
Procedural Modeling of Cracks and Fractures

Aurélien Martinet
�

Eric Galin � Brett Desbenoit � Samir Akkouche �
�
Artis-GRAVIR � LIRIS

INRIA Rhône Alpes Université Claude Bernard Lyon 1
655 Avenue de l’Europe, Montbonnot 43 Boulevard du 11 Novembre 1918

38334 St Ismier Cedex, France 69622 Villeurbanne Cedex, France

Aurelien.Martinet@imag.fr Eric.Galin �Brett.Desbenoit � Samir.Akkouche@liris.cnrs.fr

Figure 1. The left and right images show two broken glasses with ��� and ��� fragments respectively. The center image
shows a statue shattered into �	�
� fragments

Abstract

In this paper, we present a procedural method for mod-
eling cracks and fractures in solid materials such as glass,
metal and stone. Existing physically based techniques are
computationally demanding and lack control over crack
and fracture propagation. Our procedural approach pro-
vides the designer with simple tools to control the pattern
of the cracks and the size and shape of fragments. Given
a few parameters, our method automatically creates a vast
range of types of cracks and generates fragments of different
shapes.

Keywords: Procedural modeling, implicit surfaces, frac-
tures, cracks.

1. Introduction

Realistic animation of breaking objects is a challenging
task in computer animation. Breaking an object often cre-

ates many small and interlocking pieces. The complexity of
these fragments makes modeling by hand impossible. Con-
sequently, the simulation of cracking, breaking and shatter-
ing has received some attention in the computer graphics
community.

Most existing techniques rely on involved and compu-
tationally demanding physically based simulations to com-
pute both crack propagation and create fragments [4, 12,
9, 13]. Such methods are indispensable for correct and ac-
curate simulation of shattering and breaking and have pro-
duced images of striking realism.

Physically based simulations often require the discretiza-
tion of objects into voxels or tetrahedral meshes to compute
internal forces. This discretization often leads to some ar-
tifacts in the crack pattern which makes fragments look not
very realisitic. Those artifacts are the more visible as frac-
tures are propagated along the boundaries of the initial mesh
or voxel grid. Moreover, it is difficult to control a simula-
tion so that breaking should occur only in a given region
and so that some fragments should have a specific user de-
fined shape. Therefore, their usage may cumbersome for

1

some applications and more simplistic, albeit less accurate,
approaches may be useful.

In this paper, we propose an original procedural method
for creating cracks and breaking objects into fragments. Our
approach is phenomenological and closely related in spirit
to the procedural surface aging technique proposed by Pa-
quette et al. [14]. By observing real world fractures and
crack, we identify some simple patterns and parameters that
will guide our procedural techniques and will provide an in-
teractive control to the designer.

Our crack and fracture modeling system relies on a hy-
brid representation of shapes that combines skeletal im-
plicit surfaces and triangle meshes. In our implementation,
we use the Hybrid Tree [1] model that combines skeletal
implicit primitives and triangle meshes in a tree structure
whose nodes hold Boolean, blending and warping opera-
tors. The Hybrid Tree provides us with a number of advan-
tages.

Cracks are defined using Boolean difference operations
between the original input model and carving volumes. The
carving volume is defined as the union of complex implicit
skeletal primitives such as tetrahedra and swept volumes
obtained by sweeping a profile curve along the edges of a
crack pattern graph that has been projected onto the surface
of the original object.

Fractures are created using Boolean intersection and dif-
ference operations between the original input model and
fracture masks. Fractures masks are defined at different
levels of detail as skeletal implicit primitives or complex
meshes that define the small details of appearance of the
cuts. Since modeling every fragment by hand is impos-
sible, we propose a technique that automatically creates a
user defined number of fragments with a specified distribu-
tion in shape and size by repetitively applying intersection
and difference operators between the original object and pa-
rameterized fracture masks.

Combining skeletal implicit surface and mesh models
enables us to deal with a variety of input models. Cracks
and fractures are handled in a coherent a consistent mod-
eling framework. The Hybrid Tree structure enables us to
incrementally create small and interlocking fragments. Be-
cause the objects need not be voxelized or tetrahedralized as
for physically based techniques, we are not limited in preci-
sion or resolution when creating fragments. Therefore, we
avoids shape artifacts resulting from the discretisation pre-
processing step required by physically based techniques and
we can easily create very small shards.

The overall simulation algorithm is simple and efficient,
allowing the designer to intuitively break an object and in-
teractively see the results.

The remainder of this paper is organized as follows. Sec-
tion 2 present a short overview of existing crack and frac-
ture simulation techniques. Section 3 recalls the fundamen-

tal properties of the Hybrid Tree. Section 4 and 5 present
our method for cracking and breaking objects. Eventually,
Section ?? present some examples produced by our system
and compares the results with some real world images.

2 Related work

Animating and simulating fractures has received a lot
of attention in the computer graphics community. Ter-
zopoulous and Fleischer [18] first presented a general tech-
nique for modeling visco-elastic and plastic deformations.
Norton et al. [11] described a technique for modeling the
breaking of volume objects that were discretized into a set
of cubes attached to one another by springs.

More recently, O’Brien and Hodgins [12] proposed a
method for modeling and animating brittle fracture by
analysing the stress tensors computed over a finite element
model. This model was extended in [13] to model ductile
fractures for a wider range of materials. Smith et al. [16]
presented a technique for shattering brittle objects using a
set of point masses connected by distance preserving linear
constraints. Mûller et al. [9] used a hybrid implicit-explicit
integration scheme to compute deformations and fracture of
stiff materials in real time.

Some work address the fragmentation of solid objects
induced by explosions. Mazarak et al. [8] used a voxel
based approach to model solid objects that break apart when
they encounter a blast wave. Nef and Fiume [10] proposed
a recursive pattern generator to divide a planar region into
polygon shards.

Other relevant work in the computer graphics literature
includes techniques for modeling static crack patterns on
dry mud, ceramics or even paint. Hirota et al. [4] devel-
oped a mass-spring system for simulating the static crack
and fracture patterns created by drying mud. Gobron et
al. [3] described a method for modeling the propagation of
cracks on the surface of objects using a cellular automata.
Recently, Paquette et al. [15] presented a method for sim-
ulating the crack propagation, loss of adhesion and curling
effects of paint peeling.

3 Background

The Hybrid Tree model [1] relies on a tree data struc-
ture whose leaves hold either implicit primitives or trian-
gle meshes. These are combined by Boolean, blending and
warping operators located at the nodes of the tree. The in-
ternal representation of a model is either an skeletal implicit
surface or a triangle mesh, and automatically adapts to the
operations performed on the model. The conversions be-
tween the two representations are completely transparent
for the user.

2

The evaluation of the Hybrid Tree is achieved in an in-
cremental way by recursively traversing the tree structure.
There are two different kinds of queries. Potential field
function queries at a given point in space are performed
whenever the implicit formulation is required or lends itself
for some operations. The implicit surface representation is
used for performing the blending and Boolean operations
needed to carve cracks and generate the fragments using
fracture masks. It is also used to compute the relative vol-
ume of fragments using an octree decomposition of space
with Lipschitz conditions and interval arithmetic.

Polygonization queries are invoked if a surface represen-
tation is needed. Triangle meshes are produced for fast visu-
alization crack pattern mapping and fast surface marching.

4 Modeling cracks

The creation of cracks on the surface of an object is per-
formed in three steps as represented in Figure 2. First, the
designer defines a crack pattern, denoted as � , which is im-
plemented as a graph whose topology corresponds to the
connectivity of the cracks and whose edges and the nodes
contain the profile information of the crack, i.e., the width
and the depth of the crack. This graph may be either cre-
ated by hand, by procedural techniques or computed from
real world images.

Parameters

Mapping
step

Extrusion
Difference

Pattern

model
Input

model
Output

Figure 2. Simulation cycle of the cracking process

The second step of the algorithm maps the graph pattern
onto the original object � to create the geometric skeleton
of the crack, which will be denoted as . Starting from a
vertex on the object, our algorithm marches along the sur-
face and progressively creates and propagates the crack pat-
tern by creating a set of connected edges on the surface.

Eventually, we create a volume representation of the
crack, denoted as � , by sweeping a profile curve of the
crack along the edges of the skeleton. The final object is
defined by removing the volume � from the original shape
using a difference Boolean operation.

4.1 Designing cracks

Cracks are characterized by a graph that defines both its
branching features and its geometry. The nodes of the graph
hold information about the width and the depth of the crack
at the corresponding vertex, as well as the directions and the

angles between junctions. The edges of the graph include
information about the length of the crack. The width and
depth along an edge of the graph are defined as a linear
interpolation of the values at the corresponding nodes so as
to create cracks of varying thickness and depth.

Crack patterns may be easily created using a specific
crack-graph editor, which enables the designer to control
all the parameters freely. Different cracks may be created
an saved into a collection of patterns, or implemented as
procedural cracks, much like textures. In our implentation,
cracks are defined from real world images so as to create
realistic crack patterns. The varying depth of the crack can-
not be retrieved easily in the general case. Therefore, the
designer may simply edit the depth parameters at the nodes
of the graph, or specify that the cracks should always cut
through the object.

4.2 Mapping

Once the crack specifications have been completed, the
designer maps the crack pattern onto the surface of the orig-
inal object. The edges of the graph are projected as line seg-
ments onto the surface by applying a surface marching al-
gorithm, which creates the geometric skeleton of the crack.
This marching algorithm is recursively called at the nodes
of the tree to create crack junctions.

It is worth noticing that the marching algorithm used to
map the crack pattern may generate self-intersecting skele-
tal elements. In practice, this occurs only if large crack pat-
terns are applied in regions of high curvature. Nevertheless,
the carving volume generation process described in the next
paragraphs still creates consistent objects.

4.3 Volume generation

Once the skeleton of the crack has been created on the
surface, we generate a carving volume that will create the
crack in the object using a difference Boolean operator. This
carving volume is defined by sweeping a vee-shaped profile
curve parameterized by the width and depth of the crack
along the line segments of the skeleton as depicted in Fig-
ure 3. In our modeling system, this carving volume will be
characterized as Hybrid Tree defined as the union of prisms,
tetrahedra and pyramids implicit primitives.

The vertices of the carving volume for every line seg-
ment of the skeleton are computed as follows. Let � denote
a vertex of the skeleton and � and � denote the width and
depth of the crack at vertex � respectively. We first com-
pute the normal of the implicit surface at vertex � as well
as the tangent vector to the skeleton, denoted as � , and �
respectively. The bottom vertex is defined as ����������� ,
whereas the border, denoted as ��� and ��� � are computed as
� �!�"� .

3

a

a

b

b’

’’n b

Figure 3. Carving volume generated by a line seg-
ment of the crack skeleton

n a

a

b

Figure 4. Tetrahedral carving volume generated at a
junction

In practice, those vertices may be slightly inside or out-
side of the original object depending on the local curvature
of the surface, although they should be above the surface so
as to create a hole without artefacts. Therefore, vertices �#�
and ��� � are first cast onto the surface and then raised above
it by a user controlled offset distance. Junctions are handled
in a more specific way so that carving polyhedra should join
in a consistent fashion. We use a tetrahedral volume to join
three edges of the skeleton as depicted in Figure 4. In the
general case, we create a $ -sided pyramid to join $ edges.
Eventually, the crack is carved in the object by creating the
final Hybrid Tree defined as the difference �%�!� .

4.4 Results

Figure 5 shows a comparison between a real broken vase
made of clay, and the corresponding synthetic model cre-
ated with our method. The paths of the cracks on the syn-
thetic model were created after the original image. The
depth of the cracks adapted to the thickness of the origi-
nal model automatically during the crack volume genera-
tion process so that cracks should pierce the model and not
only create surface scratches.

Figure 6 shows how the crack pattern created after the
original image of the clay vase was applied to a bottle and
an amphora model. As for the vase model, the depth of the
cracks was computed automatically.

Figure 5. A real clay vase (left) and a synthetic
model (right) with the fracture geometry created af-
ter the original image

Figure 6. A cracked clay bottle and an ancient am-
phora

Table 1 reports the timings for generating the final
cracked Hybrid Tree representations of the vase, bottle and
amphora models. Timings include the mapping of the crack
pattern and the volume generation process. The final tri-
angle meshes were generated using a modified Marching
Cubes algorithm as presented in [7] on a �
&
'�(voxel grid.
The number of triangles of the final model is also reported.

Model Cracking Triangles

Vase 1:36 �)�*&+��,��
Amphora 2:13 �-��,.,/��0

Bottle 2:48 �1��2.032
'

Table 1. Timings (in seconds) for generating the
cracked models in Figure 6 and 5

The cracked snake woman model in Figure 7 was pro-
duced by spawning 23� cracks randomly across the surface.

5 Modeling fractures

A simulation starts with the selection of a fracturing tool
and the definition of its properties and parameters taken
either from user specified values or statistical distribution.
Let � denote the original object and 4 the fracture mask.
The fracturing tool is applied to the object to break it into

4

Figure 7. A cracked statue model

fragments by computing the Boolean intersection �65�4
and difference �%�!4 between the original object and frac-
ture mask. Those fragments are expressed as Hybrid Trees
and can be further broken into pieces by repetitively apply-
ing the selected tool. Our algorithm automatically locates
the fracture masks in space so that the volume and shape
of fragments should have a user defined distribution. The
whole process in repeated as shown in Figure 8 until the
number of pieces specified by the designer is reached.

Boolean
operations

Fracturing
tool

Fragments

Parameters

model
Input

model
Output

Figure 8. Simulation cycle of our system

When the simulation is completed, all the fragments are
fully characterized by a Hybrid Tree which may be polygo-
nized for fast visualization. Mechanical characteristics such
as their mass, volume, inertia tensors may be computed eas-
ily to create physically based animation.

5.1 Fracture masks

In our system, a fracture mask is defined as a parameter-
ized volumetric shape that defines the pattern of the fracture
that will be generated between two fragments. In practice,
the fracture masks are positioned relatively to the original
objects so that it should embed part of the object and cut it
into parts.

Fracture masks no only characterize the overall large
scale pattern of the crack between two fragments, but also
the small details which make the crack surface rough or
smooth. Therefore, our system implements fracture masks

as primitives with levels of detail. At a lower resolution,
fracture masks defined as simple skeletal implicit primitives
such as ellipsoids, boxes or half spheres which create frag-
ments with straight and smooth cut patterns. At a higher
resolution, those otherwise simple shapes are represented
by complex meshes whose vertices are perturbed by a noise
function so as to generate more realistic looking fracture
cuts.

Our system also allows the designer to create very com-
plex fracture patterns by using a height field which may be
edited as an image. This technique enables the designer to
reproduce very realistic surface characteristics in terms of
profile and rugosity after real world examples.

5.2 Controlling the shape of fragments

An original object may be broken in two ways. First, the
user may interactively edit the position and orientation of
the fracture masks in space to control the shape of the frag-
ments. This approach provides the designer with a tight,
although low level, control over the shape of the final bro-
ken object. In practice, this technique is cumbersome and
inefficient for modeling a object shattering into hundreds of
pieces.

V = 50%-

V = 50%+

V = 25%-

V = 75%+

Figure 9. A glass broken into two pieces with differ-
ent volume statistics

To overcome this problem, we have developed an auto-
matic algorithm. The simulation is parameterized by both
the distribution of the size of the fragments that will be cre-
ated, and the global shape of the fragments. The designer
controls whether the fragments should be long thin shards or
roughly round pieces. The designer also defines the relative
volume of the fragments produced by the cutting process.

At every step of the algorithm, we select the location and
orientation of the fracture mask randomly. Then, given an
initial object � and a fracture mask 4 , we automatically ad-
just the position and orientation of the mask so that the size
and shape of the generated fragments �75!4 and �8�94
should conform to the size distribution and shape specifica-
tions provided by the designer (Figure 9).

This algorithm requires the evaluation of the volume of
the fragments as well as the computation of their main di-
rections. The original object is first converted into point

5

cloud representation. This process is performed once and
for all as a pre-processing step. The cloud point represen-
tation enables us to compute the volume and evaluate the
shape characteristics of the fragments efficiently.

The point cloud representation is created as follows. We
adaptively sample the object using an octree decomposi-
tion of space. Cells that are detected outside the object
are skipped. If a cell is detected inside the object, as many
points as needed are created depending on the level of the
octree. Straddling cells are further subdivided until the
maximum octree depth is reached. A point is created for a
straddling cells at maximum depth if the field function value
at the center :�;=<�> of the cell is positive. In our implemen-
tation, we used a combination of the Lipschitz techniques
described in [6] and interval arithmetic [17] to characterize
cells.

Volume computation The overall volume of the object is
proportional to the overall number of points, denoted as $.
When applying fracture masks 4 to create fragments, we
simply classify points inside or outside the mask to com-
pute the relative volume of the fragments. Let $@? denote
the number of points detected inside, the relative volumes
are ACBEDGFH�9$E?#I*$ and ACBKJLF!���C��$E?.I-$. This classifica-
tion is performed efficiently by evaluating the field function
value for all the points in the point cloud representation.

Fragment shape control The cloud point data-structure
enables us to compute the principal axes of the object using
the Karhunen-Loeve transformation. The principal axes of
the point cloud are found by choosing the origin at the cen-
tre of gravity and forming the dispersion matrix computed
as follows:

MONQP � �
$
NSRETU
NVRKW ;X< N �ZY< N >[;=< P �7Y< P >

The sum is over the $ points of the sample and the < N are
the \V]X^ components of the point coordinates. Y< N stands for
averaging. The principal axes and the variance along each
of them are then given by the eigenvectors and associated
eigen-values of the dispersion matrix.

Therefore, the designer can select the orientation of the
fracture masks relatively to the principal axes of the original
object, which enables him to intuitively control the global
shape of the generated fragments (Figure 10).

5.3 Fracture regions

The designer may simply control the region where frac-
tures will occur. Given a volumetric region denoted as _ ,
fractures will be performed on the Hybrid Tree defined as

n n

Figure 10. Controlling the shape of fragments by se-
lecting the orientation of the fracture mask relatively
to the principal axis of the shape

the intersection �`5a_ whereas the difference �b�c_ will be
preserved and kept crack-free.

As for fracture masks, simple smooth and regular vol-
umes such as spheres or boxes create smooth and straight
cut patterns that do not look very realistic. Therefore, we
have implemented a variety of template bumped and noisy
regions that create more realistic fracture patterns. In our
system, those volumes are defined by randomly perturbing
the locations of the vertices mesh of spheres and ellipsoids
along their vertex normal using a noise function.

5.4 Results

The images in Figure 1 show different models broken
into pieces. The scotch glass (Figure 1, left image) was
broken into ��� pieces. The volume ratio between fragments
was constrained to 01dQ& so as to get pieces of the same vol-
ume whereas the orientation of the cut was computed ran-
domly so as to produce some long sharp thin fragments.
The champagne glass (Figure 1, right image) was broken
into �3� pieces using a volume ratio of 0)d &3& , which produced
fragments of roughly the same size. The principal cutting
direction was automatically set orthogonal to the principal
direction of the fragments so as to avoid long thin pieces.
The statue model (Figure 1, center image) was shattered
into �*�/� pieces using a volume ratio between fragments of
01dfe/& .

Model Pieces Cloud Fracturing Triangles

Champagne 48 2:08 5:96 387 641

Glass 18 3:06 5:11 335 947

Statue 128 8:96 56:37 467 824

Table 2. Timings (in seconds) for generating the bro-
ken models in Figure 1

Table 2 reports the time needed to generate the Hybrid
Tree models of the fragments. The timings for generating

6

the point cloud generation is also reported. The total num-
ber of triangles of the fragments is also reported.

The images in Figure 11 show a sphere falling on the
floor and breaking into �-� pieces. The fragments were
computed automatically, and constrained to have almost the
same volume and avoid long thin shapes. Fragments were
first polygonized for fast rendering. The mechanical char-
acteristics such as their mass, volume, inertia tensors were
computed easily from the implicit surface representation us-
ing an octree decomposition of space. The animation was
produced with a physically based animation system incor-
porating collision detection.

The images in Figure 12 show a wine flask hit by a solid
sphere and breaking into �3� pieces. This simulation in-
volved the same parameters as for the falling sphere.

6 Conclusion

We have presented some efficient procedural techniques
for modeling cracks and fractures in solid materials such as
glass, metal and stone. Our procedural approach provides
the designer with simple parameterized tools to control the
pattern of the cracks and the size and shape of fragments.
Objects shattering into many interlocking fragments may
be generated automatically. Both the shape and the size of
synthetic fragments may be easily controlled by using a va-
riety of fracture masks and crack patterns created after real
world images.

In a future work, we plan to further investigate the de-
sign fracture masks and crack patterns with different levels
of detail and generate fractured models at different resolu-
tions. In particular, we plan to automatically generate tex-
tures from the geometry of the cracks to create realistic tex-
tures that will be used for display at a low level of details.

Acknowledgments

The authors would like to thank Olivier Galizzi for pro-
viding the animation and collision engine that produced the
animations presented in this paper.

References

[1] R. Allègre, A. Barbier, S. Akkouche and E. Galin. A Hybrid
Shape Representation for Freeform Modeling. Submitted to
Shape Modeling International 2003.

[2] B. Cutler, J. Dorsey, L. McMillan, M. Mûller and R. Jag-
now. A Procedural Approach to Authoring Solid Models.
SIGGRAPH 2002 Proceedings, 302–311, 2002.

[3] S. Gobron and N. Chiba. Crack pattern simulation based on
3d surface cellular automata. The Visual Computer, 17(5),
287–309, 2001.

[4] K. Hirota, Y. Tanoue and T. Kaneko. Generation of crack
patterns with a physical model. The Visual Computer, 14(3),
126–137, 1998.

[5] K. Hirota, Y. Tanoue and T. Kaneko. Simulation of three-
dimensional cracks. The Visual Computer, 16(7), 371–378,
2000.

[6] D. Kalra and A. Barr. Guaranteed ray intersections with
implicit surfaces. SIGGRAPH 1989 Proceedings, 297–306,
1989.

[7] L. Kobbelt, M. Botsch, U. Schwanecke and H.-P. Seidel.
Feature Sensitive Surface Extraction from Volume Data
SIGGRAPH 2001 Proceedings, 57–66, 2001.

[8] O. Mazarak, C. Martins and J. Amanatides. Animating Ex-
ploding Objects. Graphics Interface Proceedings, 211–218,
1999.

[9] M. Mûller and L. McMillan and J. Dorsey and R. Jagnow.
Real-Time Simulation of Deformation and Fracture of Stiff
Materials. Eurographics Workshop on Animation and Simu-
lation, 2001.

[10] M. Neff and E. Fiume. A visual model for blast waves and
fracture. Graphics Interface Proceedings, 193–202, 1999.

[11] A. Norton, G. Turk, B. Bacon, J. Gerth and P. Sweeney. An-
imation of Fracture by Physical Modeling. The Visual Com-
puter, 7, 210–219, 1991.

[12] J. O’Brien and J. Hodgins. Graphical modeling and anima-
tion of brittle fracture. SIGGRAPH 99 Proceedings, 137–
146, 1999.

[13] J. O’Brien, A. Bargteil and J. Hodgins. Graphical model-
ing and animation of ductile fracture. ACM Transactions on
Graphics, 21(3), 291–294, July 2002.

[14] E. Paquette, P. Poulin and G. Drettakis. Surface Aging by
Impacts. Graphics Interface Proceedings, 2001.

[15] E. Paquette, P. Poulin and G. Drettakis. The simulation of
paint cracking and peeling. Graphics Interface Proceedings,
59–68, 2002.

[16] J. Smith, A. Witkin and D. Baraff. Fast and Controllable
Simulation of the Shattering of Brittle Objects. Graphics In-
terface Proceedings, 27–34, 2000.

[17] J. Snyder. Interval arithmetic for computer graphics. SIG-
GRAPH 1992 Proceedings, 121–130, 1992.

[18] D. Terzopoulos and K. Fleischer. Modeling Inelastic Defor-
mation: Viscoelasticity, Plasticity, Fracture. SIGGRAPH 88
Proceedings, 269–278, 1988.

[19] B. Wyvill, A. Guy and E. Galin. Extending the CSG Tree
(Warping, Blending, and Boolean Operations in an Im-
plicit Surface Modeling System). Computer Graphics Fo-
rum, 18(2), 149–158, 1999.

7

Figure 11. A ball breaking into pieces

Figure 12. A flask breaking into pieces

8

