving the C500.9 instance. On this figure,
one can first note that when α = 0 and ρ = 1, the best constructed cliques
are much smaller: in this case, pheromone is totally ignored and the resulting
search process performs as a random one so that after 500 or so cycles, the size
of the best clique nearly stops increasing, and hardly reaches 48 vertices. This
shows that pheromone actually improves the solution process with respect to a
pure random algorithm.

For both algorithms, we remark that α and ρ influence the solution process in
a very similar way: when α increases or ρ decreases, ants are able to find better
solutions quicker. However, after a thousand or so cycles, both algorithms find
better solutions when α is set to 1 and ρ to 0.99 or 0.995 than when α is set to
2 or ρ to 0.98. Hence, the setting of α and ρ let us balance between two main
tendencies. On one hand, when limiting the influence of pheromone with a low
pheromone factor weight and a high pheromone persistence rate, the quality of
the final solution is better, but the time needed to converge on this value is also
higher. On the other hand, when increasing the influence of pheromone with a
higher pheromone factor weight and a lower pheromone persistence rate, ants
find better solutions during the first cycles, but after 500 or so cycles, they are
no longer able to find better solutions.

When comparing Edge-AC (upper curves) with Vertex-AC (lower curves),
one can note that after 2500 cycles, the best cliques found by Edge-AC are
slightly larger than the best ones found by Vertex-AC. For example, when set-
ting α to 1 and ρ to 0.99, the average size of the best constructed cliques is
equal to 55.6 for Edge-AC and to 55.2 for Vertex-AC. Moreover, three runs of
Edge-AC (over the fifty performed runs) have been able to find a clique of 57
vertices, whereas Vertex-AC only found cliques of 56 or less vertices.
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Figure 2: Influence of pheromone on the solution process of Edge-AC (upper
curves) and Vertex-AC (lower curves): each curve plots the evolution of the
size of the best constructed clique (average on 50 runs), when the number of
cycles increases, for a given setting of α and ρ. The other parameters have been
set to nbAnts = 30, τmin = 0.01, and τmax = 6.
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However, if Edge-AC is able to find better cliques, it needs more cycles to
converge towards them. For example, when setting α to 1 and ρ to 0.99, the
average number of cycles needed to find the best clique respectively is equal to
923 for Edge-AC and to 722 for Vertex-AC. Moreover, as discussed in section
2.5, each cycle of Edge-AC takes a longer time to perform than Vertex-AC: on
this instance, in one second of CPU-time, Edge-AC and Vertex-AC respectively
perform 104 and 188 cycles. Hence, to find their best cliques, Edge-AC and
Vertex-AC respectively need 8.9 and 3.8 seconds on average.

As a conclusion, on instance C500.9, the two algorithms behave in a rather
similar way at run time with respect to pheromone parameters, and a good
compromise between solution quality and CPU time is reached when α is set to
1 and ρ to 0.99. With such a parameter setting, Vertex-AC is more than twice
as fast as Edge-AC to find its best clique, but the best clique found by Edge-AC is
slightly better, on average, than the one found by Vertex-AC, and Edge-AC has
been able to find the best known solution for 6% of its runs, whereas Vertex-AC
never reached it.

3.2 Measuring the diversity at run time

To provide an insight into algorithms performances, and to explicit the influ-
ence of pheromone on the capability of ants to explore the search space, we now
propose to measure the diversity of the computed solutions at run time. Many
diversity measures have been introduced for evolutionary approaches. Indeed,
maintaining population diversity is a key point to prevent from premature con-
vergence and stagnation. Most commonly used diversity measures include the
number of different fitness values, the number of different structural individuals,
and distances between individuals [7].

To measure the diversification effort of Ant-clique at run time, we propose
in this paper to compute the re-sampling and the diversification ratio.

Re-sampling ratio. This measure is used, e.g., in [35, 34], in order to get
insight into how efficient algorithms are in sampling the search space: if we define
nbDiff as the set of unique candidate solutions generated by an algorithm over a
whole run and nbTot as the total number of generated candidate solutions, then
the re-sampling ratio is defined as (nbTot - nbDiff)/nbTot. Values close to 0
correspond with an efficient search, i.e., not many duplicate candidate solutions
are generated, whereas values close to 1 indicate a stagnation of the search
process around a small set of solutions.

Table 1 provides an insight into the two algorithms performances by means
of this re-sampling ratio. This table shows that Vertex-AC is less efficient than
Edge-AC in sampling the search space as it often generates cliques that have
already been previously generated. For example, when setting α to 1 and ρ
to 0.99, 7% of the cliques computed by Vertex-AC during the first thousand of
cycles had already been computed. This re-sampling ratio increases very quickly
and reaches 48% at cycle 2500, i.e., nearly half of the cliques computed during
each run already had been computed before. As a comparison, with the same
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Table 1: Evolution of the re-sampling ratio for Edge-AC and Vertex-AC. Each
line successively displays the setting of α and ρ, and the re-sampling ratio af-
ter 500, 1000, 1500, 2000, and 2500 cycles (average on 50 runs). The other
parameters have been set to nbAnts = 30, τmin = 0.01, τmax = 6.

Re-sampling ratio for Edge-AC
Number of cycles: 500 1000 1500 2000 2500
α = 1, ρ = 0.995 0.00 0.00 0.00 0.00 0.00
α = 1, ρ = 0.99 0.00 0.00 0.00 0.00 0.00
α = 2, ρ = 0.99 0.00 0.04 0.06 0.07 0.07
α = 2, ρ = 0.98 0.06 0.10 0.12 0.13 0.13

Re-sampling ratio for Vertex-AC
Number of cycles: 500 1000 1500 2000 2500
α = 1, ρ = 0.995 0.00 0.00 0.02 0.13 0.25
α = 1, ρ = 0.99 0.00 0.07 0.26 0.39 0.48
α = 2, ρ = 0.99 0.38 0.68 0.78 0.84 0.87
α = 2, ρ = 0.98 0.58 0.78 0.85 0.88 0.91

parameter setting, Edge-AC nearly never computes twice a same clique during
a same run, so that it actually explores twice more states in the search space.

The re-sampling ratio allows one to quantify the size of the searched space,
and shows that Edge-AC has a higher search capability than Vertex-AC (for
the considered C500.9 instance). However, the re-sampling ratio gives no infor-
mation about the distribution of the computed cliques within the whole search
space. Hence, to provide a complementary insight into algorithms performances,
we propose to compute a similarity ratio which indicates how much the com-
puted cliques are similar.

Similarity ratio. This ratio corresponds to the pair-wise population diversity
measure, introduced for genetic approaches, e.g., in [30, 29]. More precisely, we
define the similarity ratio of a set of cliques S by the average number of vertices
that are shared by any pair of cliques in S, divided by the average size of the
cliques of S. Hence, this ratio is equal to one if all the cliques of S are identical,
whereas it is equal to zero if the intersection of every pair of cliques of S is
empty. Note that this ratio can be computed very quickly by maintaining an
array freq such that, for every vertex vi ∈ V , freq[i] is equal to the number
of cliques of S which have selected vertex vi. In this case, the similarity ratio

of S is equal to
∑

vi∈V
(freq[i].(freq[i]−1))

(|S|−1).
∑

Ck∈S
|Ck|

and it can be easily computed in an

incremental way while constructing cliques.
Figure 3 plots the similarity ratio of the cliques computed every 50 cycles,

thus giving an information about the distribution of the set of cliques computed
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Figure 3: Evolution of the similarity ratio for Edge-AC (upper curves) and
Vertex-AC (lower curves): each curve plots the similarity ratio of the set of
cliques constructed every 50 cycles (average on 50 runs), for a given setting
of α and ρ. The other parameters have been set to nbAnts=30, τmin = 0.01,
τmax = 6.
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during these 50 cycles. For example, let us consider the curve plotting the
evolution of the similarity ratio for Edge-AC when α is set to 1 and ρ to 0.99.
The similarity increases from less than 10% at the beginning of the solution
process to 45% after a thousand or so cycles. This shows that ants progressively
focus to a sub-region of the search space, so that two cliques constructed after
cycle 1000 share nearly half of their vertices on average.

Figure 3 also shows that, when α increases or ρ decreases, the similarity ratio
both increases sooner and rises more steeply. However, for each algorithm, the
similarity ratio of all runs converges towards a same value, for all the considered
settings of α and ρ: after two thousands or so cycles, the cliques computed by
Edge-AC during every cycle share around 45% of their vertices whereas those
computed by Vertex-AC share around 90% of their vertices.

The difference of diversification between the two considered algorithms may
be explained by the choice made about their pheromonal components. Indeed,
the considered C500.9 instance has 500 vertices, so that in Vertex-AC ants may
lay pheromone on 500 components, whereas in Edge-AC they may lay pheromone
on 500 ∗ 499/2 components. Let us now consider the two cliques that are re-
warded at the end of the first two cycles of a run. For both Vertex-AC and
Edge-AC, these two cliques contain 44 vertices on average (see Fig. 2), and their
similarity ratio is lower than 10% (see Fig. 3) so that they share 4 vertices on av-
erage. Under this hypothesis, after the first two cycles of Vertex-AC, 4 vertices
—corresponding to 1% of the pheromonal components— have been rewarded
twice, and 80 vertices —corresponding to 16% of the pheromone components—
have been rewarded once. As a comparison, under the same hypothesis, after
the first two cycles of Edge-AC, 6 edges —corresponding to less than 0.005%
of the pheromonal components— have been rewarded twice, and 940 edges —
corresponding to less than 0.8% of the pheromonal components— have been
rewarded once. This explains why the search of Edge-AC is much more diversi-
fied than the one of Vertex-AC, and therefore why Edge-AC needs more time to
converge, but as a counterpart, often finds better solutions than Vertex-AC.

4 Boosting ACO with local search

Basically, local search searches for a locally optimal solution in the neighbor-
hood of a given constructed solution. Local search may be combined with the
ACO meta-heuristic in a very straightforward way: ants construct solutions
exploiting pheromone trails, and local search improves their quality by itera-
tively performing local moves. Actually, the best-performing ACO algorithms
for many combinatorial optimization problems are hybrid algorithms that com-
bine probabilistic solution construction by a colony of ants with local search
[11, 33, 32].

In this section, we study the benefit of integrating local search within Vertex-AC
and Edge-AC. The hybrid algorithm is derived from the algorithm of Figure 1 as
follows: once each ant has constructed a clique, and before updating pheromone
trails, we apply a local search procedure on the largest clique of the cycle until
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Figure 4: Evolution of the size of the best clique (average on 50 runs), with local
search (Edge-AC + LS) or without local search (Edge-AC), and with pheromone
(alpha=1, rho=0.99) or without pheromone (alpha=0, rho=1.00). The other
parameters have been set to nbAnts=30, τmin = 0.01, and τmax = 6.

it becomes locally optimal2. Pheromone trails are then updated with respect to
this locally optimal clique.

Various local search procedures may be used to improve cliques, e.g., [3, 4,
27]. However, as pointed out in [25], when choosing the local search procedure
to use in a meta-heuristic such as evolutionary algorithms, iterated local search
or ACO, one has to find a trade-off between computation time and solution
quality. In other words, one has to choose between a fast but not-so-good local
search procedure or a slower but more drastic one.

For all experiments reported in this paper, we have considered the (2,1)-
exchange procedure used in GRASP [3]: given a clique C, this local search proce-
dure looks for three vertices vi, vj and vk such that
- vi belongs to C,
- vj and vk do not belong to C,
- vj and vk are linked by an edge, and
- vj and vk are adjacent to every vertex of C − {vi};
then, it replaces the vertex vi by the two vertices vj and vk, thus increasing
the clique size by one. This local search procedure is iterated until it reaches a
locally optimal state that cannot be improved by such a (2,1)-exchange.

Figure 4 shows that this local search procedure actually boosts the perfor-
2Local search could be applied to every computed clique (instead of applying it only to

the best clique of the cycle). However, experiments showed us that this does not improve
significantly solutions quality, whereas it is much more time consuming.
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mances of Edge-AC when solving the C500.9 instance. In particular, when α
is set to 0 and ρ to 1, i.e., when pheromone is not used, the local search pro-
cedure roughly increases the size of the constructed cliques by four, and this
improvement in quality is constant during the whole run. When α is set to 1
and ρ to 0.99, so that pheromone actually influences the solution process, local
search also improves the quality of the cliques constructed by Edge-AC, but the
improvement in quality is not constant during the run: at the beginning of the
run, local search increases cliques by four vertices; however, after a thousand or
so cycles, the improvement in quality is much smaller; finally, at the end of the
run, the best clique found when combining Edge-AC with local search contains
55.9 vertices on average, i.e., it improves the results of Edge-AC of 0.3.

Local search also boosts the performances of Vertex-AC, in a very similar
way than for Edge-AC: for the C500.9 instance, it increases the average quality
of the best clique after 2500 cycles from 55.2 to 55.4.

5 Experimental comparison of ACO algorithms

In this section, we experimentally evaluate and compare the four proposed ACO
algorithms: Edge-AC, Vertex-AC, Edge-AC combined with local search (referred
to as Edge-AC+LS) and Vertex-AC combined with local search (referred to as
Vertex-AC+LS).

Experimental setup. All algorithms have been implemented in C and run
on a 1.9 GHz Pentium 4 processor, under Linux operating system.

In all experiments, we have set α to 1 and ρ to 0.99, thus achieving a good
compromise between solution quality and CPU-time as discussed in section 3.

The number of ants has been set to 30: with lower values, solution quality
is decreased (as the best clique constructed at each cycle usually is significantly
smaller); with greater values, the running time increases while solution quality
is not significantly improved (as the best clique constructed at each cycle is not
significantly better than with 30 ants).

The maximum number of cycles has been set to 5000. Indeed, for many
instances all algorithms have converged to the best solutions within the first
three thousands of cycles. However, on larger instances —that have more than
one thousand of vertices— Edge-AC may need more cycles to converge so that
we have fixed the maximum number of cycles to 5000 for all instances.

Finally, we have set the pheromone bounds τmin to 0.01, and τmax to 6.

Test suite. We consider 36 benchmark graphs provided by the DIMACS chal-
lenge on clique coloring and satisfiability3. Cn.p and DSJCn.p graphs have n
vertices and a density of 0.p; MANN a27 and MANN a45 respectively have 378
and 1035 vertices, and a density of 0.99; brockn m graphs have n vertices;
genxxx p0.9yy graphs have xxx vertices, a density of 0.9 and maximum cliques

3These graphs are available at http://dimacs.rutgers.edu/.
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of size yy; hamming8-4 and hamming10-4 respectively have 256 and 1024 ver-
tices; keller 4, 5 and 6 graphs respectively have 171, 776 and 3361 vertices;
and p hatn−m graphs have n vertices.

Comparison of solutions quality. Table 2 shows that Edge-AC outperforms
Vertex-AC by means of solutions quality: when considering average results over
the 50 runs, Edge-AC has found larger cliques than Vertex-AC for 21 instances,
whereas it has found smaller cliques for 2 instances only. Moreover, Edge-AC has
been able to find the best known solution for 29 instances, whereas Vertex-AC
has found it for 24 instances.

This table also shows that local search improves the solution process of
both algorithms for many instances: for Vertex-AC, the integration of local
search improves average results for 22 instances, whereas it deteriorates them
for 1 instance, and for Edge-AC, the integration of local search improves average
results for 16 instances, whereas it deteriorates them for 2 instances.

Edge-AC+LS is the best performing of the four proposed algorithms, for a
majority of instances, and it has been able to find the best known solution
for 31 instances, over the 36 considered instances. However, for 2 instances
(brock400 2 and keller6), Edge-AC has found the best known solution whereas
Edge-AC+LS did not.

Comparison of CPU time. Table 3 first shows that, for each considered
algorithm, the number of cycles —and therefore the CPU time— needed to find
the best solution mainly depends on the number of vertices and the connec-
tivity of the graph. For example, Edge-AC respectively performs, on average,
473, 923, 2359, and 3278 cycles to solve the C250.9, C500.9, C1000.9, and
C2000.9 instances that respectively have 250, 500, 1000 and 2000 vertices and a
connectivity close to 0.9, whereas it performs 1062 cycles to solve the C2000.5
instances that have 2000 vertices and a connectivity of 0.5.

Table 3 also shows that Vertex-AC nearly always performs less cycles than
Edge-AC and, on average for all instances, it needs 1.8 times less cycles to
converge towards its best solution. When considering CPU-times, the difference
becomes more important as Edge-AC needs more time to perform one cycle than
Vertex-AC. Hence, Vertex-AC is from 1.5 to 26 times as fast as Edge-AC, and
it is 5.7 times as fast on average for all instances.

Finally, one can remark that the integration of local search always decreases
the number of cycles: on average, both Vertex-AC+LS and Edge-AC+LS perform
1.8 times less cycles than Vertex-AC and Edge-AC respectively. However, as
local search is time consuming, CPU-times are rather comparable.
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Table 2: Comparison of ACO algorithms by means of solutions quality. Each
line successively displays the instance name, the size of its maximum clique, and
the results obtained by Vertex-AC, Edge-AC, Vertex-AC+LS, and Edge-AC+LS
(best and average solution found over 50 runs; standard deviation in brackets).

Size of the best found clique
Vertex-AC Edge-AC Vertex-AC+LS Edge-AC+LS

Graph ω(G) Max Avg(Stdv) Max Avg(Stdv) Max Avg(Stdv) Max Avg(Stdv)

C125.9 34 34 34.0 (0.0) 34 34.0 (0.0) 34 34.0 (0.0) 34 34.0 (0.0)
C250.9 44 44 43.9 (0.3) 44 44.0 (0.0) 44 44.0 (0.1) 44 44.0 (0.0)
C500.9 ≥57 56 55.2 (0.8) 57 55.6 (0.8) 56 55.4 (0.8) 57 55.9 (0.6)
C1000.9 ≥68 67 65.3 (1.0) 67 66.0 (0.8) 67 65.7 (0.6) 68 66.2 (0.7)
C2000.9 ≥78 76 73.4 (1.1) 76 74.1 (1.3) 77 74.5 (1.1) 78 74.3 (1.4)

DSJC500.5 14 13 13.0 (0.0) 13 13.0 (0.0) 13 13.0 (0.0) 13 13.0 (0.0)
DSJC1000.5 15 15 14.1 (0.3) 15 14.1 (0.4) 15 14.2 (0.4) 15 14.3 (0.4)

C2000.5 ≥16 16 14.9 (0.4) 16 15.1 (0.3) 16 15.1 (0.3) 16 15.3 (0.5)
C4000.5 ≥18 17 15.9 (0.4) 16 15.8 (0.4) 17 16.2 (0.4) 18 16.8 (0.6)

MANN a27 126 126 125.5 (0.5) 126 126.0 (0.2) 126 125.8 (0.4) 126 126.0 (0.0)
MANN a45 345 344 342.8 (0.8) 344 343.3 (0.6) 344 342.6 (0.7) 344 342.9 (0.6)

brock200 2 12 12 11.9 (0.2) 12 12.0 (0.0) 12 11.9 (0.4) 12 12.0 (0.0)
brock200 4 17 17 16.1 (0.3) 17 16.8 (0.4) 17 16.1 (0.3) 17 16.8 (0.4)
brock400 2 29 25 24.5 (0.5) 29 25.0 (0.7) 25 24.7 (0.5) 25 24.8 (0.4)
brock400 4 33 25 24.0 (0.1) 33 25.1 (2.7) 25 24.2 (0.4) 33 27.1 (4.0)
brock800 2 24 21 20.0 (0.5) 21 19.8 (0.5) 21 20.4 (0.5) 24 20.1 (0.6)
brock800 4 26 21 19.8 (0.6) 26 19.9 (1.0) 21 20.2 (0.4) 26 20.0 (0.8)

gen200 p0.9 44 44 44 41.4 (1.9) 44 43.7 (1.1) 44 43.3 (1.5) 44 44.0 (0.0)
gen200 p0.9 55 55 55 55.0 (0.0) 55 55.0 (0.0) 55 55.0 (0.0) 55 55.0 (0.0)
gen400 p0.9 55 55 52 51.2 (0.5) 53 51.9 (0.5) 52 51.3 (0.5) 53 52.2 (0.4)
gen400 p0.9 65 65 65 65.0 (0.0) 65 65.0 (0.0) 65 65.0 (0.0) 65 65.0 (0.0)
gen400 p0.9 75 75 75 75.0 (0.0) 75 75.0 (0.0) 75 75.0 (0.0) 75 75.0 (0.0)

hamming8 4 16 16 16.0 (0.0) 16 16.0 (0.0) 16 16.0 (0.0) 16 16.0 (0.0)
hamming10 4 40 40 38.0 (1.5) 40 38.6 (1.2) 39 38.7 (0.6) 40 39.3 (0.9)

keller4 11 11 11.0 (0.0) 11 11.0 (0.0) 11 11.0 (0.0) 11 11.0 (0.0)
keller5 27 27 26.7 (0.5) 27 26.9 (0.2) 27 26.9 (0.3) 27 27.0 (0.0)
keller6 ≥59 55 50.8 (1.9) 59 53.1 (1.7) 55 51.5 (1.5) 57 55.1 (1.3)

p hat300 1 8 8 8.0 (0.0) 8 8.0 (0.0) 8 8.0 (0.0) 8 8.0 (0.0)
p hat300 2 25 25 25.0 (0.0) 25 25.0 (0.0) 25 25.0 (0.0) 25 25.0 (0.0)
p hat300 3 36 36 35.9 (0.5) 36 36.0 (0.1) 36 36.0 (0.3) 36 36.0 (0.0)
p hat700 1 11 11 10.8 (0.4) 11 11.0 (0.1) 11 10.9 (0.3) 11 11.0 (0.1)
p hat700 2 44 44 44.0 (0.0) 44 44.0 (0.0) 44 44.0 (0.0) 44 44.0 (0.0)
p hat700 3 ≥62 62 62.0 (0.0) 62 62.0 (0.0) 62 62.0 (0.0) 62 62.0 (0.0)
p hat1500 1 12 12 11.0 (0.2) 12 11.1 (0.3) 12 11.2 (0.4) 12 11.1 (0.2)
p hat1500 2 ≥65 65 64.9 (0.2) 65 64.9 (0.2) 65 65.0 (0.0) 65 65.0 (0.0)
p hat1500 3 ≥94 94 93.1 (0.2) 94 93.9 (0.4) 94 93.6 (0.5) 94 94.0 (0.0)
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Table 3: Comparison of ACO algorithms by means of CPU-time. Each line
successively displays the number of cycles (average on 50 runs) and the CPU-
time (average and standard deviation on 50 runs) for Vertex-AC, Edge-AC,
Vertex-AC+LS, and Edge-AC+LS.

Number of cycles and time to find the best clique
Vertex-AC Edge-AC Vertex-AC+LS Edge-AC+LS

Graph Cycles Time(Stdv) Cycles Time(Stdv) Cycles Time(Stdv) Cycles Time(Stdv)

C125.9 60 0.1 (0.0) 126 0.2 (0.1) 14 0.0 (0.0) 23 0.0 (0.0)
C250.9 359 0.8 (0.7) 473 1.7 (0.3) 172 0.5 (0.1) 239 1.0 (0.3)
C500.9 722 3.8 (1.9) 923 8.9 (4.0) 477 4.6 (2.7) 671 8.6 (4.7)
C1000.9 1219 13.2 (5.8) 2359 55.0 (21.9) 832 23.4 (8.5) 1242 49.8 (26.6)
C2000.9 1770 41.3 (11.0) 3278 214.4 (49.8) 1427 112.4 (16.8) 2067 238.7 (98.3)

DSJC500.5 588 0.5 (0.2) 832 2.6 (1.8) 249 0.7 (0.5) 285 1.4 (1.3)
DSJC1000.5 820 1.4 (1.0) 1017 9.6 (6.4) 561 3.8 (4.0) 567 7.8 (8.8)

C2000.5 957 3.3 (3.0) 1062 30.4 (16.8) 312 5.9 (5.7) 957 40.6 (56.0)
C4000.5 927 6.0 (5.1) 1116 108.3 (73.8) 445 22.4 (33.1) 1915 257.6 (190.2)

MANN a27 616 11.5 (3.5) 2274 61.7 (25.3) 574 11.1 (4.9) 1824 44.8 (19.3)
MANN a45 1771 271.3 (77.0) 4360 877.4 (69.1) 1498 239.2 (56.9) 3639 749.4 (132.5)

brock200 2 115 0.0 (0.0) 127 0.1 (0.1) 104 0.1 (0.1) 115 0.1 (0.1)
brock200 4 156 0.1 (0.0) 1627 1.3 (1.2) 69 0.1 (0.0) 1356 1.7 (1.9)
brock400 2 650 1.0 (0.6) 1004 3.5 (1.9) 424 1.4 (0.6) 720 3.8 (3.5)
brock400 4 498 0.8 (0.2) 977 3.4 (3.3) 254 0.8 (0.4) 1141 5.7 (6.3)
brock800 2 1145 2.6 (1.1) 1238 9.1 (6.1) 881 6.3 (3.6) 959 11.6 (10.5)
brock800 4 1173 2.7 (1.0) 1288 9.8 (7.1) 858 6.1 (2.5) 906 11.1 (10.7)

gen200 p0.9 44 297 0.6 (0.2) 338 0.9 (0.2) 136 0.3 (0.1) 165 0.5 (0.1)
gen200 p0.9 55 102 0.2 (0.0) 130 0.3 (0.1) 57 0.2 (0.0) 100 0.3 (0.1)
gen400 p0.9 55 475 2.0 (1.2) 1634 11.5 (6.4) 270 1.8 (0.6) 760 6.7 (3.7)
gen400 p0.9 65 337 1.4 (0.2) 391 2.7 (0.3) 206 1.5 (0.1) 255 2.3 (0.3)
gen400 p0.9 75 251 1.0 (0.1) 293 2.1 (0.2) 153 1.2 (0.1) 198 2.1 (0.2)

hamming8 4 34 0.0 (0.0) 42 0.1 (0.0) 49 0.1 (0.1) 42 0.1 (0.1)
hamming10 4 2308 13.7 (1.9) 1474 28.0 (10.5) 1204 26.2 (17.3) 865 29.3 (16.3)

keller4 2 0.0 (0.0) 2 0.0 (0.0) 0 0.0 (0.0) 0 0.0 (0.0)
keller5 1652 4.9 (1.2) 1136 10.8 (7.9) 979 9.4 (6.0) 830 12.3 (9.7)
keller6 2514 55.3 (15.2) 3034 308.8 (111.8) 1657 206.8 (145.3) 2617 549.2 (250.6)

p hat300 1 40 0.0 (0.0) 46 0.0 (0.0) 18 0.0 (0.0) 20 0.0 (0.0)
p hat300 2 113 0.1 (0.0) 206 0.3 (0.1) 26 0.1 (0.0) 54 0.2 (0.1)
p hat300 3 281 0.5 (0.5) 457 1.3 (0.3) 110 0.3 (0.1) 176 0.7 (0.2)
p hat700 1 379 0.2 (0.1) 624 2.6 (1.6) 253 0.7 (0.3) 391 2.4 (2.0)
p hat700 2 297 0.7 (0.1) 445 3.2 (0.6) 128 2.0 (0.6) 227 4.5 (1.0)
p hat700 3 575 3.0 (2.2) 878 9.8 (3.2) 220 3.8 (1.0) 333 7.8 (1.4)
p hat1500 1 391 0.4 (0.3) 662 10.5 (8.5) 318 3.0 (4.4) 438 9.7 (17.0)
p hat1500 2 499 3.3 (1.0) 801 20.1 (4.9) 238 17.3 (2.7) 379 35.2 (3.9)
p hat1500 3 581 8.6 (6.5) 2199 74.3 (41.6) 551 37.0 (34.4) 528 54.9 (8.8)

19



6 Experimental comparison with other heuristic
approaches

We now compare Edge-AC+LS, which is our best performing ACO algorithm on
a majority of instances, with three recent and representative algorithms, i.e.,
RLS, DAGS, and GLS.

RLS (Reactive Local Search) [4] is based on a tabu local search heuristic.
Starting from an empty clique, RLS iteratively moves in the search space com-
posed of all cliques by adding/removing one vertex to/from the current clique.
A tabu list is used to memorize the T last moves and, at each step, RLS greedily
selects a move that is not prohibited by the tabu list. The key point is that the
length T of the tabu list is dynamically updated with respect to the need for
diversification. RLS appears to be the best heuristic algorithm for the maximum
clique problem we are aware of for a majority of DIMACS benchmark instances.

Table 4 displays results reported in [4], where CPU times have been multi-
plied by 0.027, corresponding to the ratio of speed of computers with respect to
the Spec benchmark on floating point units.

DAGS [19] is a two-phase procedure: in a first phase, a greedy procedure
combined with “swap” local moves is applied, starting from each node of the
graph; in a second phase, nodes are scored with respect to the number of times
they have been selected during the first phase, and an adaptive greedy algorithm
is repeatedly started to build cliques around the nodes with the least scores, in
order to diversify the search towards less explored areas.

Experiments reported in [19] show that the first phase is able to find best
known solutions for many instances. For harder instances, the second phase
improves solutions quality in many cases. This improvement in quality is dra-
matic on the set of brock instances, that are known to be very difficult for
greedy approaches. For these instances, DAGS outperforms RLS performances.

Table 4 displays results reported in [19]. Note that the second phase of
DAGS has been performed only for the harder instances, that have not been
solved during the first phase. Hence, we specify in table 4 if these results have
been obtained after the first or the second phase. We multiplied CPU times by
0.84, corresponding to the ratio of speed of computers with respect to the Spec
benchmark on floating point units.

GLS [27] combines a genetic algorithm with local search, and we consider it
for comparison, though it does not outperforms the performances of RLS and
DAGS, because it presents some similarities with ACO: both approaches use a
bio-inspired metaphor to intensify the search towards the most “promising”
areas with respect to previously computed solutions. GLS generates successive
populations of maximal cliques from an initial one by repeatedly selecting two
parent cliques from the current population, recombining them to generate two
children cliques, applying local search on children to obtain maximal cliques,
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and adding to the new population the best two cliques of parents and children.
GLS can be instantiated to different algorithms by modifying its parameters. In
particular, [27] compares results obtained by the three following instances of
GLS: GENE performs genetic local search; ITER performs iterated local search,
starting from one random point; and MULT performs multi-start local search,
starting from a new random point at each time.

Table 4 displays, for each considered instance, the results obtained by the
GLS algorithm (over GENE, ITER, and MULT) that obtained the best average re-
sults. We multiplied CPU times by 0.037, corresponding to the ratio of speed
of computers with respect to the Spec benchmark on floating point units.

By means of solutions quality, the results of table 4 can be summarized in
the following table, giving for each heuristic approach, the number of times
Edge-AC+LS has found larger (+), equal (=), and smaller (−) cliques.

Comparison of Edge-AC+LS with
RLS DAGS GLS

+ = − + = − + = −
Best clique 2 30 4 2 29 1 11 23 2
Average size 0 20 16 6 15 11 28 7 1

Hence, when considering the best found results, Edge-AC+LS is competitive
with both RLS and DAGS, being able to find better solutions than RLS on two
brock instances, and better solutions than DAGS on two C*.9 instances. How-
ever, when considering average results RLS outperforms Edge-AC+LS on 16 in-
stances. The comparison with DAGS on average results depends on the consid-
ered instances. In particular, DAGS outperforms Edge-AC+LS on brock instances,
whereas Edge-AC+LS outperforms DAGS on gen instances.

This table also shows that Edge-AC+LS outperforms GLS both with respect
to best and average results. Hence, for this problem ACO is better suited than
evolutionary computation for guiding the search towards promising areas.

When considering CPU-times reported in table 4, one can note that Edge-AC+LS
is an order slower than RLS and GLS, whereas it is rather comparable with DAGS:
Edge-AC+LS is quicker than DAGS for 24 instances, and it is slower for 8 instances.

7 Conclusion

We have described two basic ACO algorithms for searching for maximum cliques.
These two algorithms differ in the choice of their pheromonal components. A
main motivation was to answer the following question: should we lay pheromone
on the vertices or on the edges of the graph?

Experiments have shown that both algorithms are able to find optimal solu-
tions on many benchmark instances, showing that ACO is actually able to guide
the search towards promising areas. However, when comparing the diversifica-
tion capability of the two algorithms, by means of re-sampling and similarity
ratio, we have noticed that the search is more diversified when pheromone is laid
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Table 4: Comparison of Edge-AC+LS with other heuristic approaches. Each line
successively displays the results obtained by Edge-AC+LS, RLS, DAGS (followed
by (1) or (2) if they have been obtained after the first or the second phase), and
GLS (followed by (G), (I), or (M) if they have been obtained by GENE, ITER, or
MULT). For each approach, the table reports the best and average solution found
(over 50 runs for Edge-AC+LS, 100 runs for RLS, 20 runs DAGS, and 10 runs for
GLS), and the estimated CPU-time w.r.t. the Spec floating points benchmark.

Edge-AC+LS RLS DAGS GLS

Graph Max Avg Time Max Avg Time Max Avg Time Max Avg Time

C125.9 34 34.0 0.0 34 34.0 0.0 34 34.0 0.2 (1) 34 34.0 0.0 (I)
C250.9 44 44.0 1.0 44 44.0 0.0 44 44.0 0.7 (1) 44 43.0 0.1 (I)
C500.9 57 55.9 8.6 57 57.0 0.0 56 55.8 13.5 (2) 55 52.7 0.1 (I)
C1000.9 68 66.2 49.8 68 68.0 1.1 68 65.9 148.2 (2) 66 61.6 0.5 (G)
C2000.9 78 74.3 238.7 78 77.6 22.1 76 75.4 1824.0 (2) 70 68.7 0.9 (I)

DSJC500.5 13 13.0 1.4 13 13.0 0.0 - - - - 13 12.2 0.1 (G)
DSJC1000.5 15 14.3 7.8 15 15.0 0.2 - - - - 14 13.5 0.1 (I)

C2000.5 16 15.3 40.6 16 16.0 0.3 16 15.9 24.8 (1) 15 14.2 0.1 (I)
C4000.5 18 16.8 257.6 18 18.0 58.7 18 17.5 3229.0 (2) 16 15.6 0.6 (I)

MANN a27 126 126.0 44.8 126 126.0 0.1 126 126.0 6.1 (1) 126 126.0 0.6 (I)
MANN a45 344 342.9 749.4 345 343.6 10.7 344 343.9 1921.0 (2) 345 343.1 2.0 (I)

brock200 2 12 12.0 0.1 12 12.0 0.3 12 12.0 0.1 (2) 12 12.0 0.1 (M)
brock200 4 17 16.8 1.7 17 17.0 0.5 17 16.8 0.3 (2) 17 15.7 0.1 (M)
brock400 2 25 24.8 3.8 29 26.0 1.1 29 28.1 2.8 (2) 25 23.2 0.1 (I)
brock400 4 33 27.1 5.7 33 32.4 2.9 33 33.0 2.8 (2) 25 23.6 0.0 (G)
brock800 2 24 20.1 11.6 21 21.0 0.1 24 20.8 16.8 (2) 20 19.3 0.2 (G)
brock800 4 26 20.0 11.1 21 21.0 0.2 26 22.6 16.9 (2) 20 19.0 0.1 (I)

gen200 p0.9 44 44 44.0 0.5 44 44.0 0.0 44 41.1 0.9 (2) 44 39.7 0.1 (G)
gen200 p0.9 55 55 55.0 0.3 55 55.0 0.0 55 55.0 0.4 (1) 55 50.8 0.1 (G)
gen400 p0.9 55 53 52.2 6.7 55 55.0 0.0 53 51.8 7.2 (2) 55 49.7 0.1 (G)
gen400 p0.9 65 65 65.0 2.3 65 65.0 0.0 65 55.4 7.3 (2) 65 53.7 0.2 (G)
gen400 p0.9 75 75 75.0 2.1 75 75.0 0.0 75 55.2 7.8 (2) 75 62.7 0.2 (I)

hamming8 4 16 16.0 0.1 16 16.0 0.0 - - 0.0 (1) 16 16.0 0.0 (G)
hamming10 4 40 39.3 29.3 40 40.0 0.0 40 40.0 12.8 (1) 40 38.2 0.2 (I)

keller4 11 11.0 0.0 11 11.0 0.0 - - 0.0 (1) 11 11.0 0.0 (G)
keller5 27 27.0 12.3 27 27.0 0.0 27 27.0 4.3 (1) 27 26.3 0.2 (I)
keller6 57 55.1 549.2 59 59.0 5.1 57 56.4 12326.0 (2) 56 52.7 1.3 (I)

p hat300 1 8 8.0 0.0 8 8.0 0.0 8 8.0 0.1 (1) 8 8 0.0 (G)
p hat300 2 25 25.0 0.2 25 25.0 0.0 25 25.0 0.5 (1) 25 25.0 0.0 (I)
p hat300 3 36 36.0 0.7 36 36.0 0.0 36 36.0 0.8 (1) 36 35.1 0.1 (I)
p hat700 1 11 11.0 2.4 11 11.0 0.0 11 11.0 0.7 (1) 11 9.9 0.1 (I)
p hat700 2 44 44.0 4.5 44 44.0 0.0 44 44.0 5.5 (1) 44 43.6 0.0 (I)
p hat700 3 62 62.0 7.8 62 62.0 0.0 62 62.0 8.5 (1) 62 61.8 0.2 (I)
p hat1500 1 12 11.1 9.7 12 12.0 0.8 12 11.7 31.1 (2) 11 10.8 0.5 (G)
p hat1500 2 65 65.0 35.2 65 65.0 0.0 65 65.0 47.7 (1) 65 63.9 0.5 (I)
p hat1500 3 94 94.0 54.9 94 94.0 0.0 94 94.0 82.2 (1) 94 93.0 0.3 (I)
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on edges so that better solutions are found on a wide majority of benchmark
instances, but as a counterpart, more time is needed to converge.

Experiments also shown that the integration of local search techniques im-
proves the solution process, and makes ACO competitive with state-of-the-art
heuristic approaches, though it is more time consuming.

We believe that this comparison of two ACO models for the maximum clique
problem could be useful to solve other similar problems. Indeed, for many com-
binatorial optimization problems such as multi-knapsacks problems or general-
ized assignment problems, the goal is to find, given an initial set of objects, the
best subset with respect to some objective function. To solve this kind of prob-
lems with ACO, one has to choose between laying pheromone on the objects to
choose, or on edges linking the objects to choose. In the first case, one will in-
crease the desirability of choosing each rewarded object independently from the
others, whereas in the second case, one will increase the desirability of choosing
together two objects. Hence, further work will concern a generalization of this
comparative study.
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