
Fast approximation of the maximum area convex

subset for star-shaped polygons

D. Coeurjolly1 and J.-M. Chassery2

1Laboratoire LIRIS, CNRS FRE 2672

Université Claude Bernard Lyon 1,

43, Bd du 11 novembre 1918,

F-69622 Villeurbanne, France

2Laboratoire LIS, CNRS UMR 5083

961, rue de la Houille Blanche - BP46,

F-38402 St Martin d’Hères, France

Abstract

Access to the shape by its exterior is classically solved using convex hull. Many algorithms

have been proposed in that way. This contribution addresses the problem of the access of

the shape by its interior. More precisely, we present a simple algorithm to approximate the

maximum convex subset of star-shaped polygons.

1 Introduction

Access to the shape by its exterior is classically solved using convex hull. Many algorithms

have been proposed in that way. This contribution addresses the problem of the access of the

shape by its interior. The computation of the best shape according to a criterion included

in a given one has been studied in many few occasions in the continuous plane.

The problem can be presented as follows: given a non-convex polygon, how to extract

the maximum area subset included in that polygon ? In [8], Goodman calls this problem

the potato-peeling problem. More generally, Chang and Yap [4] define the polygon inclusion

problem class Inc(P ,Q, µ): given a general polygon P ∈ P , find the µ-largest Q ∈ Q

contained in P , where P is a family of polygons, Q the set of solutions and µ a real function

on Q elements such that

∀Q′ ∈ Q, Q′ ⊆ Q⇒ µ(Q′) ≤ µ(Q). (1)

The maximum area convex subset is an inclusion problem where Q is the family of

convex sets and µ gives the area of a solution Q in Q. The inclusion problem arises in many

applications where a quick internal approximation of the shape is needed [2, 6].

If we restrict the setQ, efficient solutions exist. For example, ifQ is the set of axis-parallel

rectangles, the inclusion problem can be solved in O(n · log2 n) if n is the size of P [6]. If

Q is the set of Euclidean disks, the inclusion problem can be related to the skeleton or the

medial axis of P [3]. Hence, once the medial axis obtained using [5] for example in O(n), the

maximal disk Q is the vertex of the skeleton with the maximal distance value .

In the general case where Q is the set of convex subsets of P , the first statement of the

problem has been given by Goodman [8]. A solution is presented if n ≤ 5 but the article ends

with an open problem concerning the general case. Chang and Yap [4] prove that, in that

case, the problem can be solved in O(n7). However, the proposed algorithm is not tractable

in practical applications.

In this article, we present a fast approximation of the maximal convex subset of a polygon

if P is the family of star-shaped polygons. This simple algorithm extracts the maximal convex

subset in O(k · n) in the worst case if n is the size of P and k its number of reflex points.

In section 2, we introduce the Chang and Yap’s optimal solution definitions that will be

used in the rest of the presentation. In section 3, we present the proposed algorithm based

on classical and simple geometric tools. Finally, experiments are given.

2 Preliminaries and Exact Polynomial Solution

For the rest of the presentation, we consider a polygon P = (v0, v1, . . . , vn−1) with n vertices.

We denote by R = (r0, r1, . . . , rk−1) the k reflex vertices (or concave vertices) of P (maybe

empty). The potato-peeling problem can be expressed as follows,

Problem 1 Find the maximum area convex subset (MACS for short) Q contained in P .

In [8], Goodman proves that Q is a convex polygon and that if P is convex (i.e. k = 0)

then Q is equal to P . Furthermore, he presents explicit solutions for n ≤ 5 and leaves the

problem unsolved in the general case.

In [4], Chang and Yap prove that the potato-peeling problem can be solved in polynomial

time in the general case. More precisely, they detail an O(n7) time algorithm to extract Q

from P . Since this algorithm uses complex geometric concepts and dynamic programming

in several key steps, it is not tractable in practical applications.

Let us present some elements of the Chang and Yap’s algorithm. First of all, we define

a chord of P by a maximal segment fully contained in P . A chord is said to be extremal if

it contains two or more vertices of P . In particular, an edge of P is always enclosed in an

extremal chord. Let C1, C2, . . . , Cm be chords of P with m ≤ k such that each Ci passing

through reflex vertices of P . We first consider the chords going through a unique reflex point.

Let us associate to each such a chord Ci passing through u in R, the closed half-plane C+
i

defined by Ci and such that at least one or two adjacent vertices to u does not belong to C+
i .

If Ci passes through more than one reflex vertex, the choice of the half-plane can be made in

similar ways (see figure 1). They prove that the maximum area convex polygon Q is given

by the intersection of P and a set of half-planes defined by a set of so-called optimal chords

(see [4]). Hence, to solve the potato-peeling problem, we have to find the appropriate set of

optimal chords associated to the reflex vertices.

If P has only one reflex vertex u, the optimal chord Cu that leads to the MACS Q

can be easily found. First of all, Chang and Yap [4] define a butterfly as a sequence of

���

�������

�
	

���

� �

� �

� 	

 	

 �

��	

���������
���

Fig. 1. Notations and illustrations of chords and half-planes generated by these chords.

points [b′, a, u, b, a′] such that a, u and b are consecutive vertices in P with a and b adjacent

vertices of u in P , and such that both [a, u, a′] and [b, u, b′] are extremal chords (see figure

2). Furthermore, the chord [c, u, c′] is said to be balanced if we have |cu| = |uc′| (c and c′

belonging to P). Based on these definitions, two kinds of butterflies exist according to the

position of the intersection O between the straight lines (b′a) and (ba′), and the polygon.

More precisely, a A-butterfly is such that the points b′, a and O (or O, b and a′) appear in

this order (see figure 2-(left)) in the straight line (ab) (resp. (a′b′)). Otherwise, it is called

a V-butterfly (see figure 2-(right)). In this one reflex corner case, Chang and Yap prove the

following lemma:

Lemma 2 (Butterfly lemma [4]) Given a butterfly B and its optimal chord Cu, if B is

a V-butterfly then Cu is an extremal chord. If B is a A-butterfly, Cu is either extremal or

balanced.

We notice that in case of V-butterfly we have two possible chords, in case of A-butterfly,

three choices are possible. This lemma leads to a linear in time solution to the potato-peeling

problem if k = 1.

In a general case, Chang and Yap [4] define other geometric objects such as series of

A- and V-butterflies. Based on these definitions, they present an A-lemma and a V-lemma,

similar to lemma 2, that state that the optimal chords for a set of butterflies are extremal

�
���

�

�

�

�

�

�

���

� �

�

� �

� �

�

Fig. 2. One reflex vertex case: an A-butterfly (left) and a V-butterfly (right). According to
lemma 2, the optimal chord of each polygon is one of the gray segments.

chords or a set of balanced chords. In the general case, the definition of a balanced chain for

a butterfly sequence is more complex than in the previous case (see figure 3-(a)). Hence, the

computation of such a chain uses dynamic programming and complex geometric concepts.

Furthermore this step is the bottleneck of the algorithm and makes expensive the O(n7)

global time complexity.

(a) (b)

Fig. 3. Examples of balanced chains of A-butterflies series: (a) a balanced chain given by
single-pivot chords and (b) given by both single- and double-pivot chords.

To end with definitions, Chang and Yap divide the set of balanced chords into two classes:

a balanced chord is called single-pivot if it contains only one reflex vertex (chord C1 in figure

1) and double-pivot if it contains two distinct reflex points (chord C2 in figure 1). Finally,

the optimal set of chords that defines the MACS of P contains extremal, balanced single-

pivot and balanced double-pivot chords. In figure 3-(a), the solution is composed by only

single-pivot chords, in figure 3-(b) both single- and double-pivot chords. Note that for a reflex

vertex ri, from the set of extremal chords associated to ri, we just have to consider the two

extremal chords induced by the two adjacent edges to ri. In the following, we restrict the

definition of an extremal chord to a chord that contains an edge of P incident to a reflex

vertex.

Our contribution starts here. In the next section, we present a fast algorithm to approx-

imate the maximum area convex subset star-shaped polygons that uses Chang and Yap’s

analysis.

3 Fast approximation algorithm

3.1 Kernel dilatation based heuristic

In this section, we assume that P is a star-shaped polygon. First of all, we remind basic

definitions of such a polygon. P is a star-shaped polygon if there exist a point q in P such

that q̄vi lies inside P for all vertices vi of P . The set of points q satisfying this property is

called the kernel of P [10]. Using our definitions and [10], we have:

Proposition 3 The kernel of P is given by the intersection between P and the half-planes

C+
i defined by all extremal chords Ci associated to all reflex vertices.

Figure 4 is an illustration of such proposition. We have the following theorem.

Theorem 4 Let P be a star-shaped polygon, then its kernel is a subset of the maximum area

convex subset of P .

PROOF. Let Ci be the optimal chord associated to a reflex point ri of P . We consider the

closed space K defined by the intersection between P and the two extremal chords of ri.

Fig. 4. Illustration of the kernel computation of the example in figure 3-(a).

If Ci is an extremal chord, it is clear that K ⊆ (C+
i ∩P). If Ci is a single or double-pivot

balanced chord, the slope of Ci is strictly bounded by the slopes of the two extremal

chords. Furthermore, since all the half-planes have the same orientation according to P

and ri, we also have K ⊆ (C+
i ∩ P) (see figure 2-(left) for example). Finally, since the

maximum area convex polygon is the intersection between P and the set of half-planes

defined by optimal chords, and since the two extremal chords always define a subset to

the associated optimal chord, the intersection of all extremal chords is a subset of the

MACS of P . With proposition 3, the kernel of P is a convex subset of the MACS. ¤

In other words, there exists a continuous deformation that transforms the kernel to the

MACS. In the following, the strategy we choose to approximate the MACS is to consider

the deformation as an Euclidean dilatation of the kernel. Based on this heuristic, several

observations can be made: the reflex vertices must be taken into account in the order in

which they are reached by the dilatation wavefront. More formally, we consider the list O of

reflex vertices such that the points are sorted according to their minimum distance to the

kernel polygon. When a reflex vertex is analyzed, we fix the possible chords and introduce

new definitions of chords as follows:

– the chord may be an extremal one as defined by Chang and Yap;

– the chord may be a single-pivot chord such that its slope is tangent to the wavefront (this

point will be detailed in the next section);

– the chord may be a double-pivot chord. In that case, the second reflex vertex that belongs

to the chord is necessary. It must correspond to the next reflex point in the order O.

Furthermore, when a reflex vertex is analyzed, we choose the chord from this list that

maximizes the area of the resulting polygon. If we denote by P ′ the polygon given by the

intersection between P and the half-plane associated to the chosen chord, the chord must

maximize the area of P ′. In the algorithm, it is equivalent to minimize the area of the removed

parts P/P ′. Using these heuristics, the approximated MACS algorithm can be easily designed

in a greedy process:

1: Compute the kernel of P
2: Compute the ordered list O of reflex vertices
3: Extract the first point r1 in O
4: while O is not empty do
5: Extract the first point r2 in O
6: Choose the best chord that maximizes the resulting polygon area with the chords

(r1, r2)
7: Modify the polygon P accordingly
8: Update the list O removing reflex points excluded by the chord
9: r1 ← r2

10: end while

3.2 Algorithms and complexity analysis

In this section, we detail the algorithms and their computational costs. Keep in mind that

n denotes the number of vertices of P and k the number of reflex vertices.

Distance-to-kernel computation First of all, the kernel of a polygon can be constructed

in O(n) time using the Preparata and Shamos’s algorithm [10]. Note that the number of edges

of the kernel is O(k) (intersection of 2k half-planes). The problem is now to compute the

distances between the reflex vertices and the kernel of P denoted Kern(P). A first solution

is given by the Edelsbrunner’s algorithm that computes the extreme distances between two

convex polygons [7]. This algorithm can compute the minimum distance between a point

and a convex polygon in O(log k) (if k is the number of edges of the convex polygon). Hence,

we have a first solution in O(k · log k) to compute the ordered list O.

However, we use another geometrical tool that will be reused in the next section. Let us

consider the generalized Voronoi diagram ofKern(P) [10, 1]. More precisely, we are interested

in the exterior part to Kern(P) of the diagram (see figure 5). As Kern(P) is convex, such a

diagram is defined by exterior angular bisectors {bi}i=1..5 of the kernel vertices. For example

in figure 5, all exterior points to Kern(P) located between the angular bisectors b0 and b1,

are closer to the edge e (extremities are included) than to all other edges of Kern(P). Hence,

the minimum distance between such a point and Kern(P) is equal to the distance between

the point and the edge e.

���

���
���

���

	�

���������
�

���

� �
� �

� �� �

� �

Fig. 5. Euclidean growth of a convex polygon.

To efficiently compute the distance between all reflex vertices to the kernel, we first detail

some notations. Let Bm be the open space defined by Kern(P) and the exterior angular

bisectors bm and bm+1 (if m + 1 is equal to |Kern(P)| then b0 is considered). Hence, the

distance to kernel computation step can be viewed as a labelling of vertices of P according to

the cell Bm they belong to. To solve this labelling problem, we have the following proposition.

Proposition 5 The vertices of P that belong to the cell Bm form only one connected piece

of P .

PROOF. Let us consider an half-line starting at a point of Kern(P). By definition of

Kern(P), the intersection between such an half-line and P is either a point or an edge of

P . The special case when the intersection is an edge of P only occurs when the starting

point belongs to an edge of Kern(P) and when the half-line is parallel to this edge (and

thus parallel to an extremal chord of a reflex vertex of P). Hence, using the definition of

the exterior angular bisectors and given a cell Bm, the half-line bm (resp. bm+1) crosses

P at a point pm (resp. pm+1) of P . Furthermore, each vertex of P between pm and pm+1

belongs to Bm, otherwise the number of intersections between P and bm or bm+1 should

be greater than one. Finally, only one connected piece of P belongs to Bm. ¤

Then the proposition implies the corollary:

Corollary 6 The order of the P vertex labels is given by the edges of Kern(P).

Hence, we can scan both the vertices of P and the edges of Kern(P) to compute the

distance-to-kernel. We obtain the following simple algorithm1:

1: Find the closest edge ej of Kern(P) to the point v0 ∈ P
2: for i from 1 to n do
3: while d(vi, ej) > d(vi, ej+1 (mod |Kern(P)|)) do
4: j:=j + 1 (mod |Kern(P)|)
5: end while
6: Store the distance d(vi, ej) to vi

7: end for

To detail the computational costs, the step 1 of this algorithm is done in O(k) and the

cost of the For loop is O(n). As the matter of fact, using Prop. 5 and excepted for the

first edge ej ∈ Kern(P) of step 1, when we go from an edge ej′ to next one, the piece

of P associated to the cell Bm defined by ej′ is completely computed. Hence, each edge of

1 d(vi, ej) denotes the Euclidean distance between the point vi and the segment ej

Kern(P) is visited once during all the process. Note that the first edge ej of step 1 may be

used twice to complete the scan of P .

Finally, the minimum distances between the vertices of P and Kern(P) are computed in

O(n). Note that since we are only interested in labelling reflex vertices, the above algorithm

can transformed to have a O(k) computational cost. However, a O(n) scanning of P is still

needed to identify reflex points. Furthermore, the sorted list O of reflex points according to

such distance is computed in O(k · log k).

Single-pivot chords computation Given a reflex point ri of P , we have listed three

possible classes of chord: extremal, single-pivot and double-pivot chords. The figure 6 reminds

the possibles chords. The extremal and double-pivot chord computation is direct. However,

we have to detail the single-pivot chord extraction. According to our heuristic, the single-

pivot chord associated to ri must be tangent to the wavefront propagation of the kernel

dilatation.

��� ��� ��� � �

������ ������

Fig. 6. All possible chords that can be associated to the reflex point r1 (the two extremal
chords, a single-pivot balanced chord and the double-pivot chord).

Using the exterior angular bisector structure we have introduced above, we can efficiently

compute the slopes of such chords. In figure 7-(a), let e1 and e2 be two adjacent edges of

Kern(P) (e1 and e2 are incident to the vertex v). Let p (resp. q) be a point in the plane

that belongs to the cell generated by e1 (resp. e2). We can distinguish two cases: p is closer

to e1 than to one of its extremities and q is closer to v than to e2 (without the extremities).

Hence the straight line going through p and tangent to the wave-front propagation is parallel

to e1. In the second case, the tangent to wavefront straight line going through q is tangent

to the circle of center v and radius ‖vq‖ (see figure 7). Moreover, two particular cases can

be identified (see figure 7-(b)): the first one occurs when the distance between v and q is

null, in that case the slope of the chord is the mean of the slopes of edges e1 and e2. The

second case occurs when the single-pivot chord does not fulfill the maximal chord definition

(see the right figure in 7-(b)). In that case, we do not consider this single-pivot chord in the

optimal chord choice of line 6 in the main algorithm. Note that this last particular case can

also occur with double-pivot chords. In such cases, the chord is not considered too.

���

�

�

�

���

(a)

(b)

Fig. 7. Computing a chord parallel to the kernel dilatation wavefront: (a) slope computation
in the general case, (b) illustration of the two particular cases: the distance between the reflex
point and the kernel is null and the single-pivot chord is not a maximal chord.

Finally, if each reflex point ri of P is labelled according to the closest edge ei of Kern(P)

(extremities included), we can directly compute the single-pivot chord: if ri is closer to ej

than one of its extremities, the chord is parallel to ej, otherwise, the chord is tangent to a

given circle.

Note that this labelling can be obtained using the previous distance-to-kernel algorithm.

Finally, the computation of the k single-pivot chords is done in O(k).

Polygon cut and area evaluation Given a reflex point ri and a chord Ci either extremal,

single-pivot of double-pivot, we have to compute the resulting polygon of the intersection

between P and C+
i . We suppose that the vertices of P are stored as a doubly-connected list.

The cutting algorithm is simple: starting from ri, the vertices of P are scanned in the

two directions until they belong to C+
i (see figure 8).

��� ���������� �	�
�

Fig. 8. Illustration of the vertex scan to compute the (P ∩ C+
i) polygon.

During the process, let m be the number of removed vertices. Hence, the polygon cut

according to Ci is done in O(m). Furthermore, the resulting polygon has got n−m vertices.

Hence, given k reflex vertices and k chords, the resulting polygon is computed in O(n): each

vertex is visited a constant number of times.

Furthermore, the area of the removed parts can be computed without changing the com-

putational cost. Indeed, let p be a point in the plane, the area of a polygon P is given

by

A(P) =
1

2

n−1
∑

i=0

A(p, vi, vi+1 (mod n)) , (2)

where A(p, vi, vj) denotes the signed area of the triangle (p, vi, vj) [9]. Hence, the area can

be computed in a greedy process during the vertex removal process.

3.3 Overall computational analysis

Based on the previous analyses, we can detail the computational cost of the global algo-

rithm presented in the section 3.1. First of all, step 1 (kernel determination) requires O(n)

computation using [10]. Then, we have presented a simple O(n) algorithm to compute the

distance-to-kernel of reflex vertices and thus the cost of step 2 (reflex vertices sorting) is

O(n+ k · log k). The Step 3 and the step 5 in the while loop on reflex vertices requires O(1)

computations.

Given the two reflex points r1 and r2 of step 6, we have to decide which chord should be

associated to r1. We have two extremal chords, a single-pivot chord whose slope is computed

in O(1) and a double-pivot chord going through r2. Using our heuristics, we choose the chord

that minimizes the removed part of P . Hence, we compare the removed part area using the

double chord and the 9 area measures of the 3×3 other possible choices for r1 and r2. Hence,

at each step of the while loop, we compute 10 polygon cuts and we choose, for the r1 chord,

the chord that maximizes the resulting polygon area. Note that steps 7 and 8 are computed

during the polygon cutting steps and do not change the computational cost.

In the worst case, each polygon cut step is done in O(n). Hence, the overall complexity of

the while loop is O(k ·n). Finally, the cost of the approximated MACS extraction algorithm

is O(k · n) in the worst case. Let N be the number of removed vertices while evaluating

the optimal chord at r1 in step 6. If we suppose that the reflex vertices of P are uniformly

distributed in the sense that each other tested chord only visits the same amount O(N) of

vertices. Then, at each step, O(N) vertices are visited and the modified polygon has got

O(n−N) vertices. Hence, the while loop complexity becomes O(n). This leads to a global

cost for the approximated MACS extraction in O(n+ k · log k). In practice, such uniformity

has been observed in our examples.

To speed up the algorithm, several optimizations can be done without changing the

worst case complexity. For example, when chords going through r2 are tested, the obtained

polygons are propagated to the next step of the while loop in order to reduce the number

of polygon cut steps. Furthermore, since the area of the removed parts is computed during

the vertex scan, the process can be stopped if the area is greater than the current minimum

area already computed with other chords.

3.4 Experiments

In this section, we present some results of the proposed algorithm. First of all, the figure 9

compares the results between the optimal Chang and Yap’s algorithm [4] and the approxi-

mated MACS extraction process. In practical experiments, the optimal O(n7) algorithm do

not lead to a direct implementation. Indeed, many complex geometrical concepts are used

and the overall algorithm is not really tractable. Hence, we use a doubly-exponential process

to extract the optimal MACS. The main drawback of this implementation is that we cannot

extract the optimal MACS if the number of the polygon points is important. In figure 9, the

first column presents the polygon, its kernel and the distance labelling of all vertices, the

second row contains the optimal MACS and the third one the approximated MACS. Note

that the results of the last row are identical.

If we compute the area error between the optimal and the approximated MACS on these

examples, the error is less than one percent.

The figure 10 illustrates the intermediate steps of the approximated MACS algorithm

and the figure 11 presents the result of the proposed algorithm on different shapes.

4 Conclusion

In this article, we have proposed a fast algorithm to extract an approximation of the maxi-

mum convex subset of a star-shaped polygon. Based on an analysis of the optimal solution

detailed by Chang and Yap [4], we have defined a kernel dilatation based heuristic that use

.75e3

.20e4 .12e4

.16e4
.13e4

0.

.86e3

.14e4
20.

.75e3

.13e4

.10e4

.81e3

.50e3

0.

0.

.60e3.61e3

.80e3

0.

.17e4

.12e4

.96e3
.12e4

.19e4.14e4

0.

.56e3

.14e4

.12e4

.20e4

Fig. 9. Comparisons between the optimal MACS and the proposed algorithm: the first col-
umn presents the input polygons, their kernels and the distance labelling, the second column
shows the results of the Chang and Yap’s algorithm. The last row present the result of the
proposed algorithm.

.17e4

.12e4

.96e3
.12e4

.19e4.14e4

0.

.56e3

.14e4

.12e4

.20e4

.11e4

.19e4
.14e4

.12e4 .12e4

.14e4

.96e3

.20e4

.17e4
.12e4

.17e4

.11e4

.20e4

.12e4

.96e3

.16e4

.13e4

.12e4

Fig. 10. Some intermediate steps of the approximated MACS algorithm.

10.

0. 10.

10.

10.10.

0.

0.

10.

0.

10.

10.

13.
0.

5.9

7.7

10.

3.6

12.

12.

23.

15.

18.

0.

20.

4.5

24.
12.

0.

24.

10.

5.8

11.

0.

0.

1.4

0.

1.3

2.0

0.

2.

1.

1.

2.0

1.1

6.5

18.

4.

5.0

2.0

4.8

18.

5.0
4.

6.5 4.5

4.5

2.0

4.8

5.0 5.0

4.

4.5

4.5

4.

Fig. 11. Results of the proposed approximated MACS algorithm on various shapes. The first
row illustrates the shapes, their kernels and the distance labelling, the second row presents
the obtained solutions.

classical tools in computational geometry. The computational worst case cost of the algo-

rithm is O(k ·n) where n is the number of points of the polygon and k is the number of reflex

vertices. However, under some hypotheses on the reflex vertex distribution, the complexity

can be bounded by O(n + k · log k). In our experiments, the computational behavior of the

algorithm is closer to the second complexity bound than to the first one.

In future works, a first task consists in a formal comparison between the proposed ap-

proximated solution and the optimal one. However, heuristics choices make this comparison

non-trivial. More generally, an optimization of the Chang and Yap’s optimal algorithm is

still an open problem. However, efforts should be made to extend this heuristic to general

polygons.

References

1. A. Aggarwal, L. J. Guibas, J. Saxe, and P. W. Shor. A linear time algorithm for computing the Voronoi diagram

of a convex polygon. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pages

39–45, New York City, 25–27 May 1987.

2. C. Andjar, C. Saona-Vzquez, and I. Navazo. LOD visibility culling and occluder synthesis. Computer Aided

Design, 32(13):773–783, November 2000.

3. H. Blum. A transformation for extracting descriptors of shape. In Models for the Perception of Speech and Visual

Forms, pages 362–380. MIT Press, 1967.

4. J. S. Chang and C. K. Yap. A polynomial solution for the potato-peeling problem. Discrete & Computational

Geometry, 1:155–182, 1986.

5. F. Chin, J. Snoeyink, and C. A. Wang. Finding the medial axis of a simple polygon in linear time. In Proc. 6th

Ann. Int. Symp. Algorithms and Computation (ISAAC 95), number 1004 in Lecture Notes in Computer Science,

pages 382–391. Springer, 1995.

6. K. Daniels, V. Milenkovic, and D. yRoth. Finding the largest area axis-parallel rectangle in a polygon. Compu-

tational Geometry: Theory and Applications, 7:125–148, 1997.

7. H. Edelsbrunner. Computing the extreme distances between two convex polygons. Journal of Algorithms, 6:213–

224, 1985.

8. J. E. Goodman. On the largest convex polygon contained in a non-convex n−gon or how to peel a potato.

Geometricae Dedicata, 11:99–106, 1981.

9. Joseph O’Rourke. Computational Geometry in C. Cambridge University Press, 1993. ISBN 0-521-44034-3.

10. F. P. Preparata and M. I. Shamos. Computational Geometry : An Introduction. Springer-Verlag, 1985.

