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Abstract. Breath holding (BH) can be an effective method to immo-
bilize organs during radiotherapy treatment of lung cancer. As shown
in our previous study, non-rigid registration methods applied on 3D CT
scans acquired in BH can be used to evaluate the breath holding repro-
ducibility by providing 3D displacement vector fields in order to adapt
internal margins for each patient. In this work we propose to compare
two non-rigid registration schemes (with Gaussian and linear-elastic reg-
ularization) and to analyze resulting vector fields by several operators
(deformation consistency, volume dilatation) in order to provide auto-
mated way to detect abnormal situations (algorithm failure or anatomi-
cal discrepancies such as atelectasis).

1 Medical context

The main challenge for lung cancer radiotherapy is to provide prescribed doses
to the tumor while sparing surrounding normal tissues. This is a challenging
task because of organs and tumors motions. Incorporating organ deformation
can be achieved with several approaches : adapting internal margins (as de-
fined in ICRU Report 62), synchronizing radiation delivery with breathing (but
it requires invasive internal markers or depend on an hypothetical correlation
between external and internal movements [1]), or holding patient breath.

We are involved in a project consisting in immobilizing the organs and tumors
by active breath-holding (BH). The goal is to study internal lung deformation
between 3D CT scans acquired at a same level of the breathing cycle with Active
Breath Control (ABC) device [2]. In previous work [3] we proposed the use of
non-rigid registration method. In this work, we have two goals : compare two
regularization approaches (gaussian and linear elastic) and provide automated
methods to evaluate resulting vector fields. However, we do not dispose of gold
standard and we cannot use expert validation because we are requiring auto-
mated tools. So we studied a set of measures (deformation consistency, lung
volume and surface comparisons, volume dilatation) in order to detect abnor-
malities or algorithm failures automatically.



2 Dense Non-rigid Registration

2.1 Introduction

Non rigid registration algorithms were used for multiple purposes on monomodal
and multimodal images registration, especially for brain and heart. At our knowl-
edge there are a few works for 3D non rigid registration of thorax CT scans [4,
5]. Dense non-rigid intensity based registration algorithm can be expressed as
a a criterion minimization. The criterion is a trade-off between two energies :
similarity energy (E1) and regularization energy (FE,). The similarity energy F;
quantifies the images alignment quality. The regularization energy E» constrains
the deformation field to have some spacial coherence. Equation 1 summarizes the
general formulation. U denotes a deformation field, U denotes the final solution,
B (0 < 8 < 1) denotes a tradeoff factor between the two energies.

U=argmin(BE(U)) ; EU))=0-HEU)+EWU) (1)

2.2 Current and previous work

In previous work [3], we focused on the ”demons” algorithm proposed by Thirion
and modified by Cachier [6,7]. Due to a Gaussian regularization of the vector
field, this method can be viewed as an elastic-like algorithm [7] or an homogenous
isotropic diffusion. First results allowed us to evaluate BH reproducibility from
CT deformation.

We implemented a second method using the ”demons” forces for estimating
points correspondence and using the linearized elasticity operator for regular-
ization [8,9]. The general form of this operator is inspired from the equilibrium
equation 2 under the hypothesis of small displacements where A and p are the
Lamé coefficients and F' are the applied volume forces. F' = 0 if deformation is
due to surface forces only.

A+w)V(V-U)+p-AU =-F (2)

A solution to the minimization equation 1 can be found by solving the equivalent
Euler equations [9] : VE(U) = 0. We considered the Euler explicit equation 3
for an iterative implementation of the algorithm. k (x > 0) denotes the descent
step size, x denotes an image point, V the gradient operator and ¢ the iteration

index.

Ui(z) = Uina(2) + £((1 = f)VEL (Ui-r(2)) + BV E2 (Ui-1(2))) 3)

[7] demonstrates that the “demons” forces are closed to a second order gradient
descent of an SSD criterion under the hypothesis of small correction field. Under
this assumption we used the ”demons” forces (eq 4) as gradient of the similarity
criterion. I and J denote the images, Id denotes the identity matrix, the a
(a > 0) parameter introduced by [7] limits the displacement vector for small
gradients: the norm is bounded by 1/(2a).

_ I(z) — J(Id + U;_1(z))
| VI ]2 +a2(I(z) — J(Id + U;_1(x)))?

VEl (Ui_l(a:)) = uz(m) VI (4)



[10] shows that gaussian regularization is related (under some assumptions) to
linear elastic filter. Linear elastic regularization allows to take into account cross-
effects while Gaussian smoothing does not [11]. The gradient of the regularization
energy is computed with linearized elasticity operator summarized by the equa-
tion 5. We used spatial difference scheme [9] for the evaluation of differential
operators. Instead of using Lamé coefficients, [9] introduces £ (0 < £ < 1) to
have a diffusion-like method.

VE;(Uiri(x)) = 1 = §V(V - Uina(2)) + EAUi (2) ()

We thus have two different ways to compute vector fields : the first method My
is the “demons” algorithm with Gaussian regularization and the second method
My with linear elastic regularization.

3 Materials and methods

3.1 Materials

Eight patients were involved in this study. For each, 3D CT scans are acquired
in BH at a determined level of the breathing cycle (about 70% of the vital
capacity). The scans have 5mm inter-plane and 0.9 mm intra-plane resolution,
leading to 512 x 512 x 65 image resolution. As mentioned in our previous work
it is important to encode voxel values in 16 bits in order to keep the full range
of Hounsfield units® related to density information.

3.2 Methods

Non-rigid registration parameters Vector fields were estimated at a reso-
lution of 256 x 256 x 65 which corresponds to 1.9mm in intra-plane and 5mm
inter-plane resolution. For My, we used a € [0.5,0.65] which is equivalent to a
maximum estimated vector displacement of [0.77,1] voxel by iteration, 150 iter-
ations and a Gaussian variance of 1.0. For Ma, we used the same « value. A good
empirical convergence was obtained for k = 0.1 (smaller values leaded to slower
convergence and values larger than 0.3 leaded to divergence). Trade-off parame-
ter § was set to 0.5. £ was set to 0.6 to slightly privilege the Laplacian operator.
Convergence for the algorithm was obtained with at least 700 iterations.

Transitivity error We propose to evaluate the consistency of the vector field by
evaluating the transitivity as suggested in [12]. Scheme 1 illustrates deformation
evaluation between images. The three acquisitions for each patient are denoted
by A, B, C, each being alternatively reference and deformed image. Ux z denotes
the deformation field estimated between X (reference) and Z (deformed), with
X,Z € {AB,C}. Computed deformation between two images may be expressed

! Hounsfield density values for humain body are approximatively from -1000 to 4000.
0 corresponds to water and -1000 to air.



using the third image as intermediate result of the final transformation. The
deformation field from X to Z can be written by transitivity U;( 7z =UxyoUygz,
with Y the third image. We computed the mean, o.,.(X, Z), and the standard
deviation, pe,(X, Z) of the norm of the difference between U;( 7 and Uxz for
points belonging to the lung. Lung volume and lung surface points are extracted
by thresholding and morphological operations [3].

UAC

Fig. 1. Deformation field computation scheme : each acquisition (A, B and C) is alter-
natively reference and object image.

Pure deformation A misalignment may occur between two scan acquisitions
X and Y, due to patient setup error. This setup error can be expressed as a
global rigid transformation Rxy. We applied a 3D rigid registration algorithm by
privileging rigid bonny structures. Pure deformation, denoted by U? is obtained
by subtracting this global rigid deformation from the computed vector field by
non-rigid registration: UYy = Uxy — Rxy.

Volume dilatation evaluation Continuum mechanics is a source of inspira-
tion for medical image registration. Image X may be considered as deformed
(reference) body and Y image as deformable body. Each image voxel may be
viewed as an elementary volume element. We considered here operators which
are related to volume variation in order to be able to compare with lung volume
measures done by segmentation. The divergence of the deformation function was
proposed by [13]: div(Id+ U%y ) = trace(Id+ VU%y ). Divergence measures the
difference between inflow and outflow through an elementary volume element.
Negative divergence value means local contraction while positive value means
local dilatation. Divergence is computed with 3D Gaussian recursive filter. To
differentiate contraction from dilatation, we calculated the change of volume
per unit volume of each voxel to divergence value : abs(Vi (z) — Vo(z))/Vo(x),
with Vp(x) the initial volume of  and Vj(x) volume after deformation. V;(x)
is computed as follows. The deformation tensor for each point VU% () can be
decomposed in a symmetric part, denoted by Vxy () (local pure deformation)
and an asymmetric part, denoted by Wxy (x) (local rotation). We can write
VUL (2) = Vxy (®) + Wxy (2), with Vxy (2) = 5(VUgy (2) + (VU (2)7)



and Wxy (z) = 3(VU%y (z) — (VU%y (2))T). The local volume change is thus
Vi(z) = det(Vxy(x)). Total variation of lung volume due to deformation is
computed with equation 6.

Volehange(X) = v 3 sgnldiv(Id + Uy (@)

zENx

abs(Vi (&) — Va(a))
V(@) ©)

1, if div(Id+U%y(z)) >0
1, if div(Id+U%y(z)) <0

Jacobian of the deformation function measures the evolution of elementary
volume x [14] : J = Jac(Id + Uk (x)) = Vi(z)/Vo(x). J > 1 corresponds to a
local dilatation, J < 1 to a local contraction and J = 1 to no volume change. We
have used this operator to evaluate the coherence of the transformation: negative
value of the jacobian means that the deformation is locally non-invertible.

with sgn(div(Id + U%y () = { 3

4 Results

For each patient we have performed 12 non-rigid registrations (each of the 3
acquisitions is alternatively the reference and the floating image, 2 methods)
leading to 96 deformation fields. Stopping criterion was chosen with respect to
mean of absolute intensity difference. In a related study done in collaboration
with physicians (starting in [3]), patients were classified into two categories: for
five patients breath hold was considered as effective (group I) and for three
other patients (group II), we detected abnormal behavior due to atelectasis and
emphysema. Average displacement of lung points for the first group was 2,7 mm
(1.7 mm) and average displacement of lung surface points was 2,5 mm (1.7 mm).
In second group, average displacements are 5.3 mm (3.6 mm) for volume points
and a 5.2mm (4mm) for surface points. Results were similar for the 2 methods.

In the following, due to the limited space, we only present results for two
patients, one in each category. Figure 2 illustrates the convergence of the algo-
rithm with both methods for two patients according to the algorithm iteration.
The two first upper curves are related to the patient in group II and the two
others curves to the patient in group I. Table 1 shows the transitivity error (pe,
and o) of the computed vector fields with M; and M, for the two patients.
Values are given in mm. Left table 2 shows the percentage of lung volume change
between acquisitions computed from lung masks (first column) and computed
with previously described local dilatation operators (2 other columns). Positive
values correspond to volume increases and negative values to volume decreases.
Right table 2 shows the percentage of points with negative Jacobian for the two
patients and the two methods.

5 Discussion and conclusion

Gaussian regularization leads to faster convergence (about 150 iterations) than
linear elastic regularization (it requires a minimum of 700 iterations for patients
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Fig. 2. Mean of intensity absolute differences between two registered images according
to the algorithm iteration. The two upper curves show the convergence with both
methods for the patient in group II and the two others show convergence for the
patient in group I.

Table 1. Mean and standard deviation error of the deformation for the 2 methods and
2 patients according to the transitivity property

M, Mo,
Deformation | Patient 1 | Patient 2 | Patient 1| Patient 2
tranSitiVity Mer (Uer) Mer (o'er) Mer (Uer) Mer (O'er)
AB 1.7 (1.0) | 2.8 (2.6) | 2.1 (1.2) | 2.4 (2.1)
AC 1.6 (0.9) | 2.9 (3.4) | 2.1 (1.1) | 2.2 (1.8)
B,A 1.9 (1.1) | 2.7 (2.6) | 1.7 (0.9) | 2.2 (1.9)
B,C 1.7 (1.0) | 2.6 (2.6) | 2.1 (1.2) | 2.2 (1.9)
C,A 1.7 (1.0) | 3.7 (4.7) | 3.8 (2.5) | 4.2 (2.2)
C,B 1.9 (1.3) | 2.8 (2.7) | 1.8 (1.1) | 2.3 (2.0)
Mean | 1.8 (1.0) | 2.9 (3.1) | 2.3 (1.3) | 2.6 (2.0)

of group I while and even more iterations are needed for group II with larger
deformation).

We noticed that the transitivity error is relatively small (mean 1.8 mm) with
patients from group I compared to group IT (mean 2.9 mm). It suggests that such
measure can help for abnormalities detection. Moreover, for patient transitivity
analysis leads to slightly better results with M1 than with M2.

Table 2 compares a global measure of lung volume difference computed from
segmentation with local lung volume changes computed from the vector fields in



Table 2. (Left table) Lung volume dilation for 3 images comparisons for 2 patients.
Each column depicts the increasing volume (in %, computed from segmented lung) and
the dilatation operators computed with the resulting vector field of the 2 algorithms.
(Right table) Percentage of points with negative Jacobian computed on each vector
fields for the 2 methods and the 2 patients (P1 and P2).

Dilat. | Patient 1 (%) | Patient 2 (%) Jacob M, M,

Vol. [ M; | My | Vol. | M; | M P1 (%) P2 (%) | P1 (%) P2 (%)
AB (39(33|28]|-66|-6.5]-59 AB 1.3 10.1 0.6 6.6
AC |41)36|33| 5.6 | 44 | 4.2 AC 2.1 5.5 0.7 2.7
BA [-39(|-45(-3.7| 6.6 | 48 | 4.3 BA 6.2 6.2 4.0 3.2
BC |04 |-1.2|-1.0|13.1|10.5 | 9.4 BC 3.4 5.6 1.7 2.4
CA |-41|-5.0|-4.6|-5.6 | -6.2 | -5.8 CA 5.7 9.2 3.0 5.9
CB |-0.4|-0.3|-0.4{-13.1|-12.2{-10.9 CB 1.4 16.7 0.6 12.3

order to detect incoherent situations. We first notice that the two analysis are
very related : it suggests that the computed vector fields are coherent according
to the observed volume change. Results are also related with the average dis-
placements of the two patient groups : group I presents smaller displacements
than group II. Moreover, M1 presents volume changes more closely related to
those observed with M2. It suggests that more iterations are needed for M2.
For patient 1, we observe for the BC case, a discrepancy between the globally
and locally computed volume changes. It may be due to the final oscillations of
the algorithms when approaching matching solution and to a difficult lung seg-
mentation : the correction field estimated may be locally greater than the real
deformation needed for perfect matching and thus object image is deformed more
than needed. This phenomena was also observed by [15]. Hence, this information
may be considered for evaluating the stop criterion.

The number of points with negative Jacobian can be a measure of the validity
of the transformation. Deformation fields computed with M1 present a greater
number of negative Jacobian points then with M2. We also noticed that a global
lung contraction implies a bigger percentage of points with negative Jacobian.
For patient 2, there is a very important volume change between acquisitions B
and C but the number of Jacobian negative points in the dilatation case BC is
more important than for the contraction CB.

In this work, we analyzed two non-rigid registration schemes to evaluate BH
reproducibility and proposed several operators to help automatically evaluate
the validity of resulting vector fields. This study will serve as basis to include in
the non-rigid registration method an automated abnormalities detection process.
Further works are on going in order to take into account the heterogeneity and
anisotropic nature of lung deformation during respiration. In [16], Christensen
jointly estimates forward and reverse transformation between images while con-
straining these transforms to be inverses of one other. We plan to follow a sim-
ilar scheme by estimating the deformation field using the 3 acquisitions and
constraining the transformation to be transitive. In this preliminarily work we
do not manage to clearly define an abnormal situations detector operator, but



provide a set of indications which will be combined to evaluate the BH repro-
ducibility.
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