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Abstract
In this paper, we propose to solve the global illumination problem through a

progressive rendering method relying on an adaptive sampling of the image space.
The refinement of this sample scheme is driven by an image metric based on a pow-
erful vision model. A Delaunay triangulation of the sampled points is followed by
a classification of these triangles into three classes. By interpolating each trian-
gle according to the class it belongs to, we can obtain a high quality image by
computing only a fraction of all the pixels and thus saving computation time.

1 Introduction
Photorealism is a major goal to reach in computer graphics: the accurate simulation of
complex environments needs to compute complete light transport between all parts of
a virtual scene. This is possible by solving the rendering equation described by Kajiya
in [Kaj86], and many solutions have already been proposed. Among all known meth-
ods, we may quote hierarchical radiosity [HSA91], simple or bidirectional path tracing
[LW93], radiance interpolation [War94b], photon maps [Jen96], light vectors [ZSP98],
Metropolis light transport [VG97], density estimation [WHSG97], . . . All these meth-
ods give realistic pictures, but despite the increase in computer performance, computa-
tion times remain really long. Thus, a challenging problem is to dramatically reduce the
computation time in order to be able to solve the global illumination problem at interac-
tive rate. One way to evolve in this direction is to use a progressive rendering method:
by carefully choosing a sample set, an approximate picture is generated. If the quality
of this picture is not evaluated as sufficient, new samples may be selected to produce a
new image and the process can be repeated until reaching the desired quality. The main
problem with commonly used progressive methods is to decide where to cast these new
samples. This usually relies on empirical criteria based more or less on statistics. We
propose to replace these criteria with perceptual ones as they are more general and nat-
ural than statistics based ones. Usually, statistical criteria take into account only one
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Figure 1: A dark scene

important picture characteristics at once: some of them care about object discontinu-
ities, some others test local contrast, frequencies, color dispersion,. . . With a perceptual
criterion, all these characteristics might be taken into account with only one process.

Thus, in this paper, we suggest a progressive perceptually-based rendering method.
The refining criterion is given by a perceptual adaptive metric based on a powerful
vision model. To avoid unnecessary computations, this metric is computed for the
pixels who have been already ray-traced by the rendering process. The final goal is
to refine the approximate picture in such a way that the human eye would not see
any difference with the reference picture computed with a classical global illumination
method.

This article will be divided into six sections including this introduction. We will
review previous work on perceptual rendering in Section 2, and we will introduce our
adaptive metric in Section 3. Our perceptual rendering algorithm will be presented in
Section 4 and some results will be shown in Section 5. Finally, Section 6 will open
some perspectives for the future.

2 Previous Work
One might wonder what visual perception knowledge may provide in rendering. Figure
1 gives prominence of taking perceptual criteria into account. This scene is very dark,
we clearly see the sword in the center, but the columns on the sides are barely visible.
Now suppose that the geometric model for these columns is very complex and detailed:
since these details cannot be seen, it would be useless to compute them accurately like
a Monte-Carlo method would. Using a vision model, it could be guessed that the
columns do not require so much computation. More information about the usefulness
of knowledge on human vision in computer graphics may be found in [Fer01]. In this
section, we will review some vision models and then some rendering methods using
them.

2.1 Vision models
There is a great variety of vision models and image metrics designed in the image
processing field (cf. [Ahu93], [FZvdBLS97]), but very few of them were reused in
computer graphics. In this section, we will only deal with the most commonly used in
image synthesis.

2



Daly’s Visual Differences Predictor [Dal93] was one of the first models tested with
synthetic images. It is a three steps model, each step simulating specific vision char-
acteristics through a complex mathematical function. The first step simulates light
adaptation, the second one takes care of contrast sensitivity and the last one merges
all detection mechanisms, including multi-scale decomposition, contrast masking and
a psychometric function. This model is powerful but complex. Besides, it requires a
quite important calibration phase to be effective.

In [RWP∗95], the authors used a metric inspired by existing compression algo-
rithms to compare radiosity pictures. This was the first attempt to apply perceptual
knowledge in computer graphics in order to obtain better pictures and faster computa-
tions.

The algorithm in [Lub95] is an attempt to simulate the visual pathway from the
retina to the mammalian cortex. Lubin’s model features much more steps and requires
more memory space than Daly’s, but is faster. It is basically composed of a Lapla-
cian pyramidal picture decomposition, local contrast computations and a psychometric
function.

The authors of [PFFG98] improved Lubin’s model to take color perception into
account. They used their model in a tone mapping operator, but its design is generic so
it could be included in an image metric as well. The global structure is approximately
the same as in Lubin’s model, but is extended to four channels: one for the rods, and
three for the short, medium and long cones receptors. This model provides impressive
results due to a complete simulation of retina and cortex treatments in the human visual
system. It correctly handles adaptation, color appearence and masking, but it requires
a lot of computational resources (memory and cpu time). We chose this model for our
adaptive metric.

2.2 Vision-Based Rendering Algorithms
Mitchell [Mit87] was the first to use the visual perception of noise to optimize antialias-
ing for ray tracing. His main idea was to avoid unnecessary computations in the areas
where noise is invisible to the human eye. To reach this goal, a simplifed vision model
consisting of a mathematical formulation of local contrast perception was designed.

Meyer and Bolin [BM95] used a rather identical approach, but they decided to
cast rays directly in the frequency domain, in order to only render frequencies that are
significant to the human eye. In [BM98], they changed their approach and had a com-
plete vision model, including color effects and masking, to monitor their Monte Carlo
method. They showed that the computational cost of the model was low, regarding to
the saving in rendering time.

Ramasubramanian et al. [RPG99] developed a threshold model which gives, for
each pixel of the picture, the maximum luminance that can be added or subtracted at
this point without noticing any difference. Therefore they were able to refine the picture
in problematic areas.

In the hierarchical radiosity field, where an oracle is required to guide the subdivi-
sion of patches, vision models and metrics seem particularly adequate. A very inter-
esting overview of perceptually driven radiosity methods is given in [PP99a]. Gibson
and Hubbold [GH97] used a vision-based tone mapping operator and a Luv color space
metric to subdivide or gather patches. Myszkowski also did a vast amount of research
on perceptually-driven radiosity and ray tracing [MRT99], [MTAS01]. For example,
he studied in [Mys98] the efficiency of Daly’s VDP model [Dal93] to detect masked
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artefacts in radiosity scenes. Purgathofer and Prikryl [PP99b] did a perceptually-driven
termination for stochastic radiosity.

All these methods have their pros and cons. Some of them can hardly deal with
specular objects (radiosity methods) or color scenes ([RPG99]). But the main prob-
lem is that they have a powerful vision model coupled with a slow rendering method
(such as a Monte Carlo one). It would probably be interesting to substitute to this ren-
dering method a progressive one which could render a faster sequence of approximate
pictures.

3 Our Adaptive Metric
As already said, our purpose is to replace empirical criteria in progressive rendering
with a perceptual one. Therefore, to manage our progressive algorithm (to be detailed
in Section 4), we had to pick up an adequate vision model for computer graphics.
We chose the Multiscale Model of Adaptation and Spatial Vision by Pattanaik et al.
[PFFG98] for its excellent performance on various types of scenes. This model was
originally designed for tone mapping, but its output is usable for distance computing.
We also had to reduce the computation time for this model as we intend to use it in
a progressive rendering algorithm. To do so, we designed an adaptive computation
method to evaluate the metric. In this section, we will first describe how to use Pat-
tanaik et al’s model for an image metric; then we will depict our adaptive method and
discuss some results.

3.1 Using the vision model for an image metric
All details concerning the vision model may be found in [PFFG98]. The output of this
model is a n-dimensional map of visible contrasts, each level corresponding to a spatial
frequency band. Let us suppose that we want to compare image 1 with image 2. The
outputs of the model for these two pictures are two n-dimensional maps. To compare
the two pictures, we decided to calculate a pseudo-euclidian distance between these
two n-dimensional maps.

Suppose that we want to compute the distance for pixel p. Let us denote p1 and
p2 the vectors corresponding to the contrast values at p for pictures 1 and 2 across all
the levels of the n-dimensional maps. The distance value for p will be given by the
following formula, which is a L2.4 metric:

d(p) = ||p2 − p1||2.4

3.2 An Adaptive Method for Computing Distances
Our method intends to reduce computing time by processing only a part of the picture’s
pixels. We use an enhancement of the method by Albin et al, described in [ARPT02].

The main drawback of complex vision models is their computation time. The psy-
chometric functions often involve logarithmic or exponential mathematical operations,
which are very expensive. Since every pixel of every decomposition stage of the two
images is processed through these functions, it is quite impossible to obtain the result
at an interactive rate.

Albin et al noticed in [ARPT02] that, during a poll, only a small representative
number of individuals is used to obtain a global result. They also made some tests
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showing that, above a certain threshold, this number no longer depends on the size of
the whole population. Thus, in a similar way, only a small percentage of the pixels
could be used to compute the distance between two images. Their method is based on
a quad-tree partition of the image plane. For each cell, a fixed number of samples is
randomly shot (the number of samples depends on the size of the cell), the distance
is computed for these samples and an homogeneity test is performed. According to
the result of this test, the cell will be subdivided or not. The mean distance value of
the samples is affected to the cell. The final result is a "block map" of the distance
between the two pictures composed of uniform distance value zones of various sizes.
This map contains approximately the same information than a "complete" one, but it
can be obtained up to ten times faster.

To apply this method, we need the vision model to be usable on a single pixel.
This is not possible most of the time, because the first step on most models is a spatial
decomposition. In Pattanaik et al’s model, it is a pyramidal difference of gaussians.
This treatment can not be applied on a single pixel in the image space. Thus, we
decided to apply this first step on the entire image, then to compute the following steps
on individual pixels.

The image plane is subdivided with a quad tree. For each cell, we will shoot a fixed
number N of samples depending on the size of the cell:

• 2000 if the cell has more than 10000 pixels;

• 500 if the cell has between 1000 and 10000 pixels;

• a third of the cell’ size if the cell has less than 1000 pixels.

The distance is computed for each sample and the mean value is affected to the cell.
Then we have to decide if this cell should be subdivided or not. We use the homogene-
ity test described in [ARPT02] as a subdivision criteria. We compute the following
expression called "the homegeneity criteria":

#{x ∈ [x̄− ε; x̄+ ε]}
|X |

where ε is the threshold distance from the mean value x̄ inside the cell and |X | is the
number of pixels in the cell.

If this quantity is greater than a fixed homogeneity percentage, then the cell will be
subdivided. The algorithm stops when no cell needs to be subdivided anymore.

3.3 Summary
Here is a step by step summary of our adaptive method:

• Spatially decompose the two images;

• Draw randomly an initial sample batch (this step will be modified when we will
integrate the metric into the progressive rendering algorithm);

• For each cell :

– Compute the distance on each sample belonging to the cell and the mean
distance value of the cell;

– Compute the homogeneity criterion;
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Figure 2: Rough texture scene

Figure 3: Smooth texture scene

– If this criterion is above the homogeneity percentage, then subdivide the
cell;

until no cell needs to be subdivided anymore.

3.4 Some Results
In this section, we will present a simple result obtained with our metric. We designed
four pictures to specifically test contrast masking. We computed the distance maps for
the test scene with the following parameters: the homogeneity percentage is 80%, ε is
set to 1. These values are empirically chosen but they are based on various experiments
made on different scenes.

The test scene is a checkerboard with four spheres lying on it. The pictures on
the left side of Figures 2 and 3 are computed by casting 64 rays per pixel, the right
ones by casting 8 rays per pixel.The noise of the shadow projected on the ground is
more or less visible depending on the texture of the floor. We test this feature with two
different textures, a rough one (Figure 2) and a smooth one (Figure 3). The results on
Table 1 show that the mean distance value is higher for the smooth texture scene. This
confirms our expectations as we clearly see that the noise is more visible on the smooth
texture floor. The distance maps (Figure 4) are the graphic translation of this result. On
these maps, the brighter the area is, the greater is the perceptual difference on this area.
The map on the left side corresponds to the rough texture floor and the map on the
right side is obtained from the smooth texture scene. Table 1 gives computation times.
These times may be compared to the 30 seconds needed to compute the vision model
for every pixel on a 512x512 picture.
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Figure 4: Distance maps

Scene Time Mean distance value
Rough texture scene 6.6s 3.5
Smooth texture scene 2.57s 5.32

Table 1: Results

4 Our Rendering Method
Our goal is to obtain an adaptive vision-based refining process coupled to a progressive
ray tracing based algorithm. We chose to extend the directional coherence map from
Guo [Guo98] by replacing its refining criteria with our metric. We will now explain
how our extention to this method works.

In sections 4 and 5, we will call "reference picture" a scene computed with the
light vectors method, described in [ZSP98] and "approximate picture" the same one
computed with one or more steps of our rendering method. In this section, every pixel
referred as "ray-traced" is in fact computed using the global illumination method from
[ZSP98].

If we could ideally compare the reference picture with an approximate one, it would
allow us to determine whether the picture requires to be refined or not. Since we
don’t know what the reference picture looks like, we chose to apply the metric on two
successive frames rendered by the progressive algorithm and to use the distance map
to assign a distance value to each triangle. The distance is initiated using the sample
scheme from the rendering process. If the homogeneity criterion is not satisfied, the
distance map is refined as in Section 3.2. Figure 5 shows the whole rendering process.
We will now detail each step in the following sections.

4.1 Scene Analysis and First Sample Set
Initial samples are very important as we could expect to converge faster toward the final
approximate pictures if these samples are carefully chosen. We decided to sample the
whole scene with a higher sample density around visible edges. This prevents missing
small objects as their edges will be concerned by the sampling during the first step.
Because of the CSG nature of our modeler, our algorithm has a precomputing phase:
we must cast one ray at each pixel to obtain a contour map. To locate our samples
around the contours, we process this contour map with a gaussian-like filter. It was
specifically modified to place samples around the edges, but not on the edges. This
is critical since our interpolation method seeks discontinuities in the image plane. By
using this filter, we ensure that no object will be missed.
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Figure 5: Our method

Then, our scene is sampled with the help of this map. For each pixel, a random
number between 0 and 1 is drawn: if this number is less than the corresponding proba-
bility in the map, a ray is cast toward this pixel.When every pixel has been processed,
we obtain a first sample set. The number of samples depends on the size of the picture
and on the scene geometric complexity. It is around 1 percent of the whole picture’s
pixels for usual scenes.

4.2 Rendering and Refining Steps
To turn these samples into an approximate picture, a Delaunay triangulation is cal-
culated. This is usually very quick since the number of samples is low. The first
approximate picture is obtained by Gouraud shading this triangulation. But we need
two pictures to apply our metric. The second approximate picture is generated by sub-
dividing the Delaunay triangulation: for each triangle, a new sample is added in the
proximity of its center and its value is computed by ray-tracing. By redoing a Gouraud
interpolation, we obtain a second approximate picture.

We now use our adaptive metric to compute a distance map between these two
pictures. To correctly initiate the distance process, we use the sample set given by the
rendering algorithm and compute a distance block map as in Section 3.2. Please note
that none of the new refining distance samples is ray-traced; the only use of these new
samples is to obtain the distance map, making the rendering process and the distance
process totally independent from each other. Finally, a distance value is affected to
each triangle by taking the mean distance value of all the pixels inside the triangle.

From these values, we may classify our triangles into three categories inspired by
[Guo98]. A “Final” triangle (with a distance value lower than a given threshold T0) is
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supposed to be closely related to the corresponding triangle in the previous iteration;
it is Gouraud shaded in the approximate picture and won’t be subdivided during the
next iteration. A “smooth” triangle (with a distance value between thresholds T0 and
T1) should not have any "hard" discontinuity in its interior, but could contain soft shad-
ows or caustics from indirect lighting; as for “final” triangles, it is Gouraud shaded
in the approximate picture, but will be subdivided during the next iteration by placing
one sample to be ray-traced near its center. Finally, a “complex” triangle (with a dis-
tance value greater than T1) goes through a more sophisticated interpolation process.
The first step is a contour evalution: all the pixels located on the triangle’s contour are
ray-traced. Such a triangle is supposed to have a complex content, so we are going to
attempt to detect the least discrepancy direction. We try to locate two "rupture" pix-
els on the contour of the triangle. These pixels are defined as those with the greatest
euclidian color distance with the previous pixel on the contour in trigonometric order.
The segment joining these two pixels will be regarded as the least discrepancy direc-
tion. A linear interpolation is made along this direction to fill in the triangle. When the
largest dimension of the triangle is less than five pixels, no interpolation is made and
the whole triangle is ray-traced. A complex triangle is of course subdivided during the
next iteration, unless all pixels have been computed.

After all triangles have been subdivided and interpolated, the new picture is com-
pared to the previous frame via the same method as above, and the process goes back to
the classification until all triangles have a distance value less than T0. If this threshold
is set to 0, the final approximate picture will be strictly identical to the reference picture
as every pixel will be ray-traced.

5 Some Results
In this section, we will present some results of our rendering algorithm. We will com-
pare a reference picture computed with the light vectors model [ZSP98] with our ap-
proximate pictures. Pictures’ size is 512x512 pixels. For each test scene, we will
present the reference picture and our approximate one. Please note that the vision
model is calibrated for viewing pictures on a display with a 1280x1204 pixels resolu-
tion and a 34 cm visible diagonal, from a viewpoint located at least at 50 cm from the
screen. The model has not been calibrated to view printed pictures. All these pictures
have been computed on a 2.8Ghz Pentium 4 machine with 512Mb of memory. The
thresholds have been set to 1 for T0 and 3 for T1.

5.1 Cellar scene
In this section we put our algorithm to the test with the scene shown on Figure 1.
Intermediate successive pictures may be seen from top to bottom and left to right on
Figure 6. Please note that all iterations are shown. The reference picture is located
at the bottom of the figure. The computation times are 4 minutes and 21 seconds for
the ray-traced picture and 1 minutes and 47 seconds for our method. 39 percent of the
image’s pixels have been computed.

5.2 Room with a Chair and a Sphere
This scene consists of a brown wooden chair and a pink glass ball in a closed room. Fig-
ure 7 shows the final approximate picture, the reference picture using light vectors, the
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Figure 6: Interpolated and reference pictures for the cellar scene
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Figure 7: Interpolated(left) and reference(right) pictures for the room with chair scene

Figure 8: Distance and sample map for the room with chair scene

difference map between the two previous ones and the locations of samples computed
with our metric. One may see that global illumination effects, specular reflections and
soft shadows are correctly interpolated. The approximate picture is very similar to the
final one, but it is a little more than 2 times faster to compute: the perceptually-based
methods requires 2 minute 16 seconds where the lighting vectors method requires 4
minutes 57 seconds. 47 percent of the picture’s pixels are ray-traced.

5.3 Photo Laboratory
This scene represents a dark room in which light comes from the half-open door only.
Everyday experience shows that this is enough to clearly see all the details in the room.
The particularity of this scene is that it would be entirely black if global illumination
was not taken into account; every lighting in the scene results from indirect lighting.
For this test scene, we decided to emphasize the details that are not perceptible, so
we can check that our metric is a good criteria. In Figure 9, the reference picture is
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Figure 9: Interpolated(left) and reference(right) pictures for the Photo lab scene

Figure 10: Same pictures with increased gamma

compared with the approximate one. We can not perceive much difference between
these two pictures. Now, let us examine Figure 10. These are exactly the same pictures
as before, except that we have increased the gamma value by a factor of two. On
this figure, we may see that many details that are in the dark are actually strongly
interpolated. This was expected, as the model predicts that the scene’s details located
in the dark would not be visible for a human observer. The perceptually-based picture
requires 3 minutes 44 seconds to compute, to compare with the 8 minutes 24 seconds
required for the reference image. Sample rate is 34 percent.

6 Conclusion and Future Improvements
In this paper, we have proposed a new and efficient method to compute global illumi-
nation in a scene. This method mixes up a progressive approach based on a Delaunay
triangulation of sample points with a perceptually-based algorithm using a metric de-
fined by a powerful vision model.
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For an approximate picture which is almost indistinguishable from a picture com-
puted with a global illumination algorithm, we only need between one third and one
half of the computing time.

However, we are not yet able to produce pictures at an interactive rate. One of
our goals is to optimize the computation time of our metric, in particular by much
more tabulating the various functions used. We also plan to use conductance maps (see
[Per03] for more information) for a better initial sampling scheme, taking shadows and
reflection effects into account .

In the same way, we plan to enhance the vision model by taking the orientational
selectivity of the human visual system into account and by adding depth of field and
attention focus to our model.
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