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Abstract

This paper presents an algorithm dealing with the data reduction and the ap-
proximation of 3D polygonal curves considering the inverse problem of curve sub-
division. Our method, based on the analysis of the data, allows to approximate
efficiently a set of straight 3D segments or points with a subdivision curve, in a
near optimal way in terms of control point number. It includes an extension for
subdivision rules of the Active B-Spline Curve developed by Pottmann et al. Their
method, starting with an initial curve and making it converge toward the target one,
does not need a data point parameterization, because it relies on local quadratic ap-
proximants of the curve distance function. Thus the convergence speed is better
than other existing parameterization based methods. A critical parameter of this
algorithm is the initial curve position before starting the optimization. To address
this, we have developed a theoretically demonstrated approach, analysing curva-
ture properties of B-Splines, that allows to obtain a near optimal evaluation of
the initial number and positions of control points. Moreover our original Active
Footpoint Parameterization method allows to prevent wrong matching problems
occurring particularly for self-intersecting curves. Thus the stability of the algo-
rithm is highly increased. Our method was tested on different sets of curves and
gives satisfying results regarding to approximation error, convergence speed and
compression rate. This method is in line with a larger 3D CAD object compression
scheme by piecewise subdivision surface approximation. The objective is to fit a
subdivision surface on a target patch by first fitting its boundary with a subdivision
curve whose control polygon will represent the boundary of the surface control
polyhedron.

1 Introduction

The context of this work is the Semantic-3D project (http://www.semantic-3d.net), sup-
ported by the French Research Ministry and the RNRT (Réseau National de Recherche
en Télécommunications). The objective is the low bandwidth transmission of CAD
objects, represented by 3D meshes, with multi-resolution and adaptivity properties.
Meshes are optimized in terms of triangle numbers and original NURBS information
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are not available. In this context, a 3D compression algorithm is needed but the opti-
mized tessellation and the need of a low bandwidth transmission make this problematic
very complex. The chosen approach is to convert the original object into a set of light
patches represented by subdivision surfaces. This representation will bring a high com-
pression rate adapted to a low bandwidth and to a multi-resolution displaying because
of subdivision properties. Moreover the model will be adaptive because of the prior de-
composition into surface patches. This approximation problematic can be linked with
the inverse problem for subdivision surfaces. Within this context we present an effi-
cient algorithm dealing with the inverse problem for subdivision curves whose purpose
is twice: firstly it represents a sub-problem of the surface case, and secondly, subdivi-
sion curves have the property to represent the boundary of a subdivision surface. Thus
dealing first with the boundary of a patch and then with its interior should be an ef-
ficient solution. Section 2 details the whole 3D-object compression scheme, whereas
subdivision curves are presented in section 3. Section 4 presents the related work about
smooth curve fitting and sections 5, 6 and 7 deal with the different parts of our method,
the initial curve computation, the optimization scheme and the footpoint determination.
Finally, results are presented and discussed in section 8 and an example of the surface
approximation case in presented in section 9.

2 Presentation of the whole compression process

The whole process can be decomposed into the following parts:

2.1 Decomposition into patches

Firstly the CAD objects are segmented into surface patches. The method used is based
on the curvature tensor field analysis and presents two distinct complementary steps:
a region based segmentation which decomposes the object into known and near con-
stant curvature patches, and a boundary rectification based on curvature tensor direc-
tions, which corrects boundaries by suppressing their artifacts or discontinuities. This
method is detailed in [LDB04a] and [LDB04b]. Resulting segmented patches, by
virtue of their properties (known curvature, clean boundaries) are particularly adapted
to subdivision surface fitting (see Figure 1).

2.2 Patch approximation

One of the most relevant problems in the fact of approximating an object by patches is
the apparition of cracks because each patch will be approximated by a different surface
whose boundary will not be perfectly matched with the others. A solution is to add
constraints during the fitting process but the complexity will highly increase. Indeed
if each patch has constraints with its neighbors, the algorithm will become a global
optimization problem. Another solution is to treat these cracks after the fitting pro-
cess but the fitted patches will be modified compared with the first approximation. Our
solution is simpler and more effective. For each patch the subdivision surface approx-
imation problem is divided into two sub-problems: a piecewise approximation of the
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Figure 1: Segmentation of Swivel(a) and Fandisk(b) objects into patches adapted to
subdivision surface fitting.

patch boundary and the construction of the final subdivision surface by interpolation of
the found boundary and approximation of the interior data, like the approach proposed
by Schweitzer [Sch96]. In order to prevent our model from cracks, for each patch the
boundary is divided into pieces of boundary corresponding to the different adjacencies
with its neighboring regions (see Figure 2). Once each piece of boundary has been
approximated by a subdivision curve (this inverse problem is treated in this paper), the
corresponding control polygons are put together to form the control polygon of the
whole boundary. According to subdivision properties, this control polygon will rep-
resent the boundary of the control polyhedron of the subdivision surface representing
the corresponding patch. Then, for each patch, a subdivision control mesh is created
using its boundary information. The final control mesh defining the whole surface will
comprise control meshes of all regions.
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Figure 2: Extraction of pieces of boundary (1,2,3,4) of a segmented patch (P) from the
Fandisk object.

3 Subdivision curve presentation

The subject of this paper is the approximation of a polygonal curve with a subdivision
curve. A subdivision curve is created using iterative subdivisions of a control polygon.
In this paper we use the subdivision rules defined for subdivision surface by Hoppe et
al. [HDD∗94] for the particular case ofcreaseor boundary edges: new vertices are
inserted at the midpoints of the control segments and new positionsP′

i for the control
pointsPi are computed using their old values and those of their two neighbors using
the mask [WW02]:

P′
i =

1
8
(Pi−1 +6Pi +Pi+1) (1)

With these rules, the subdivision curve corresponds to a uniform cubic B-spline, except
for its end segments. This curve will coincide with the boundary generated by com-
monly used subdivision surface rules like Catmull-Clark [CC78] or Loop [Loo87]. An
example of subdivision curve is presented in Figure 3.

4 Related Work

This inverse problem for subdivision curve ties up with the smooth parametric curve
approximation problematic, with the additional difficulty that a subdivision curve does
not have a parametric formulation and cannot be evaluated at any point. But this short-
coming can be solved using different techniques like does Schweitzer [Sch96]. The au-
thor considers the subdivision curve as an infinite sequence of cubic Bezier segments.
Thus any point can be evaluated by founding the Bezier control polygon (given by
repeated subdivisions) which includes the considered parameter. Most of the smooth
curve approximation methods are based on a data parameterization. Letoi being the
sequence ofp points to approximate, andS, our B-spline or subdivision curve, the
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Figure 3: Example of subdivision curve. (a) control polygon, (b,c) 2 iterations of
subdivision, (d) limit surface.

usual approaches compute the control points that minimize an error functionF :

F =
p

∑
i=1
‖S(ξi)−oi‖2 (2)

with ξi the parameter value assigned to the data pointoi . The minimization of this
over determined quadratic system is generally solved by a least square method, which
leads to a square linear system. The main problem lies in the choice of the parameters
ξi which highly influence the result. Three methods are commonly used to assign the
approximation parameter locations (see [Lee89]): Uniform, Chord Length and Cen-
tripetal parameterizations. But none of these solutions is optimal and really adapted.
Schweitzer [Sch96], in its subdivision curve approximation algorithm, starts with a
Chord Length parameterization and then corrects the parameters by considering at each
iteration the parameters of the data point projections on the approximating subdivision
curve. Some authors have proposed more sophisticated and efficient iterative parame-
ter correction procedures, notably the intrinsic parameterization of Hoschek [Hos88],
which was improved by Saux et al. [SD03]. The algorithm firstly minimizes the system
with respect toS, considering initialξi values, and secondly with respect toξi (sepa-
rately for each parameter value). Another solution was proposed by Speer [SKH98]
which considers a global approach, both the control points and the parameters are con-
sidered as unknowns. But fundamentally this parameterization remains a problem be-
cause the correction procedures are time consuming and take many iterations to con-
verge(>50).
Pottmann et al. [PLH02] have proposed a new and very efficient approach inspired by
the active contour models of Kass et al. [KWT88]. Their approximation scheme does
not require parameterization. The idea is to make an active initial B-Spline converge to-
wards a target curve by minimizing local approximate squared distances from the target
curve. It is not a point to point distance minimization but a point to curve minimization
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which allows a very fast convergence (<20 iterations). Unfortunately this method is
very dependant of the initial active curve. The original method from Pottmann was ex-
tended by Yang et al. [YWS04] to permit a dynamic control point insertion or removal.
We have extended this algorithm for subdivision curves (see section 6). One shortcom-
ing of this approach is the instability of the active curve which may require the use of
a smoothing term which increases the computational cost. Our algorithm will increase
the stability by preventing the active curve from bad crossing or wrong matching using
an active pseudo-parameterization of the target data, called Active Footpoint Parame-
terization (see section 7).
A remaining problem in these approximation algorithms is the choice of the initial
number and placement of the control points. Schweitzer [Sch96] starts with 4 control
points and then increases iteratively the number according to the resulting error. Saux
et al. [SD03] [SD99] consider initially a high number of control points and then deter-
mine the minimum number using a dichotomic method. Finally, Yang et al. [YWS04]
heuristically determine the number by considering the local direction monotony of the
target curve. But their method leads to a generally too high number of control points,
so a removal algorithm is generally needed. Concerning the positions of the initial con-
trol points, the initial parameterization for the initial curve determination is usually the
Chord Length [YWS04] [Sch96] or the Centripetal [SD03] and thus gives rather poor
initial results. However these control point initial placement and number are critical
because, better is the initial approximation and faster will be the convergence algo-
rithm. A control point insertion or removal, for instance, is a very time consuming task
because it will influence a significant part of the curve and thus require an other cycle
of iterations. Within this context, we have developed an efficient determination method
for the number and positions of initial control points, based on curvature analysis and
theoretical foundations (see section 5).

5 Initial control point processing

Correct number and positions of the control points of the initial active curve are critical
for our convergence algorithm. Our subdivision curve represents a uniform cubic B-
Spline curve except for its end segments (see Section 3), therefore except at its ends, the
curve is composed with polynomial curve segmentsSi . We have studied the behavior of
the curvature on such a segment, in order to make the connection between the optimal
number of control points and the curvature of the target curve.

Theorem 1 Considering a uniform cubic B-Spline segment, local curvature maxima
are necessarily located at the extremities.

Proof : Each uniform cubic B-Spline segment Si is associated with 4 control points
(Pi−3,Pi−2,Pi−1,Pi). For any parameter value u such as 0≤ u≤ 1, the corre-
sponding position Si(u) on this segment is defined by:

Si(u) =
1
6
((1−u)3Pi−3 +(3u3−6u2 +4)Pi−2

+(−3u3 +3u2 +3u+1)Pi−1 +u3Pi) (3)
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Thus the second derivative vector is:

S̈i(u) = (1−u)Pi−3 +(3u−2)Pi−2

+(−3u+1)Pi−1 +uPi (4)

The curvature C(u), at each parameter, is defined by C =
∥∥S̈i(u)

∥∥. Our goal is to
study the variation of this curvature, thus we have calculated its first derivative
which can be expressed as:

Ċ(u) =
f (u)√
g(u)

(5)

with f linear in u and g quadratic in u. Thus the equation Ċ(u) = 0 has one or
zero solution u0 ∈]0,1[, therefore the curvature is either monotonic, or has one
extremum over the cubic segment (not located at an extremity).

• If the curve segment is monotonic there exist one curvature maximum at
one extremity (u = 0 or u = 1), therefore the theorem is verified.

• If the curve has one extremum, we will determine if it is a maximum or a
minimum. For this purpose, we have studied the sign of the second deriva-
tive C̈(u) of the curvature. We found that:

∀u∈ [0,1] , C̈(u)≥ 0 (6)

thus Ċ(u) is increasing ∀u∈ [0,1], and therefore Ċ(u)≤ 0 for u∈ [0,u0] and
Ċ(u)≥ 0 for u∈ [u0,1]. as a result C(u) is decreasing before u0 and increas-
ing after and therefore C(u0) represents a local minimum. thus curvature
maxima are located at the extremities, therefore the theorem is verified.

Formal and limit calculation have been made using the software Waterloo Mapplec©.
According to Theorem 1, a local maximum of curvature located over the target

curve is associated with the extremity of a B-Spline segment and therefore there is
necessary at least one associated control point whose limit position is at the extremum.
So, forn local curvature maxima we can affirm that we need at leastn initial control
points.

Consequently, our initial curve processing algorithm is the following:

• Smoothing and quantification of the curvature, and detection of then local max-
ima.

• The number of control points is initialized ton, increased by 2 for the extremities
is the curve is open.

• The placement of then control points is determined with a linearn×n system.
Indeed, for a subdivision curve, the limit positionP′

i of a control pointPi can be
processed according to its neighbors:

P′
i =

1
6
(Pi−1 +4Pi +Pi+1) (7)
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Since we know that these limit positions must coincide with the local curvature
maxima positions, we obtain the linearn×n system.

Figure 4 shows this initialization process: the variation of the curvature (a) with the
determination of the 5 local maxima, and the corresponding initial subdivision curve (b)
processed using the positions of these maxima. We can observe that this initialization
curve is very satisfying considering the target curve, thus the number of convergence
iterations will be considerably reduced. Moreover we have asserted that this number
of control points is minimum therefore no control point removal will be needed for the
further optimization algorithm.

There exist some special cases, in which our rule for the initialization is modified:

• If the curvature is constant and not null or monotonic thus we consider 4 initial
control points (2 and the extremities for open curves), with their limit positions
uniformly distributed over the target curve.

• If the curvature is null on the whole curve, we consider a straight line linking up
the extremities (this case is not possible for closed curve).

6 Optimization scheme

Once the initial subdivision curve has been processed, the optimization algorithm fits
this curve to the target data by displacing iteratively the control pointsPi . We have
extended the method from Pottmann et al. [PLH02]. This method relies on the distance
function of the data curveΨ, which assigns to each point its shortest distance toΨ. In
practical terms, not the distance function itself, but the local quadratic approximants of
the squared distance function are considered.

6.1 Local quadratic approximants of the squared distance function
to 2D and 3D curves

Considering a 2D spaceΠ and a smooth curveΨ, the Frenet frame(e1,e2) at a curve
pointΨ(t) is defined as follows:e1 = Ψ̇/

∥∥Ψ̇
∥∥ is the unit tangent vector ande2 the asso-

ciated unit normal vector. Considering a pointp in Π, and its corresponding footpoint
Ψ(t0) (associated with the shortest distanced of the curve), thus the coordinates ofp
in the Frenet frame defined inΨ(t0) are(0,d). Then the local quadratic approximant
Fd(p) of the squared distance ofp to the curveΨ is given by:

Fd(x1,x2) =
d

d+ρ
x2

1 +x2
2 (8)

wherex1 andx2 are the coordinate ofp with respect to the Frenet frame andρ is the
curvature radius atΨ(t0). The reader may refer to [PH02] for a detailed derivation and
proof of this formula. In the case of a 3D space, consideringp and the associated foot-
point Ψ(t0), a cartesian coordinate system(e1,e2,e3) is defined such as:e1 = Ψ̇/

∥∥Ψ̇
∥∥
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Figure 4: Example of initial control point processing. (a) Curvature variation over the
target curve, (b) Corresponding maxima and initial subdivision curve with the associ-
ated control polygon.

is the unit tangent vector,e3 is in the direction ofp−Ψ(t0) ande2 = e3∧e1. In this
frame, the local quadratic approximant is given by [PLH02]:

Fd(x1,x2,x3) =
d

d+ρ
x2

1 +x2
2 +x2

3 (9)

In our case, the target curve is sampled and therefore not continuous likeΨ. How-
ever Pottmann et al. [PLH02] have shown that their estimator is still valid in this case,
considering discrete values forρ as for the Frenet Frame.
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6.2 Optimization algorithm

The optimization process is the following, for each iteration:

• Several sample pointsSk are chosen on the subdivision curve, and the associated
footpointsOk are calculated on the target curve. In our case, sample points are
the vertices of the subdivision curve at a finer level, after application of several
steps of subdivision. Sample pointsSk can be computed as linear combinations
of the control pointsPi (see Section 3):

Sk = Lk(P1,P2, ...,Pn) (10)

• For eachSk the local quadratic approximantFk
d of the squared distance function

of Sk to the target curve, is computed according to Frenet frame atOk.

• New positions of control points are processed by minimizing the sum of the local
quadratic approximants:

F = ∑
k

Fk
d (Sk) = ∑

k

Fk
d (Lk(P1,P2, ...,Pn)) (11)

The minimization of this quadratic function in the new position of the control
points, lead to the resolution of a linear squared system.

These iterations are repeated until the approximation error or the variation of the
approximation error is lower than a given threshold. The convergence of the algorithm
is very fast. Figure 5 presents three iterations of the algorithm: Figure 5.a shows the
initial position of the subdivision curve with a sample pointSk and the correspond-
ing footpointOk, whereas Figure 5.b and 5.c present the new positions of the control
points after respectively 1 and 2 iterations of the optimization algorithm. At the second
iteration the target curve is perfectly fitted.

7 Footpoint determination

7.1 The wrong matching problematic

The footpoint determination algorithm used in [PLH02] and [YWS04], consists, for
each sample point, in considering the smallest distance point on the target curve.
[YWS04] precomputes the discrete distance field using the Fast Marching Method in
order to increase the speed but the result is the same. Considering this method, a prob-
lem will occur for a self intersecting target curve or when a part of this target curve is
very close to another part: sample points will be associated with incorrect footpoints
belonging to wrong parts of the curve. This wrong matching was also observed by
[YWS04] who found no general solution. As a consequence, either the convergence of
the algorithm will slowed down because a higher number of iterations is required, or
the convergence will become impossible. This problem is illustrated in Figure 6.

We have developed an efficient solution for this problem, based on the determina-
tion of Generalized Footpoints and their active parameterization.
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Figure 5: Example of the optimization procedure, (a) Initial subdivision curve, (b,c)
Resulting curve after respectively 1 and 2 optimisation iterations.

7.2 Generalized Footpoint computation

The footpointOk corresponding to a pointSk is defined as the point belonging to the
target curve and associated with the shortest distance fromSk. Since the target curve
is usually defined by a highly sampled polygonal curve, the footpoint determination
consists generally in computing point to segment distances and considering the pro-
jected point associated with the shortest distance. In the continuous case, considering
a smooth curveΨ (at leastC1), a footpointOk is necessary issued from an orthogonal
projection ofSk onto the curve. We introduce Generalized Footpoints (GF) as the set
of pointsOg

k issued from an orthogonal projection ofSk. In our polygonal case, Gen-
eralized Footpoints are more complex to determine since the normals are not continue
but piecewise constant. The determination process is the following: each pointTi of the
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Figure 6: Illustration of the bad footpoint placement problematic, (a) Subdivision curve
with misplaced footpoints (corresponding to the surrounded sample points), (b) Foot-
point parameter distribution, with an evident discontinuity corresponding to the badly
placed ones.

target curve is associated with a parameterti (Chord Length Parameterization), such as:

t1 = 0 and tn = 1

ti+1 =
‖Ti+1−Ti‖

∑i=1
i=n−1‖Ti+1−Ti‖

(12)

For each pointTi of the target curve, we consider the two incident segmentsSeg1 and
Seg2 and the associated projectionsp1

k and p2
k of the consideredSk on lines carrying

Seg1 andSeg2. Different cases are considered:

• p1
k ∈ Seg1 (resp p2

k ∈ Seg2) thus p1
k (resp. p2

k) is considered as a Generalized
Footpoint (see Figure 7.a).

• p1
k /∈ Seg1 and p2

k /∈ Seg2, and they are not on the same side of their respective
segments, thusT is considered as a Generalized Footpoint (see Figure 7.b).

• p1
k /∈ Seg1 and p2

k /∈ Seg2, and they are on the same side of their respective
segments, there is no associatedGF (see Figure 7.c).
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Figure 8 shows an example of the determined generalized FootpointsOg
k for a sample

point Sk. Only one of them corresponds to the correct one within our optimization
procedure, this choice is detailed in the next subsection.

Figure 7: Generalized Footpoints (GF) determination mechanism for a piece of target
curve consisting of two segments, (a,b) determination of aGF, (c) noGF.

Figure 8: Example of the set of Generalized FootpointsOg
k for a sample pointSk.

7.3 Active Footpoint Parameterization

Parameter valuesUOk are associated with footpointsOk, they are computed by a lin-
ear interpolation between the parameters of the target curve points which surround the
considered footpoints. We have studied the variation of these footpoint parameter val-
uesUOk for sample pointsSk along the active curve. We consider the set of footpoints
Ok as correct if theUOk distribution is strictly increasing. Figure 6.a shows bad placed
footpoints, the correspondingUOk distribution is presented in Figure 6.b. An evident
discontinuity appears in the distribution which notifies the wrong matching problem.
Our goal is to find a footpoint distribution which gives a strictly increasingUOk distri-
bution. Our algorithm, so called Active Footpoint Parameterization is the following:

• We compute Generalized Footpoints (see section 7.2), for each sample point of
the subdivision curve.

13



• For each sample pointSk, we consider among its Generalized FootpointsOg
k, the

smallest increasing one:

Ok = argminOg
k
(
∥∥Og

k−Ok−1
∥∥), (Og

k−Ok−1) > 0 (13)

• If the foundOk is too high compared withOk−1, thus it is considered not correct
and eliminated, the correspondingSk is not considered in the optimization pro-
cess for the current iteration, because not coherent footpoint has been found. It
is the same if noOk can be found.

With this algorithm, the set of determined footpoint parameters is strictly mono-
tonic and increasing, whatever the curve to treat. Thus wrong matching is eliminated
and the optimization procedure is prevented from instability or oscillations. As a con-
sequence Figure 9.a shows the curve presented in Figure 6.a, with correct footpoints
determined with our Active Footpoint Parameterization method. Results are now cor-
rect, resulting footpoints are coherent and adapted to the optimization procedure. The
UOk distribution, presented in Figure 9.b, is increasing and much more correct that the
distribution in Figure 6.b.

Figure 9: Illustration of Active Footpoint Parameterization results for the footpoints de-
termination, (a) Subdivision curve with corresponding correct footpoints, (b) Footpoint
parameter distribution.
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8 Complete algorithm and results

The whole subdivision curve approximation algorithm is the following:

1. Initialization of the subdivision curve, according to the curvature of the target
curve (see section 5).

2. Computation of the correct footpoints, using the Active Footpoint Parameteriza-
tion (see section 7). The number of sample points on the subdivision curve is
chosen by the user, in our examples we consider vertices of the curve subdivided
twice.

3. Optimisation procedure (see section 6). The subdivision curve is moved toward
the target curve, by minimizing a sum of quadratic distances. The approximation
errorE is computed.

4. (2) and (3) are repeatedm times untilE < ε or m< m0. ε andm0 are respectively
maximum fixed error and iteration number.

5. If E < ε the process is terminated, else a new control point is inserted onto the
subdivision curve, where the local error is maximum and the process goes to step
(2).

We have conducted many tests on different target curves from different natures, in
order to demonstrate the efficiency of our method. We present here several examples
about the different characteristics of our algorithm. Most of the presented curves are
2D (except for Figure 14) in order to improve visibility but our algorithm work as well
on 3D curves. The average errorE is defined by the mean of the distances from each
sample point to its corresponding footpoint. All curves considered in the experiments
were normalized in a bounding box of length equal to 1.

8.1 Initial control points placement examples

First, we have conducted experiments about the efficiency of the subdivision curve
initialization presented in section 5. For different target curves, we have considered
2 different initial curves, one processed with our algorithm and the other, with the
same number of control points with limit positions evenly sampled on the target curve.
Results are presented on Figure 10. On one hand, Figure 10.c presents the initial curve
computed with our curvature based method (10 control points) whereas its optimization
result which converges after several optimization iterations is in Figure 10.d. On the
other hand, the other initial curve, computer by a regular sampling of the same number
of control points, and the corresponding convergent result are presented in Figure 10.a
and 10.b.

The resulting curve corresponding to our curvature based initialization is very closed
to the target curve (the resulting error is 2,302×10−3) and particularly, is closer than
the regular sampling one of which resulting error is 5,168× 10−3. These resulting
errors appear more clearly in Figure 11. The evolution of the optimization results is
presented for each iteration. The error associated with the curvature based initialization
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Figure 10: Optimization results starting from two different initial subdivision curves.
(a,b) Initial evenly distributed control points and corresponding final convergent result
(after 7 iterations). (c,d) Initial control point processing using curvature and corre-
sponding final convergent result (after 7 iterations).

is always lower than the other. Our initialization procedure provides a near optimal set
of control points in term of placement, and a number generally sufficient for a good
approximation.

Iterations 0 1 3 6
Curve14a, RSI 17,09 8,62 5,09 5,05
Curve14a, CBI 12,35 3,15 1,90 1,85
Curve14c, RSI 24,3 16,22 13,87 12,41
Curve14c, CBI 26,48 8,10 4,38 4,38

Table 1: Error (×10−3) evolution for several iterations, for the target curves presented
in Figure 14 and different initialization methods.

Other results for the two target curves of Figure 14 are presented in Table 1.Curve14a
corresponds to Figure 14.(a,b) andCurve14ccorresponds to Figure 14.(c,d). For both
target curves, the error is much lower at each iteration for the curvature based initial
curve (CBI). In the case ofCurve14cthe approximation error for the regular sampling
initial curve (RSI) will finally reach the value 4,38×10−3 (≈ error value for the 3rd

iteration of the CBI curve), but at the 25th iteration, thus our curve initialization has
considerably increased the convergence speed. In the case ofCurve14a, the approxi-
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Figure 11: Optimization results evolution for several iterations, starting from two dif-
ferent initial subdivision curves: Curvature bases initialization (CBI) and regular sam-
pling initialization (RSI).

mation errors presented at the 6th iteration for both RSI and CBI curves are approxi-
mately the convergence values. Thus in this case our curve initialization has permitted
a better approximation, even with an infinite number of iterations.

8.2 Active Footpoint Parameterization examples

We have tested the efficiency of our footpoint determination algorithm (see section 7).
We have conducted experiments on curves with close branches (see Figure 12) or self
intersections (see Figure 13). Figure 12.a presents a target curve with close branches
and the corresponding initial curve with classic footpoint determination, wrong match-
ing problems appear and thus the final curve after several iterations converges toward
a bad approximation (see Figure 12.b). On the other hand, our footpoint determination
algorithm, presented in Figure 12.c leads to a very satisfying approximation (see Fig-
ure 12.d), moreover the convergence was obtained very rapidly after only 4 iterations.
Concerning the self-intersected curve presented in Figure 13, results are also very sat-
isfying. Bad convergence results are observed for the classic footpoints determination
(see Figure 13.a and 13.b) whereas our method gives a very good approximation (the
convergence was obtained after about 5 iterations) by carrying out the footpoint match-
ing successfully.

8.3 Complicated curve examples and compression rate analysis

We have tested our algorithm for complicated target curves in order to test the efficiency
of our method whose final purpose is to decrease the amount of data in our final com-
pression objective. Examples are presented for a curve with several concavities and
self-intersections (Figures 14.a and 14.b) and for a 3D curve with a complexe shape
(Figures 14.c and 14.d). Figures 14.a and 14.c present target curves with the initial
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Figure 12: Effect of the Active Footpoints Parameterization on a curve with close parts.
Initial curve with associated footpoints computed by the classical method (a) and by
our Active Footpoints Parameterization (c) and results of the optimization process (b,d)
(4 iterations).

subdivision curves computed according to the curvature analysis presented in section
5. Final subdivision curves processed according to the complete algorithm described
at the beginning of this section are presented on Figures 14.b and 14.d. Chosen sample
points, for the footpoint determination, are vertices of the curve after two subdivision
steps and the error tolerance isε = 1×10−3.

(a) (b) (c) (d)
CtrlNb 18 21 13 19

E (×10−3) 12,34 0,99 26,48 0,86
CR 89,5% 87,7% 93,2% 90,2%

Table 2: Resulting errors (E), Final control points numbers (CtrlNb) and compression
rates (CR) associated to curves approximation of Figure 14.
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Figure 13: Effect of the Active Footpoints Parameterization on a self-intersecting
curve. Initial curve with associated footpoints computed by the classical method (a)
and by our Active Footpoints Parameterization (c) and results of the optimization pro-
cess (b,d) (5 iterations).

Table 2 presents the results. The numbers of points of the target curves are 171 for
Figures 14.a and 14.b and 194 for Figures 14.c and 14.d. At the end of the algorithm
final numbers of control points (CtrlNb) of the approximated subdivision curves are
respectively 21 and 19. This is equivalent to compression rates (CR) of 87,7% and
90,2%. These are very satisfying results regarding to the small approximation errorsE
(respectively 0,99×10−3 and 0,86×10−3). All experiments were conducted on a PC,
with a 2Ghz XEON bi-processor. Processing times were 922 ms for 14.b and 875 ms
for 14.d. Initial curve processing times were about 16 ms for each.

9 Future work for surface approximation

The subdivision curve approximation algorithm presented in this paper represents the
first step in our surface mesh compression objective, by piecewise subdivision surface
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Figure 14: Approximation results for a highly concave, self-intersecting target
curve(a,b) and a complex 3D one(c,d) whose bounding box is represented. (a,c) Initial
subdivision curves. (b,d) Results after the whole algorithm.

approximation (see section 2). An example of this process is presented in Figure 15.
For a given surface patch, we first extract the boundary (see Figure 15.b), and deter-

mine the approximating subdivision curve, containing 6 control points in the example
(P0,P1,P2,P3,P4,P5). This control polygon represents the boundary of the searched
subdivision control polyhedron, thus we will use it, as a foundation to determine the
approximating subdivision surface. In Figure 15.c, the control polyhedron was deter-
mined by adding a control point (P6) to those of the boundary, meshing correctly these
control points, and optimizing the placement ofP6 according to the target surface.
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Figure 15: Surface compression mechanism. (a) The mesh to compress. (b) Extraction
and approximation of the boundary. (c) Construction of the final subdivision surface
control polyhedron.

10 Conclusion

We have presented in this paper an efficient algorithm, based on the analysis of the
data, for the inverse problem of curve subdivision. For any polygonal target curve, our
algorithm computes the approximating subdivision control polygon optimized in terms
of the number of control points. A curvature analysis supported with theoretical foun-
dations permits to compute near optimal numbers and placements of control points for
the initial curve construction. The optimization scheme, based on the local quadratic
approximants of the squared distance of curves, is an adaptation for subdivision of that
presented by Pottmann et al. [PLH02] and dealing with B-Splines. Our original foot-
point determination method based on an active parameterization, allows to prevent the
wrong matching problem occurring particularly for self-intersecting curves. Thus the
stability of the method is highly increased by this good convergence guaranty. Many
experiments demonstrate the efficiency of the method for approximation or compres-
sion of polygonal curves. This approximation method is involved in a larger surface
compression scheme. Target objects are CAD meshes, previously segmented into sur-
face patches. Our purpose is to determine the best approximating subdivision surface
for each patch. The method presented in this paper allows to approximate the boundary
of a patch with a subdivision curve of which control polygon has the property to repre-
sent the boundary of the control polyhedron of the approximating subdivision surface.
We plan now to develop the surface approximation algorithm taking as input the target
surface patches and their associated subdivision boundary curves.
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