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Figure 1. Modeling the winged snake-woman. Input models consist of an implicitly defined character (a), a mesh
model of the Victory of Samothrace (b), and the Igea mesh model (c). These models are combined using intersection,
difference and blending so as to obtain the final model (d). In the rightmost close-up views, implicit parts of the final
model are rendered with smooth shading while mesh components are rendered in wireframe.

Abstract

In this paper, we introduce a hybrid modeling framework
for creating complex objects. Our system relies on an ex-
tended CSG tree that assembles skeletal implicit surfaces
and polygonal meshes in a coherent fashion: we call this
structure the HybridTree. Editing operations are performed
by exploiting the complementary abilities of both implicit
and parametric surface representations. Implicit surfaces
are powerful for combining shapes with Boolean and blend-
ing operations, while polygonal meshes are well-suited for
local deformations such as FFD and fast visualization. The
evaluation of the HybridTree is performed on the fly either
through field function queries when the implicit form is re-
quired, or through a mesh creation process which is specific
and optimized for every kind of node. Both types of queries
are achieved in a complete transparent way for the user.

Keywords: shape modeling, implicit surfaces, polygo-
nal meshes, blending, free-form deformations.

1. Introduction

In computer graphics, modeling realistic complex virtual
environments has been an active research domain for sev-
eral years. In this scope, efficient shape representations and
modeling tools are among central concerns.

Implicit and parametric representations have specific
and complementary advantages and drawbacks. Implicit
surfaces [32] are powerful for representing objects of com-
plex geometry and topology [16, 15, 22], and they naturally
lend themselves for blending or Boolean operations. We
have contributed to develop the BlobTree implicit modeling
system [33], which is based on an extended CSG tree that
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combines skeletal implicit surfaces using Boolean, blend-
ing and warping operators. This model has proved to be a
powerful tool for modeling and animating complex and re-
alistic organic shapes [6]. However, implicit surfaces lack
local control and are not well suited for local deforma-
tions. Moreover, visualization of complex implicit surfaces
is highly time-consuming.

Parametric surfaces such as polygonal meshes can be ef-
ficiently visualized thanks to dedicated graphic hardware.
The surface may be edited interactively by a variety of po-
werful tools, such as free-form deformations [28], that pro-
vide a very intuitive local control over geometry. However,
combining parametrically defined surfaces with Boolean
operations is a complicated task, which is prone to topo-
logical inconsistencies. Moreover, parametric surfaces do
not lend themselves for blending.

Mixing both representations so as to benefit from their
complementary advantages may be addressed through two
kinds of approaches. For almost thirty years, conversion
techniques have been developed to switch between these
representations. Combining their abilities into a single hy-
brid model has recently received much attention in the com-
puter graphics community for either geometry processing or
shape modeling.

In this paper, we describe a new hybrid shape represen-
tation mixing both implicit and parametric representations
for incremental modeling of complex shapes. Our goal is
to provide the user with means of coherently combining ob-
jects from either representation in a complete transparent
way. Our system addresses key issues such as fusion and
local deformation of complex models, high reusability, and
low storage and computational costs, which are fundamen-
tal requirements in our framework.

Our model is characterized by a tree data-structure that
combines skeletal implicit surfaces and polygonal meshes
by means of Boolean, blending and warping operators, in-
cluding free-form deformations. We call our model the
HybridTree, which may be seen as a generalization of the
BlobTree [33]. The key features of the HybridTree are spe-
cific optimized methods for evaluating this structure in a
coherent way, so as to efficiently perform high-level editing
operation and visualization. The system inherits from both
implicit and parametric surface representations so as to use
the most suitable representation for every type of operation.
The system dynamically switches from one representation
to the other whenever needed during the evaluation process.

We are able to perform Boolean or blending operations
on either implicit surfaces or polygonal meshes, including
interactions between implicit surfaces and meshes. We also
bring free-form deformations tools permitting local surface
deformations to be applied to either implicit surfaces or
polygonal meshes. We propose efficient conversion tech-
niques, achieved in an incremental way, which are com-

pletely hidden for the user. We introduce a point to mesh
distance for implicitizing a polygonal mesh with full con-
trol over the field function parameters. We finally bring
a novel per-primitive meshing technique which efficiently
integrates partial results and produces good aspect ratio
meshes.

The remainder of this paper is organized as follows. In
Section 2, we provide an overview of related shape mod-
eling frameworks. Section 3 describes the architecture of
our system and present how implicit and parametric repre-
sentations are combined together. In Section 4, we address
some implementation details concerning the implementa-
tion of the HybridTree. Applications of the HybridTree to
complex shape modeling are discussed in Section 5. Even-
tually, in section 6, we conclude and present future work.

2. Related work

Conversion techniques from implicit to parametric or
from parametric to implicit representations have been ex-
tensively studied [20, 8, 31, 23]. These techniques make
possible objects in either representation to coexist and in-
teract in the same environment through a unified represen-
tation, based on the conventional implicit or parametric for-
mulations. Some recent works focused on discrete implicit
representations, such as Adaptive Distance Fields [15] or
the level set framework proposed in [22]. These systems
provide fast conversion algorithms from many other repre-
sentations, and a wide range of robust editing tools. How-
ever, this representation is memory consuming and not well-
suited for large deformations.

Hybrid models have been investigated by several authors
for shape modeling in the last years. In the field of geome-
try processing, some specific problems may be efficiently
solved using this approach. A good overview can be found
in [19]. A hybrid system mixing volumetric and function
implicit representations has been studied in [2]. The method
relies on a conversion to voxel representation so as to make
both representations to interact in a coherent way.

Depending on the surface representation, some opera-
tions cannot be performed easily in a direct way. In some
cases, such an issue can be addressed with the help of an
intermediate representation. Several methods for perform-
ing blending between polygonal meshes have been pro-
posed. In [14, 30], an intermediate implicit representations
built from star-shaped or locally star-shaped polyhedra is
used, which is an important geometric restriction. Another
method proposed in [18] operates in two steps. First, a reg-
istration process is applied between mesh boundaries that
should be homeomorphic and then a B-Spline model is used
to smooth the surface in the blending region. In this case,
the restriction is of topological order.

Some hybrid techniques rely on implicit function to de-
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form polyhedral objects [29, 12, 13]. A hybrid model-
ing framework using an implicit surface model to perform
blending on point-sets has been proposed in [26]. Varia-
tional techniques [31, 27] generate an implicit surface from
point-sets via an interpolation scheme based on radial ba-
sis functions. The resulting shapes can be locally controlled
in an intuitive way by acting on the constraint points. The
interpolation step is highly time-consuming, which is pro-
hibitive for manipulating dense point sampled geometry.

3. The HybridTree

The HybridTree model relies on a tree data-structure
whose leaves hold either implicit primitives or polygonal
meshes. These are combined by means of Boolean, blend-
ing and warping operators located at the nodes of the tree.
Warping nodes include affine transformations, Barr defor-
mations [7] and free-form deformations [28]. Constructive
operators are binary whereas warping operators are unary
operators.

Figure 2 shows the tree structure of the winged snake-
woman model represented in Figure 1. The snake-woman
model (a) has been entirely built from skeletal implicit sur-
faces. Using Boolean difference, only the body has been
conserved, which has been then blended with the Igea mesh
(b) so as to obtain the model (c). The wings of a mesh
model of the Victory of Samothrace (d) have been extracted
by intersecting the model with a box. The wings and the
modified snake-woman model have been finally blended to-
gether in (e).

(c)

(a)

(d)

(b)

(e)
Intersection

Difference

Blend

Blend

Figure 2. The HybridTree data-structure of the
winged snake-woman model.

The evaluation of the HybridTree is achieved in an incre-
mental way by recursively traversing the tree data-structure.
The HybridTree may be evaluated through two kinds of
queries. Field function queries at a given point in space are
performed whenever the implicit formulation is required.
An incremental polygonization process is invoked at a given
node if the parametric formulation is needed. Partial results
are then combined in a coherent fashion by the operators.
In the following paragraphs, we detail both potential field
function queries and meshing queries that are specific for
every node in the HybridTree.

Notations Throughout the remainder of this section, the
field function for a node � will be denoted as ��� , and ���
will refer to the mesh of the surface of � . Lastly, the bound-
ing box of the object � will be denoted as � � .

3.1. Queries on primitives

Our system handles implicit primitives built from com-
plex skeletons as described in [33] and triangular meshes
with manifold topology. Conversions between implicit and
mesh representations occur frequently as the system dy-
namically adapts to the current representation while travers-
ing the HybridTree. Therefore, efficient conversion meth-
ods are needed, ideally without any loss of geometrical and
topological precision. Thus, every primitive implements
specific functions for efficiently evaluating the field func-
tion and generating a triangle mesh.

3.1.1 Skeletal implicit primitives

For a given skeletal implicit primitive, the field function is
evaluated using the following formulation:�
	 p ���������	 p �
where �����
�����
� denotes the Euclidean distance to the
skeleton, and ������� �!� refers to the potential field func-
tion. The latter is compactly-supported and parameterized
by a maximum field value reached on the skeleton, which
decreases according to a radius of influence that will be de-
noted as " . The region of influence will be denoted as # .
The surface $ of the object is defined as the points of space
whose potential equals a threshold value denoted as %'&(� :$)� � p &(� ��* �
	 p �+�,%-�
The HybridTree implements a wide range of complex skele-
tal primitives including line segment, curves and surfaces,
surfaces of revolution and volumes such as boxes, cylinders
and cone-spheres. The computation of �.	 p � is optimized for
each kind of skeleton.
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Meshing The surface of a primitive is obtained by sweep-
ing a sphere of constant radius /102�3�.4657	8%9� along the
skeleton. In our system, every implicit primitive can au-
tomatically generate an optimal mesh representation char-
acterized by almost equilateral triangles everywhere. This
mesh can be generated at different levels of resolution.
Moreover, the mesh is produced by a specific and optimized
procedure which makes mesh queries very efficient.

3.1.2 Polygonal meshes

Mesh leaves contain imported mesh models that are instan-
tiated only one time for the whole evaluation process. For
such nodes, the mesh creation process simply returns the
original mesh, which is not duplicated in memory. Field
function evaluations also directly apply to this informa-
tion. In the following paragraph, we precisely describe our
method for evaluating the field function from meshes.

Field function evaluation For a polygonal mesh, the field
function is computed using the same formulation as for
skeletal implicit primitives. The distance function �;: from
a point p &2�
� to a triangular mesh � is defined as the
minimal Euclidean distance between p and any triangle <
that of the boundary of � :� : 	 p ��>=@?BAC6D : �.	 p EF<G�
The distance ��	 p EH<G� is evaluated using the Voronoı̈ dia-
gram of � for point classification.

The implicit surface generated by the skeletal mesh for a
given threshold % is a rounded surface $ which differs for
the original mesh � . This surface $ may be defined by
sweeping a sphere of radius /10I��� 4J5 	K%9� along the bound-
ary of � (Figure 3(a)). To make the boundary of � and
the isosurface to correspond independently from the field
function parameters, we incorporate the threshold as an off-
set in a pseudo-distance function which is defined as fol-
lows:

�.	 p �� LM N � : 	 p �6OP/ 0 if p Q&R�/S0UTV�W:X	 p � if p &R�ZY�A�[\�W:'	 p ��]�/S0^
otherwise

Our distance function guarantees that the isosurface and
the boundary of the mesh should be the same for any value
of % , as shown in Figure 3(b). The user keeps control on e-
very parameter of the field function, and may precisely con-
trol the range of the blend between two objects. The radius
of influence of the mesh, which falls from " to "2TP/ 0 , is
rescaled appropriately so that the distance offset is hidden
for the user.

Since computing the minimum distance between a point
p and all the triangles < of the mesh � is computation-
ally expensive, we use Johnson and Cohen’s algorithm [17].

(a)

(b)

_
`.a

_ a bdcfeSg

eSg
b

eSg

Figure 3. Applying our distance function to a mesh.
The offset mechanism is schematized on the left, and
we take the Stanford Bunny as an example. At the top
(a), the basic distance formula is used. The model at
the bottom (b) has been computed using our pseudo-
distance.

This algorithm relies on a bounding box hierarchy built
from a BSP data-structure, which is parsed using breadth-
first traversal. For each node is computed a lower and an
upper bound of the minimum point to mesh distance, which
yields efficient space-pruning. We use the fact that the po-
tential falls to

^
beyond the distance / from the mesh bound-

ary so as to reject more useless point to mesh distance com-
putations. Indeed, for a given point in space p, �
	 p � is non-
zero if and only if ��	 p � is less than / . The effectiveness
of this optimization thus varies according to the geometry
of � and the size of "hTi/ 0 . Lots of time is saved when/ is small regarding the overall size of the mesh as only a
very reduced set of bounding boxes have to be tested. The
benefit of our acceleration decreases as / increases.

3.2. Queries on blending and Boolean operators

Meshing an implicit surface is still a challenging issue.
Existing implicit surface meshing techniques rely on many
evaluations of the potential field function, which is com-
putationally demanding in the general case. Our approach
consists in optimizing the mesh generation of every prim-
itive of the HybridTree and using specific meshing algo-
rithm for every node. Wherever two primitives do not over-
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lap very much, we observed that it is better to generate the
meshes of the primitives before combining them rather than
computing the overall mesh from scratch. The following
paragraphs detail specific methods for every operation in
the HybridTree.

3.2.1 Blending operators

One of the key feature of implicit surfaces is their ability to
blend together easily. We exploit this interesting property in
our system so as to perform blending on our hybrid models,
through both field function and polygonization queries.

Field function evaluation Let � and j denote two mod-
els that blend together. In our system, global blending be-
tween two objects is functionally defined as:� � �6ki�X� � Oi�7k
Meshing First, we will assume that � and j are associ-
ated with positive potential fields. If the two models � andj are only partially blended together, then the mesh of l
is created after the meshes ��� and � k . We use the in-
cremental Marching Triangles algorithm as described in [4]
to generate the mesh in the blending region. Otherwise,
the whole mesh of l is generated by applying a modified
Marching Cubes algorithm as proposed in [20].

To determine the most favorable approach, we estimate
how much the models � and j overlap, i.e. which pro-
portion of volume is shared in their blending region. We
introduce a ratio denoted as m such that

^(n m npo , which
is computed as follows:

mq�sr �6t kr �6u k � r �6t kr �(O r k T r �6t k
where r � , r k and r �6t k denote the volume of the bounding
boxes �+� , � k and �+�wvw� k respectively (Figure 4(b)).

We choose mq� ^yx{z as a default threshold, which appears
as a good guess in most cases. If m)| ^�x z , the mesh of l
is generated by the Marching Cubes technique. Otherwise,
the algorithm proceeds as follows:

1. Create the meshes � � and �}k of � and j respec-
tively.

2. Remove the triangles of ��� and � k that lie in the
inter-influence region of � and j , i.e. triangles that
have at least one vertex p such that � k 	 p �V| ^ for� � , and such that � � 	 p ��| ^ for �}k .

3. Invoke the Marching Triangles technique, starting
from the boundary edges of the meshes �>� and � k
to close the mesh.

For Step 3, we define a sampling rate that adapts to the
length of the edges of the meshes �>� and � k so as to
deal with objects of different scale.

The user can provide a value for m or directly specify
which method should be used for each blending operator in-
volved in a tree. If mR| ^yx{z for a given blending node, thenm is also computed for the parent node if it is a blending
node. For efficiency, the Marching Cubes algorithm is ap-
plied to the first ancestor blending node encountered while
traversing up the tree.

Figure 4 illustrates our algorithm for m n~^�x z . The
meshes of � and j are first generated. The triangles of�}� and � k that are located in the inter-influence region
of � and j are red. Then, these triangles are removed as
shown in (b), and the final mesh is obtained by applying
the Marching Triangles technique from the blue boundary
edges. The new triangles produced during this step are the
green ones in (c).

(b)

(c)

(a)

���
���

� �

���������
���

Figure 4. Meshing two blended objects � and j form�] ^�x z . As an example, we show the Stanford Bunny
that is blended with an implicit sphere.

Negative blending Negative blending smoothly removes
material and creates holes in the original object. In this case,
the previous algorithm is slightly modified as follows: In
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Step 1, we need only create the mesh �>� of � . In Step 3
we remove the triangles of ��� that lie in the inter-influence
region of � and j , i.e. triangles that have at least one vertex
p such that �7kU	 p �9] ^ . The Marching Triangles technique
is invoked in Step 3 starting from the boundary edges of the
meshes � � to close the mesh.

3.2.2 Local blending

We have implemented a new local blending operator adapt-
ing the local blending technique described by [25]. This
operator has three children, the first two, denoted as � andj , represent the two models that will be partially blended
together, whereas the third, denoted as " , represent the re-
gion of space where blending will occur.

In our system, " is characterized by a potential field that
is defined as a combination of implicit primitives in a tree.
The field function ��� characterizes the blending region and
is used to scale the amount of blending between the two
sub-trees � and j . Note that the values taken by ��� should
range between

^
and
o
. At a given point in space p, if�7�\	 p ��� ^ then only union occurs, which is the case for

any point outside the region of influence of " . In contrast,
if �7�\	 p �+� o , full blending takes place normally.

Field function evaluation The evaluation of the local
blending operator is performed as follows. We first com-
pute the potential field value resulting from the blending of
the children nodes ��� �6k 	 p �����7�\	 p �\O�� k 	 p � , and the
field function value ���6u k 	 p � . We define the resulting field
function as a weighted average:�
	 p �+�X� � 	 p �y� � �6k�	 p ��O�	 o TV� � 	 p ���U� �6u kU	 p �
Primitives built from a volume skeleton are very useful to
define regions in space where full blending occurs.

Meshing Here we suppose that � and j generate positive
potential fields, which is not required for " . The polygo-
nization of the local blending node is the same as for global
blending between positive potential fields with the only dif-
ference that Step 2 is modified so that triangles of �>� and� k are removed if they intersect the blending region " .

3.2.3 Boolean operators

Union, intersection and difference naturally apply to im-
plicit representations. The provided volume information of-
fers fast point membership classification which contributes
to efficiently generate mesh representations from such op-
erations.

Field function evaluation The =@?�A and =�Y7� functions
prescribed in [33] for union and intersection produce gra-
dient discontinuities in the potential function. This results
in visible unwanted normal discontinuities on the surface
when used in the context of local blending.

Contrary to =@?BA and =@Y�� functions, R-Functions de-
fine a field function with l-� continuity almost everywhere
in space, except on the surface, which avoids unwanted
discontinuities. The functions prescribed in [24] operate
on field functions that have an infinite support, whereas
our model operates on field functions that have a compact
support. Moreover, R-Functions have been designed for
implicit surfaces characterized by a null threshold value:%,� ^ .

We have adapted those functions to our model by in-
corporating the threshold value as an offset in the previous
equations. A weighting coefficient appears so as to guaran-
tee that the resulting field function still has a compact sup-
port. We have:

�7�6u k ��%PO o� Ti� ��� 	��7�fTf%9�6O 	�� k Tf%9�O � 	�� � TV%9���O�	��7kVT�%9��� ��7�6t k ��%PO o� Od� ��� 	��7�fTf%9�6O 	�� k Tf%9�Td� 	��7��TV%9���O�	�� k T�%9��� �
Note that both the =@?BA and =@Y�� functions and R-Functions
produce the same implicit surface if the Boolean nodes are
located at the top of the tree structure. In this case, the
computation of the =@?BA and =�Y7� is computationally in-
expensive compared to R-Functions. In contrast, we use
the modified R-Function equations to create a continuously
differentiable potential field if blending nodes are located
above Boolean operators in the HybridTree. In practice,
our system automatically adapts the function used to evalu-
ate Boolean operators depending on the context during the
evaluation.

Meshing Computing the mesh resulting from Boolean
operations may be achieved as performed by standard B-
Rep modelers. Our approach takes advantage of the dual
representation of the Hybrid Tree. We rely on the implicit
representation of the child nodes to efficiently perform point
membership classification. For polygonal meshes, we use
ray-casting rather than evaluating the field function for effi-
ciency. The algorithm for the intersection may be written as
follows:

1. Create the meshes ��� and � k of � and j respec-
tively.
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2. Remove the triangles of �>� that lie inside j , i.e. re-
move triangles of ��� that have at least one vertex p
such that ��k�	 p �\| ^ , and process the triangles of j in
the same way.

3. Invoke a crack fixing algorithm to close the mesh.

The crack fixing algorithm invoked in step 3 consists in
bridging the gap between boundary triangles to close the
polygonization. Our algorithm creates new triangles from
the boundary edges. For one given pair of contours, we
compute the closest neighbors from one side to the other
and corresponding vertices are connected. This technique
works well if the meshes � � and �}k have triangles of
almost the same size, but fails at producing good closing
triangles when the length of the facing edges is too different.

3.3. Queries on warping operators

In our implementation, warping operators include affine
transformations, Barr [7] deformations as global deforma-
tions. Our system also handles free-form deformations [28],
denoted as FFD, so as to perform local deformations.
Throughout the following paragraphs, ¡ will denote a space
transformation that maps ��� into �
� , and ¡�4J5 the corres-
ponding inverse transformation.

3.3.1 Affine transformations and Barr deformations

Affine transformations and twist, taper and bend deforma-
tions directly apply to polygonal meshes as well as to im-
plicit surfaces, as we can compute the closed form expres-
sion of ¡�4J5 .
Field function evaluation Let � denote an object that is
deformed. The resulting field function is defined using in-
verse space mapping as follows:��¢£	 p �+�X� � �£¡ 465 	 p �
Meshing We first create the mesh � � of � . Then the
deformation is applied to the mesh � � by simply changing
the coordinates of any vertex p into ¡G	 p � so as to obtain the
deformed mesh.

Translation, rotation and uniform scaling preserve the as-
pect ratio of the triangles, whereas non uniform scaling or
twisting, tapering and bending may stretch the triangles into
flat triangles. In those cases, we can use a local remeshing
process to get better shaped triangles.

3.3.2 Free-form deformations

Free-form deformations have been first introduce by Seder-
berg and Parry in [28], and then have been extended by sev-

eral authors [11, 9, 21]. Applying local deformations to im-
plicit surfaces is not straightforward as there is no easy way
of computing an analytical formulation for ¡G465 . In con-
trast, FFD directly apply to triangle meshes.

Meshing The mesh � � of � is first generated, and then
the deformation is applied to the mesh � � so as to obtain
the deformed mesh.

Warping nodes hold a mesh representation of their own
resulting surface using this method. Queries are performed
directly on the stored mesh, stopping any recursive call.
These data are useful when intensive evaluations of the field
function are performed.

Field function evaluation In our framework, FFD oper-
ators are evaluated using an intermediate mesh representa-
tion. Let � denote the child object of the warping node. The
algorithm proceeds as follows:

1. Generate the mesh ��� of � .

2. Apply the FFD to � � by transforming the vertices of� � .

3. Compute the field function value using the distance to
the deformed mesh ��� .

4. Implementation details

We have implemented a prototype software of the Hy-
bridTree in C++ on a Linux system. The nodes of the Hy-
bridTree have been implemented as shown in the inheri-
tance diagram provided in Figure 5, in which the name of
abstract classes appears in italic. This diagram does not
present all primitives out of clarity. The algorithms for the
evaluation of the HybridTree have been implemented as the
following member functions:¤ double Node::Intensity(Vector) perform

field function queries, which returns the value of the
field function at the given point in space.¤ Mesh Node::Polygonize(double) perform
the incremental polygonization queries, which returns
a mesh of the given precision.

These functions are specialized through the inheritance
diagram for every kind of node. For instance the
function Node::Polygonize(double) computes the
mesh in the general case using the extended March-
ing Cubes algorithm proposed in [20]. The function
Sphere::Polygonize(double) computes the mesh
of a sphere using the efficient ad-hoc algorithm proposed
in [3]. The function Blend::Polygonize(double)
computes the mesh of a blending node using the proposed
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strategy, depending of the value of the overlapping parame-
ter m .

Node

Primitive

Sphere

Cylinder

Mesh

Union

Blend

Difference

Warp

Intersection

FFD

Bend

Taper

Twist

Affine

Constructive

Figure 5. Inheritance diagram for the HybridTree.

The root of a HybridTree is encapsulated in the class
Tree which provides the user with means of querying the
structure. Below, we show the code of our declarative inter-
face for the winged snake-woman of Figures 1 and 2.

Mesh WingedSnakeWoman(){

// Primitives:
// Import the snake-woman model
Node snakewoman = CreateSnakeWoman();
// Import the Victory mesh model
Node victory = new HMesh("victory.obj");
// Bounding box
Volume box = Box(-1.0,-1.0,0.0,1.0,1.0,1.0);

// Operations:
// Extract the wings of the Victory model
Node wings = victory.Crop(box);
// Blend the snake-woman with the wings
Node blend = Blend(snakewoman,wings);

// Creation of the HybridTree
Tree hybridtree = Tree(blend);

// Computation of the mesh representation
return hybridtree.CreateMesh(0.05);
}

We implemented our meshes using a directed edge data-
structure, as proposed in [10]. Although this structure is
quite redundant, it enables a very fast localization of bound-
ary edges, which is useful for crack fixing steps that occur
frequently in our framework.

We build an axis aligned bounding box hierarchy so as
to rapidly discard useless evaluations in empty regions of
space. However the efficiency of our approach clearly de-
pends on the structuration of the HybridTree. We try to min-
imize the impact of a non-optimal orgnization by applying

an optimization process implemented in the class Tree,
which is based on rewriting techniques. A HybridTree is
completely reorganized with respect to a spatial criterion of
minimizing the overlapping volume between objects. Warp-
ing nodes are also relocated at the lowest levels of the tree
whenever possible.

5. Results and discussion

In this section, we present some complex models cre-
ated by combining and deforming original implicit surfaces
built from hundreds of primitives and meshes with thou-
sands of triangles. Modeling was performed on a Pentium
IV 2.4GHz - 1Go RAM workstation. Table 1 reports the
timings corresponding to the evaluation of the final model
as a triangle mesh (in minutes:seconds), as well as the over-
all number of triangles.

Figure Polygonization time Number of triangles

1(d), 2(e) 1:19 164,903
6(e) 1:10 91,961
7(d) 1:05 138,976
8(d) 1:18 110,713
9(c) 0:18 67,589

Table 1. Polygonization timings (minutes:seconds)
and number of triangles.

5.1. Free-form modeling

The winged snake-woman Figures 1 and 2 show blend-
ing and Boolean operations applied to implicit and mesh
input models. The original snake-woman (Figure 1(a)
and 2(a)) is an implicit model built from 250 spline implicit
primitives blended together, which is stored in our own li-
brary of models. The body has been blended with the Igea
mesh model (67,170 triangles) and the wings of the Victory
of Samothrace (16,340 triangles). The mesh creation pro-
cess first invokes the polygonization of the implicit snake-
woman model. The Marching Cubes algorithm is used as
all implicit primitives are overlapping much. The result-
ing mesh consists of 121,524 triangles, and took 0:09 to
generate. The head has been removed using Boolean dif-
ference with an implicit sphere primitive, and the body has
been blended with the Igea model using our local mesh-
ing method. The wings have been extracted from the Vic-
tory of Samothrace mesh model by intersecting the origi-
nal model with a box. The wings and the modified snake-
woman model have been finally blended together using the
local meshing method.
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Figure 6. Modeling a winged Stanford Bunny: (a) the original Stanford Bunny mesh model, (b) the bounding volume
which is used to extract the wings of the Victory of Samothrace mesh model in (c); the wings in (d) are then blended
with the Bunny so as to obtain the final model in (e).

The winged Bunny Figure 6 shows a winged Stanford
Bunny, which illustrates the abilities of our local blending
operator on meshes. This model is defined as a blend be-
tween the mesh model of the Stanford Bunny (69,674 trian-
gles) and the wings of the Victory of Samothrace (16,340
triangles).

The pot The pot in Figure 7 has been created using blend-
ing operators. The interior of the Igea mesh model has been
carved using a negative potential field generated by a line
segment implicit primitive. Handles built from two implicit
circle primitives have been added using blending.

The spiky snake-woman Figure 8 illustrates our free-
form deformation tool, applied to the snake-woman model
with the Igea model as head. Before applying the deforma-
tion, this model has been first meshed as described previ-
ously. Additionally, a Boolean difference operation with an
implicit cylinder primitive has been applied.

5.2. Virtual restoration of artwork

Figure 9 shows a virtual restoration process on the Igea
mesh, which is a Greek artifact, using the HybridTree. We
were interested in filling in the deep ridge on the right of the
chin and restoring the nose, exactly as a specialist could do.
We have used our blending tools to simulate cementing in
a very intuitive and realistic way. First we have manually
located implicit point primitives along the ridge and one at

the tip of the nose. The parameters of the field functions
have also been set by hand for each primitive. The primi-
tives have been then blended with the Igea mesh model so as
to produce the final mesh representation. We have built an
independent subtree for the set of primitives of the chin and
the another for the nose. The former has been polygonized
using the Marching Cubes algorithm, as the primitives over-
lap much. Then, the resulting mesh has been blended with
the Igea model using the local method. The same approach
has been used for the nose.

5.3. Discussion

Time Our system can handle simple implicit primitives
and polygonal meshes of up to 20,000 triangles at interac-
tive rates. Free-form deformations as well as local blending
may be performed interactively in the general case. Boolean
operations combining small implicit primitives or meshes
compared to the overall size of the final object may also be
performed at interactive rates.

The conversion step between triangles meshes and im-
plicit surfaces is the critical limiting factor regarding com-
putational performance. There is a need for fast polygoniza-
tion algorithms as well as fast implicitization of complex
meshes. Our experiments demonstrate that our optimized
distance function used to implicitize a mesh speed-up com-
putations the more significantly as the radius of influence of
the triangle mesh primitive is small. For instance, the time
needed to polygonize the final implicit representation of the
winged Stanford Bunny model (Figure 6) drops from 3:30

9
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Figure 7. Creating a pot from the Igea mesh: (a) the original Igea mesh, carved using a negative potential field
generated by a line segment implicit primitive (b); (c) the handles created from two implicit circle primitives which are
blended with the head so as to obtain the final model in (d).

to 1:10 using our technique.
Nevertheless, the computation of the potential field func-

tion generated by a mesh at a given point in space remains
computationally expensive despite our optimizations. Ex-
periments demonstrate that a field function query performed
on a complex mesh can have a cost in time that is up to
several hundreds times the cost of the same evaluation per-
formed on a point primitive. Sampling the distance field on
a grid as a preprocessing step would yield faster point to
mesh distance queries. However the cost of storage would
dramatically increase, which we wish to avoid.

Storage The HybridTree data-structure significantly re-
duces the amount of memory needed for storing complex
models. Contrary to Level Set [22] or Adaptive Distance
Fields models [15], we do not store any voxel grid or octree,
which saves memory. The use of complex implicit skele-
tal primitives enables us to design complex shapes with
a very compact representation. The snake-woman model
represented in Figures 1 and 2 was created by blending a
few hundred spline skeletal primitives together. The corre-
sponding HybridTree representation takes less than ¥�¦ kilo-
bytes in memory.

Shape control The ability to combine mesh models and
skeletal implicit surfaces in a coherent framework not only
extends the range of models that can be created but also
permits us to have a tight control when editing our models.

Our local blending technique implemented in the Hy-
bridTree allows to control how two meshes blend together
easily. The designer may simply tune the radius of influ-

ence for mesh primitives so as to control the geometry of
the blend with other objects. Moreover, the skeletal implicit
surface representation enables blending of meshes of any
genus and geometry. This compares favorably with other
specific mesh fusion methods such as [30] or [18] which
impose some geometric or topological restrictions. Eventu-
ally, our implicit representation provides means of creating
negative blending between shapes, which is useful for sim-
ulating carvings.

6. Conclusion and future work

In this paper, we have proposed a new hybrid shape
representation. Our model combines skeletal implicit and
polygonal meshes into a coherent framework. The Hy-
bridTree exploits the complementary advantages of the
mesh representation, useful for fast visualization and free-
form deformations, and implicit surfaces, that lend them-
selves for Boolean, and local and global blending. These
operations are performed in the most suitable representation
in a totally transparent way for the user. Meshing and po-
tential field function evaluations queries are optimized for
every node of the HybridTree.

In the near future, we plan to investigate local conversion
techniques so as achieve interactive editing of large meshes
and more complex skeletal implicit surfaces. We also wish
to extend our HybridTree model so as to incorporate point
cloud representations [26, 1] that have been presented re-
cently. Dealing with point clouds would enable us to di-
rectly handle scanned objects, and make them interact with
implicit surfaces and meshes.
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Figure 8. Free-form deformation and Boolean difference on the snake-woman (a) the snake-woman with the Igea
mesh model as head; (b) result of the deformation; (c) the implicit line segment primitive substracted from the deformed
model; (d) the final surface.

Another interesting research field would be to bring unic-
ity in the representation of the information and achieve re-
versibility in the evaluation process.

Eventually, we are also investigating the automatic man-
agement of levels of detail in the HybridTree. We think that
it should be possible to combine skeletal implicit primitives
with levels of detail as presented in [5] with multiresolution
meshes and subdivision surfaces.
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