
Sygn: A certificate based access control in Grid
environments?

Ludwig Seitz, Jean-Marc Pierson, and Lionel Brunie

LIRIS, CNRS UMR 5205, INSA de Lyon
7, av. Jean Capelle, 69621 Villeurbanne cedex, FRANCE

{ludwig.seitz, jean-marc.pierson, lionel.brunie }@liris.cnrs.fr

Abstract. In this paper we study the problem of Grid access control in environ-
ments with high confidentiality requirements and a large number of users. We
propose a novel access control mechanism,Sygn, that implements decentralized
permission storage and management. All permissions inSygnare encoded in cer-
tificates, which are stored by their owners and used when required.Sygnallows
for decentralized administration of dynamically changing resources and permis-
sions.Sygnalso supports role based access control. Prmissions can be created
on demand without the need to contact a central permission storage system. The
Sygnaccess control servers store only minimal security critical information to
minimize the impact of a successful attack. Sygn has been successfully integrated
in a lightweight grid middleware.

Keywords: role based access control, distributed access control, Grid access con-
trol, certificate based access control

1 Introduction

Applications such as particle physics, terrestrial observation or biomedical research
require lots of computing power and disk storage space. Users working on such ap-
plications often face the problem that their organization does provide them with the
resources required for processing their data. Moreover projects to share resources be-
tween different partners are often confronted with the fact that heterogeneous resources
require great effort to be used together. Computational Grids [1] strive to solve these
problems by providing a middleware that transparently manages the various resources
(data, storage capacity and processing power), hiding the heterogeneity to the end-user.

Grids have been identified as a possible approach forhealth-care networks. Indeed
in health-care increasing amounts of computerized patient data is produced and used.
This data requires storage and processing. Furthermore, availability of medical data
stored at remote sites can be crucial for successful treatment of a patient.

Due to legal liability such networks will be of no practical use without privacy
protection of the medical data, as they will not be accepted by their intended users, as
long as this problem has not been dealt with.

? This work is partly supported by the Région Rĥone-Alpes project RAGTIME and the French
ministry of research ACI-GRID MEDIGRID project



A part of this protection has to be provided by a data access control mechanism.
Members of the medical staff have different access rights to the data of the patients they
are treating. These rights are typically specific to the functions they perform (doctor,
nurse, secretaries etc) and not to the person herself. Some of the functions have a hi-
erarchical permission structure (e.g. the rights of a nurse are a subset of the rights of a
doctor). Consequently role based access control (RBAC)[2] is ideally suited to manage
this kind of permission structure.

Classical RBAC mechanisms often do not provide data access control at a fine-
grained level. However since the sources of authority for data are legally responsible
for the privacy of the data they control, they should be in charge of access control
permissions to their fine-grained data.

The Grid environment creates additional challenges that have not been addressed by
classical RBAC mechanisms. Grids assemble heterogeneous resources from different
providers. The physical storage location of data is transparent to the users and data
may be automatically replicated by the Grid infrastructure for a more effective access.
Therefore a user who stores sensitive data on a Grid wants the access control to be
effective for all its replicas, no matter who owns the actual storage devices.

To allow users to selectively share data using the Grid, and to enable proxying the
access control system must allow them to delegate access rights to other entities. The
possibility to delegate access rights also makes the system more scalable, since it allows
to distribute the burden of access control administration.

In Grids, services have a dynamic availability. This means that a service (e.g. a stor-
age device) may spontaneously connect to and disconnect from the Grid. This can cause
consistency problems in access rights of replicated data. Furthermore precautions must
be taken to deal with the case of the access control service itself becoming unavailable.

Administrators of storage and computing resources want to be able to control the
access to the resources they offer, or they will be reluctant to provide them on the Grid.

In the case of the medical Grid, it is also necessary to be able to grant ad-hoc per-
missions to access data. As these permissions can be needed in emergency situations,
they should not involve any time consuming administration procedures.

Finally when dealing with medical data it is a legal requirement to log all accesses
to these data, so that misuse can be traced and liabilities can be assigned.

We can therefore summarize the requirements for an access control system in a medical
Grid environment as follows:

– It must support role based access control.
– It must permit fine-grained access control on data, where the sources of authority

(SOA) that may issue permissions are individual users owning the data.
– It must support delegation of access rights.
– It must keep access rights consistent for all data including all replicas of some piece

of data. Rights must remain consistent even if a change occurs while replicas are
unavailable.

– It must handle outages of the access control service itself gracefully.
– It must enable administrators of disk space and computing power to control access

to their resources.



– It should support ad-hoc permission granting.
– It must provide the traceability of all accesses to data.

MEDIGRID 1 is a project funded by the french ministry of research. Its objective
is to investigate the use of Grid infrastructures for health-care networks. Within this
project one topic of research is the security infrastructure for medical Grids. The cre-
ation of the access control service presented here has been a part of this work.

The rest of this publication is organized as follows. We present current access control
systems in section 2. We then argue why these systems do not fulfill the requirements
for a medical Grid access control. In section 3 we proposeSygn, an access control sys-
tem designed according to above requirements. Then we discuss theSygnapproach in
section 4 and finally conclude and present future work in section 5.

2 Related Work

The Community Authorization Service (CAS)[3] from the Globus Alliance and the Vir-
tual Organization Membership Service (VOMS)[4] provide conceptually similar access
control services for Grids.

In both approaches Virtual Organizations (VOs) are granted bulk rights to various
Grid resources. Each VO uses a central server that issues subsets of the VO’s rights
to the VO members. Whereas the CAS server stores all authorizations concerning the
VO members, VOMS only stores the group/role memberships and the local resources
are expected to maintain access control lists that attribute various access rights to these
groups/roles.

The fact that both services centralize unprotected access control information makes
them trusted third parties and potential bottlenecks. They can therefore become single
points of failure, e.g. if an attacker compromises a CAS server he has access to all
resources granted to the community that this CAS manages. Furthermore the fact that
both services are centrally managed and that resources grant bulk rights to the VOs
make fine grained data access control and ad-hoc granting of rights very difficult to
manage.

Akenti [5] extends the VO model of CAS and VOMS by providing a way to express
and enforce access control policies without requiring a central service that administrates
them. Aktenti uses signed certificates to store authorization information. This protects
the information against unauthorized modification and makes it possible to store it on
less secured sites. Currently Akenti uses a proprietary authorization certificate format.

Similar to Akenti, the PERMIS [6] authorization infrastructure uses certificates to
securely store permissions. In contrast to Akenti PERMIS relies on the X.509 attribute
certificates (AC) [7] as authorization certificate format. The X.509 AC specification has
some serious limits, since it discourages the use of certificate paths, which are consid-
ered too complex to administrate and process. Therefore delegation using X.509 AC
paths is not supported. Furthermore, the specification states that, for each particular set
of attributes, only one source of authority (SOA) may exist. These limitations make the

1 http://creatis-www.insa-lyon.fr/MEDIGRID



use of X.509 ACs questionable with respect to distributed access control of dynamic
resources.

Shibboleth[8] is an access control solution for web services, that uses the permission
pull approach like Akenti and PERMIS. Our concern with Shibboleth is that its design
assumes that the source of authority for authorizations concerning a specific user is
always his home organization. Such an assumption is not necessarily true in Grids,
where users may be granted different permissions from multiple sources of authority.

A further general concern with Akenti, PERMIS and Shibboleth is that theirPolicy
Decision Points(PDP) use thepull approach [9] to retrieve the necessary information
for authorization decisions . In the pull approach, the PDP retrieves (i.e.pulls) the nec-
essary authorization information itself, upon receiving an access request.

It is therefore difficult for the user to enforce the principle of using the least privilege
for each operation. Badly configured or malicious PDPs may pull more authorization
information than necessary for a request and the user would be incapable to notice this.
Shibboleth handles this problem by introducing permission release policies that can be
configured by the users. However we deem this approach to be more cumbersome and
less intuitive to handle than just selecting the permission you want to use for a specific
request.

Another drawback of the pull model is that it puts the load of retrieving the autho-
rization information upon the PDP and does not allow to temporally decouple the au-
thorization assertion from the actual request. We therefore think that thepushapproach,
where the request issuer provides the necessary permissions to the PDP is more appro-
priate for handling ad-hoc permissions in an environment with dynamically changing
resources.

Cardea [10] is an access control solution for distributed systems. It is based on
the standard policy language XACML [11] and the standard assertion language SAML
[12] to certify authorization information. Since XACML is based on the pull model,
the same concerns as for Akenti and PERMIS apply. Furthermore neither the current
SAML nor the current XACML standard consider delegation of access rights. Due to
this limitations we have the same concerns as for X.509 ACs with regard to XACML
and SAML based systems.

PRIMA [13, 14] is a Grid access control system that specifically supports ad-hoc
permission granting. PRIMA is a hybrid push/pull architecture, where attributes are
pushed to the PDP and general policies are pulled by the PDP. PRIMA uses XACML
as policy language and X.509 ACs for authorization. However the designers of PRIMA
have created a workaround to enable delegation within those standards. PRIMA maps
the data access permissions of a user to local POSIX.1E file system access control
lists or Grid Access Control Lists[15]. This approach makes it more difficult to realize
the Grid paradigm of integrating heterogeneous systems, since it requires one of those
specific systems to be deployed at operating system level on all hosts participating in
the Grid architecture.

SPKI[16] is an IETF proposal for a simple public key infrastructure focused on
authorization. It introduces a simple format for authorization certificates. An access
control list (ACL) that is co-located with each resource specifies the public keys of the
sources of authority (SOAs) for this resource. These SOAs may issue permissions on



the resource and authorize other users to delegate them. SPKI uses public keys as a
means to identify entities and to create unique namespace identifiers. Furthermore it
specifies a delegation mechanism through chains of certificates and details tuple reduc-
tion rules to produce an authorization decision out of such a certificate chain. Work
on SPKI standardization has ceased since 2001 and thus important questions such as
implementation of standard RBAC using SPKI have not been addressed. Our proposal
takes up several ideas of SPKI as described in 3.

None of the presented systems specifically addresses our requirements of traceabil-
ity and consistency of access rights for replicated data.

3 System design

This section presents the design of Sygn2. It is subdivided as follows: Subsection 3.1
presents the fundamental design approaches of Sygn. Subsection 3.2 explains the struc-
ture of a Sygn permission certificate. The semantics of a permission certificate are ex-
plained in subsection 3.3. In subsection 3.4 we present how a Sygn server is set up.
Finally subsection 3.5 describes how the system processes a request to generate an ac-
cess decision.

3.1 Fundamental design approaches

Sygn supports the concept ofrolesbased on the NIST standard for RBAC [17]. A role
is a collection of permissions, that are required to perform a task. Roles are assigned
to entities that may activate them selectively to make use of the role permissions. Sygn
leaves the semantics of a role (i.e. the task it allows to execute) to the discretion of the
role SOA. Any user can create new roles and to select the SOA for this new role in
Sygn.

An entity that is SOA for a specific permission can assign it to any existing role
without intervention of the role’s SOA.

When a role is created in Sygn it must specify a repository, where the permissions
assigned to the role are stored for review purposes. These repositories are used to sup-
port the review functions required by standard RBAC.

Sygn also supports the concept of hierarchical roles. A role may be assigned to be
hierarchically inferior to some other role by its SOA. This means that the superior role
inherits all permissions given to the inferior role.

To permit a separation of duties, Sygn allows to specify restrictions on each role-
to-user assignment. These restrictions specify other roles that may not be activated in
the same request together with this role. As the verification of these restrictions is done
during the access request, this corresponds to what the RBAC standard callsDynamic
Separation of Duties.

2 Sygn is a name that comes from the Nordic mythology. It designs a goddess of truthfulness
but also of doors and locks



In order to allow an individual fine-grained access control, Sygn uses authorization
certificates (AC) for permission granting and delegation. SOAs can thus grant access to
their resources by issuing digitally signed ACs.

To allow permission consistency in presence of replicas we have opted for aper-
mission push model, where the users store all their permissions themselves. This allows
users to use the same permissions on any replica of a file, provided that the replica iden-
tifier is the same as the one of the original file. Furthermore, this architecture supports
ad-hoc granting of permissions. SOAs can directly give permissions to users, without
intervention of any third-party permission storage system. However the push model
requires a permission revokation scheme. Thus every Sygn access control server main-
tains a list of revoked ACs. These lists are updated regularly by consulting redundant
certificate revocation services.

To prevent failures of the access control due to service outages, our design deploys
the access control services locally on the resource sites. Therefore the access control
for a site will only be unavailable when the site itself is also offline.

Sygn allows local administrators of resource sites providing storage space and com-
putational capacity to control the access to their resources. This requires some exter-
nally measured metric that evaluates the resource usage. The Sygn system also allows
local administrators to set up blacklists of entities that may not access their resources,
regardless of their permissions.

To provide traceability, Sygn can be configured to create non-repudiable logs of all
access requests. In this configuration, users are required to digitally sign all the requests
they submit.

Since our system is intended to be a scientific proof of concept we have decided
not to implement standard policy languages such as XACML [11] or standard certifi-
cate formats such as SAML [12] or X.509 Attribute Certificates [7]. The justification for
this choice is that these standards make the permissions hard to create, manage and read.
In X.509 this is due to the ASN.1 encoding of the certificates. XACML and SAML are
based on XML, provide a lot of functions and are very generic. This makes them very
verbose and adds a lot of overhead to the most simple permissions. Our current propri-
etary permission encoding is based on XML and could be replaced by a standardized
encoding format without modifying the general functionality of Sygn.

Figure 1 shows the deployment and interaction of Sygn modules. In a first step
a resource’s SOA installs or stores a resource on a (possibly remote) resource server.
Using his administration client, he contacts theresource serverand registers himself
as source of authority for this resource in the metadata-base of the localSygn policy
decision point(PDP) . For each resource, the Sygn PDP stores only its SOA identifier.

To grant access to a resource consumer (step 2) the SOA issues ACs that allow ac-
cess to the resource. Note that this process involves only the SOA and the consumer(s),
and can be done offline.

The user stores and retrieves ACs as needed. To access the resource, the user con-
tacts the corresponding resource server (we assume that the localisation of the correct
server is realised by the Grid middleware) and submits the request that contains the
required ACs as shown in step 3.



Fig. 1.Deployment of, and interaction between Sygn modules on a Grid.

The resource server needs two different Sygn modules. TheSygn Policy Decision
Point (PDP) that produces an access control decision based on theSygn requestpro-
vided by the user and aSygn Policy Enforcement Point(PEP). The PEP interfaces the
PDP with the Grid middleware and thus makes the PDP independent of specific Grid
implementations. The PEP has two functions: First it has to make sure that the Sygn
request corresponds to the actions the user tries to perform on the Grid (otherwise a
user could submit valid ACs for one resource together with commands initiating Grid
actions that concern another one). Second it uses the Grid authentication mechanisms
to make sure the request issuer is the owner of the accompanying ACs.

The Sygn request submitted by the user to the server contains the target resource
the user wants to use and ACs authorizing access to this resource. Based on this infor-
mation, the Sygn PDP decides if the Sygn request is correct and if the ACs correctly
authorize this request. Sygn traceability is configured at the PDP level. If turned on, all
requests are logged in the Sygn metadata-base. Non-repudiation of those logs can be
achieved by another PDP configuration option, that requires timestamping and digital
signature of requests by the issuer.

3.2 Structure of a Sygn permission

We chose XML to represent the data structures used in a Sygn AC. The reason for this
is that XML is human readable (as opposed to binary encodings such as ASN.1) which
makes creation and understanding of certificates in this format easier for the users that
have to deal with them. The use of XML is further facilitated by the fact that a large
variety of tools supporting the use of XML exist.

Basically a Sygn permission consists of:

– an identifiergenerated by calculating the SHA1-hash of the other AC data.
– an ACcreator,
– an ACowner(also called thesubjectof the permission),



– acapabilitythat is given to the owner by the creator, consisting of anobjectand an
action,

– validity period limitsin the form of twotimestamps.
– restrictionson the use of the permission,
– adelegationdepth limit and
– an electronic signaturethat makes unauthorized modifications of the permission

detectable3

Figure 2 shows an example Sygn permission certificate encoded in XML. Please
note that the creator of this AC is not the SOA of the file it authorized access to. There-
fore to be usable in a certificate path, other ACs must be present in which the file’s SOA
allows the creator of this AC to delegate read permissions on the file.

00 <AUTHORIZATION_CERTIFICATE>
01 <ID>bA1lxGTYDd3eHT/gr/6B1N4dCWU=</ID>
02 <CREATOR><USER_ID>MIG...aQIBEQ==</USER_ID></CREATOR>
03 <OWNER> <USER_ID>MIG...wdUQIBEQ==</USER_ID></OWNER>
04 <CAPABILITY>
05 <CAPABILITIY_ID>8k9AiT4a...br8U=</CAPABILITIY_ID>
06 <OBJECT><UNIQUE_FILE_ID>
07 <FILE_SOA>
08 <USER_ID>MIGdMA0...j4jQIBEQ==</USER_ID>
09 </FILE_SOA>
10 <LOGICAL_FILENAME>+/A...88=</LOGICAL_FILENAME>
11 </UNIQUE_FILE_ID></OBJECT>
12 <ACTION>read</ACTION>
13 </CAPABILITY>
14 <NOT_BEFORE>2003-10-01T10:23:02Z</NOT_BEFORE>
15 <NOT_AFTER>2004-10-01T12:22:03Z</NOT_AFTER>
16 <NOT_WITH>...</NOT_WITH>
17 <DELEGATIONS>1</DELEGATIONS>
18 <SIGNATURE>qcIiRan3kpDEPi...eOtc1OV5Byw=</SIGNATURE>
19 </AUTHORIZATION_CERTIFICATE>

Fig. 2. An example of an AC where the creator (line 02) grants read access (line 12) on a file
(lines 06-11) to the owner of the AC (line 03), with the right to delegate this capability one step
(line 17).

Creator The creator of a Sygn permission must be a user identified by a public key.
The corresponding private key is used for the signature of the certificate. A public key
representing a user is called auser identifier (UID)in Sygn. Note that the public key is
considered sufficient as unique identifier. Sygn does not associate a distinguished name

3 We currently use the RSA signature algorithm with SHA-1 hashing and PKCS1v15 padding.



to public keys for user identication such as it would be the case in X.509[19] certifi-
cates. Given the size of the namespace (valid public/private-keypairs) it is extremely
improbable that two users will accidentially be assigned the same Uid. The concept of
using public keys to represent user identities follows theSPKIapproach.

Sygn subjects Subjects in Sygn are users and roles. They are identified bysubject
identifiers(SID). SIDs are used either as owners of an AC or as SOA’s of Sygn objects.
A Sygn subject can either be a user represented by a UID or arole which is represented
by arole identifier (RID).

A RID consists of three elements: Arole name, which can be any string and should
describe the role in question. Arole SOAof UID type, who initially is the only person
that can activate the role. This implies that the SOA of a role can always use the role
permissions. The third element of each role is areview repository, which specifies a
repository where all permissions concerning that role should be stored.

Sygn objects Objects in Sygn are always part of a capability. An object can either
be a file identifier (FID), a file set identifier (FSID) referring to a collection of files,
a role-object identifier (ROID) which is actually a wrapper that allows to use roles as
permissions objects, or a resource identifier (RESID) that identifies a specific hardware
resource (e.g. some storage device). Sygn is designed to make it easy to add new types
of objects.

An object is identified by two elements: An object name and the object’s SOA. For
file identifiers, file set identifiers and resource identifiers any type of Sygn subject can
be used as SOA. Role object identifiers require the SOA to be of UID type.

Sygn actionsActions are identifiers for possible actions with respect to an object. Sygn
currently supportsread, write, add-to-setand remove-from-setfor files and file sets,
activatefor roles andgrant for hardware resources. The grant action has an additional
parameter specifying a scalar value measuring the amount of the hardware resource that
is granted. New actions can be easily added if required.

Sygn capabilities The capability is a compound structure, consisting of anobjectand
an action. To be allowed to grant a capability a user must either be the object’s SOA
or be authorized by a valid delegation chain from the SOA. Each capability gets an
identifier that is generated by calculating a SHA1 hash of the object and action data.

A special type of capability allows SOA’s of files or file sets to add those to another
file set. Master set is specified as secondary object, after the file or set that is added to
it, in this special capability type.

Sygn restrictions Sygn permissions support restrictions in form of a list of RID’s that
may not be used in together with this AC. This makes it possible to enforce Dynamic
Separation of Duties (DSD) as specified in the RBAC standard.



Delegation The delegationdepth limit is an integer value, that specifies how many
steps the AC’s capability may be delegated. A limit of zero means the capability may
not be delegated at all. Any limit greater than zero allow the AC owner to delegate this
capability with a delegation depth limit reduced by at least one.

3.3 Semantics of a Sygn permission

The meaning of a Sygn permission is mostly straightforward. If the owner of an AC is
a UID then the user corresponding to the UID can use the AC’s capability. However
some details must be explained for the correct usage of the more powerful functions of
Sygn.

If a role is the SOA of an object, any user able to activate that role can act as that
object’s SOA.

If an AC has a ROID as object, it gives the AC owner the permission to activate that
role and use its permissions.

If the owner of an AC is a role this means every user being able to claim activation
of this role (through use of another AC) can use the AC’s capability.

Combined together, these two semantics implement hierarchical RBAC. This means
that if a role A is subject and role B object of an AC, role A can use all permissions of
role B. Role A is said to be hierarchically superior to role B.

The following example illustrates this. Consider the following ACs:

– AC1 permitsread access onfileI to roleB

– AC2 permitsread access onfileK to roleA

– AC3 permitsactivation ofroleB to roleA

Then roleA is said to be hierarchically superior toroleB since users who can only
activateroleB can only readfileI while users who can activateroleA can also activate
roleB and thus readfileI andwrite fileK .

Permissions can grant file actions on file sets. Such permissions are then applicable
to any file that is member of the set. In order to use such a set permissions on a specific
file, the certificate adding this file to the set has to be presented.

3.4 Sygn server meta-data

In this subsection we describe the necessary steps for the deployment of a Sygn server.
The server relies on a database for efficient meta-data storage and access. The meta-data
are critical, therefore great care should be taken when setting up the database to avoid
introducing a weakness through insecure database access.

Sygn servers are designed to be deployed locally at the resource sites. There Sygn
server needs to have the subject-id of each SOA that has some file or hardware resource
on this site.

The Sygn servers provide meta-data storage to record hardware resource usage.
Hardware resource SOAs can specify a value for the allowable use of their hardware
resource by a user. The definition and measurement of this metric must be implemented
in the Sygn PEP.



The server meta-data also provides storage for the ids of revoked certificates, to-
gether with their expiration date. A Sygn command permits to erase revoked certificates
that have expired from the meta-data base. This function can be used to implement a
certificate revocation list (CRL) mechanism to allow SOAs to invalidate ACs they is-
sued before expiration.

Finally the Sygn meta-data includes a blacklist for banning UIDs. This function can
be used by the Sygn administrator to exclude users who have abused the local systems
resources. Requests from a blacklisted UID will inevitably be refused, no matter what
other permissions are submitted.

Having set up the required meta-data the last step to make the system work is to set
up the Sygn PEP that matches requests for Grid operations against the requested Sygn
permissions and interprets the responses of the Sygn PDP.

3.5 Access decision process

As mentioned before, Sygn is a push architecture. The ACs supporting a request must
be sent to the Sygn server together with the request. The structure containing a chain of
ACs supporting one request is called apath. A path grants access to a resource called
the path’starget. The certificates in a path must trace a valid connection from the SOA
of the target to the user who issued the request.

To be valid, a path must satisfy multiple conditions:

– All certificates in the path must be valid. A certificate is valid if it has a valid
signature, it has not expired and it is not revoked.

– Delegation depth limits must be respected all along the path. This applies to both
the delegation depth limit of the target and the delegation limits of roles granted in
subpaths.

– The path must form an uninterupted chain from the SOA of the target resource
to the user requesting access to the resource. Within this chain, there may be sub-
chains, that activate roles to which the resource was granted or that add the resource
to some set.

We now explain the complex example of a path shown in figure 3.
Bob is the SOA for the file ’document.txt’. Therefore granting the target capability
CAP = ’read document.txt’ to theRoleA in AC1 does not require any other supporting
certificates.

Carol, who is the SOA forRoleA, can now useCAP . CAP is automatically trans-
ferred toRoleB in AC2. This is because inAC2 Carol grants activation ofRoleA to
RoleB , thereby makingRoleB hierarchically superior toRoleA. All permissions of
RoleA are inherited byRoleB .

Dave, who is the SOA forRoleB grants activation of that role to Edgar inAC3.
This has the following effects: Edgar can now activateRoleB . He can subsequently
also activateRoleA and may consequently useCAP .

Edgar can now grantCAP to someone else. He does so inAC4 grantingCAP to
Alice.



Fig. 3.A complete, correctly linked path of certificates. See explanations in section 3.5 for details.

The path consisting ofAC1, AC2, AC3 andAC4 therefore grants the target ca-
pability to Alice, provided that the delegation depth limits of all ACs are sufficiently
high.The Sygn request structure permits to submit multiple paths in a single request.
Such a request will be honoured if all paths turn out to be valid (regardless of the fact
if it is needed or not). Using this mechanism complex operations requiring multiple
permissions can be supported by the Sygn system.

4 Discussion

The following points must be considered when using Sygn:

– Since all users store their own access permissions, there is no central access control
service that could be the target of a general denial of service attack. Furthermore
since the Sygn access control server runs locally on each storage site, a successful
attack on such a server only deactivates access control to the local data. This mini-
mizes the impact of such an attack comparatively to solutions like CAS or VOMS
where the access control servers store a relevant amount of permissions. The decen-
tralization of permission storage and access control servers also make Sygn more
scalable by spreading the load onto multiple services.

– Access control decisions require no third party. Only the user and the storage site
are involved. This speeds up the access decision process and eliminates the danger
of corrupted third parties.

– Permission granting does not involve a third party either (except for storing role-
related permissions on the review repository). The granting can be done directly
between the permission issuer and the AC owner. If such a personal relation does
not exist, a second possibility for distribution of Sygn ACs exists: A service like
VOMS could be used to distribute Sygn ACs to members of a virtual organization.
Since Sygn ACs are protected against tampering and bound to a specific entity, the
former concerns against VOMS would no longer apply.



– Sygn supports RBAC. The flexibility of RBAC is perfectly suited for access control
in Grid environments especially for applications dealing with complex permission
hierarchies.

– The Sygn PDP is completely independent of the Grid middleware, only the Sygn
PEP has to be reimplemented for different Grid middlewares, depending on the
requests this middleware allows and the used authentication procedures. We have
created a Sygn PEP for theµ-Grid middleware4, that supports basic file access
requests like: get-file, delete-file and put-file and uses SSL and X.509 certificates
for authentication and communication security.

– Users have to trust the storage sites to enforce their access control directives. Since
Sygn is a Grid service and is therefore not integrated in local operating systems,
attackers having direct access to a storage site can bypass the Sygn access control
mechanism. However users may further protect the confidentiality of their data by
encrypting it before storage. We have designed an architecture for managing ac-
cess to such encrypted data using any Grid access control mechanism (for instance
Sygn). This architecture is described in [20].

– The push model of permissions retrieval requires an authorization revokation ser-
vice. Sygn supports certificate revokation lists (CRL) as used in standard revokation
procedures in PKI. Those procedures could therefore easily be adapted to manage
this task.

– The security of Sygn depends strongly on the security of the authentication mech-
anism used in the Grid environment. If certificates and asymmetric keys are used
for authentication, an attacker that steals a user’s private key can use any ACs that
were issued to that user. Therefore measures must be taken to help users that are un-
trained in computer security to protect their private keys. Using smart-cards to store
private keys and perform all private key operations may be a convenient solution.

Sygn answers the requirements as specified in section 1 for a Grid scenario where
confidential data is shared among ad-hoc cooperation partners.

Sygn supports role based access control.
It allows fine-grained access control on data and makes individual users owning

data the SOA for their data.
It supports delegation of access rights through certificate paths.
Due to the push model and the unique identifiers associated to files, access rights

remain consistent even for replicas of these files, provided a user who has access to the
files does not voluntarily change the file identifier. Since access rights are not stored
with the replicas (only the SOA is), changes of the access rights are effective even if the
replica was offline when the change occured.

As the Sygn PDP’s are deployed locally on the resource sites, an outage of this
specific PDP will only affect the availability of the local resources.

Administrators of hardware resources can use the Sygn resource objects in permis-
sions to regulate access to their resource.

Since permissions can be created and given to users without intervention of a cen-
tralized authority, and therefore these permissions are useable at once, ad-hoc permis-
sion granting is possible using Sygn.

4 Available from http://www.i3s.unice.fr/ johan/ugrid/ugrid.html



Finally Sygn provides configurable traceability mechanisms that can even handle
non-repudiable tracing of access requests.

Our test implementation was done in the context of the MEDIGRID project5, that
aims at providing a Grid platform for medical image treatment in health-care scenarios.
The Sygn PDP is generic and can therefore be used within any Grid architecture. A Sygn
PEP for file access control has been implemented for the minimal Grid architectureµ-
Grid. It is available (together withµ-Grid) from http://liris.cnrs.fr/∼lseitz/software. It
provides fine-grained access control to files underµ-Grid and allows automatic retrieval
permissions corresponding to user requests from that user’s permission repository.

5 Conclusion and future work

We have analyzed the problem of Grid access control and proposed a design which
minimizes the impact of successful attacks on components of the access control sys-
tem. It is intended for Grid environments with high data confidentiality and a low level
of trust in the users. An example for such an environment are health-care Grids. Our
design responds to both the requirements of the Grid resource sharing scenario and the
requirements for a role based access control system. It also provides non-repudiable
traceability of all access requests.

A PEP for integration of Sygn in theµGrid middleware exists and we plan to create
one for OGSA compliant Grid architectures. We also plan to integrate our encrypted
storage mechanisms presented in [20] into the final system.

References

1. Foster, I., Kesselman, C., eds.: The Grid Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers, Inc. (1999)

2. Ferraiolo, D., Kuhn, D.R.: Role Based Access Control. In: Proceedings of the 15th NIST-
NCSC National Computer Security Conference. (1992) 554–563

3. Pearlman, L., Kesselman, C., Welch, V., Foster, I., Tuecke, S.: The Community Authorization
Service: Status and Future. In: Proceedings of the 2003 Conference for Computing in High
Energy and Nuclear Physics (CHEP), La Jolla, California (2003)

4. Alfieri, R., Cecchini, R., Ciaschini, V., dell’Agnello, L., Frohner,Á., Gianoli, A., Lörentey,
K., Spataro, F.: VOMS, an Authorization System for Virtual Organizations. In: Proceedings
of the 1st European Across Grids Conference, Santiago de Compostela, Spain (2003)

5. Thompson, M., Johnston, W., Mudumbai, S., Hoo, G., Jackson, K., Essirari, A.: Certificate-
based Access Control for Widely Distributed Resources. In: Proceedings of the 8th USENIX
Security Symposium, Washinton, D.C., USA (1999)

6. Chadwick, D., Otenko, A.: The PERMIS X.509 Role Based Privilege Management Infras-
tructure. In: Proceedings of the 7th ACM Symposium on Access Control Models and Tech-
nologies, Monterey, CA, USA (2002) 135–140

7. Farrell, S., Housley, R.: An Internet Attribute Certificate Profile for Authorization.
Request For Comments (RFC) 3281, Internet Egnineering Task Force (IETF) (2002)
http://www.ietf.org/rfc/rfc3281.txt (Webpage visited on 12/04/05).

5 http://creatis-www.insa-lyon.fr/MEDIGRID



8. Erdos, M., Cantor, S.: Shibboleth-architecture draft v05. Technical report, Internet2 (2002)
http://middleware.internet2.edu/shibboleth (Webpage visited on 12/04/05).

9. Vollbrecht, J., Calhoun, P., Farrell, S., Gommans, L., Gross, G., de Bruijn, B., de Laat, C.,
Holdrege, M., Spence, D.: AAA Authorization Framework. Request For Comments (RFC)
2904, Internet Engineering Task Force (IETF) (2000) http://www.ietf.org/rfc/rfc2904.txt
(Webpage visited on 12/04/05).

10. Lepro, R.: Cardea: Dynamic Access Control in Distributed Systems. Technical Report NAS-
03-020, NASA Advanced Supercomputing (NAS) Division (2003)

11. Godik, S., Eds., T.M.: eXtensible Access Control Markup Language (XACML). Standard,
Organization for the Advancement of Structured Information Standards (OASIS) (2003)
http://www.oasis-open.org/ (Webpage visited on 12/04/05).

12. Maler, E., Mishra, P., Eds., R.P.: The OASIS Security Assertion Markup Language (SAML)
v1.1. Standard, Organization for the Advancement of Structured Information Standards (OA-
SIS) (2003) http://www.oasis-open.org (Webpage visited on 12/04/05).

13. Lorch, M., Kafura, D.: Supporting Secure Ad-hoc User Collaboration in Grid Environments.
In: Proceedings of the 3rd International Workshop on Grid Computing, Baltimore, MD, USA
(2002)

14. Lorch, M., Adams, D., Kafura, D., Koneni, M., Rathi, A., Shah, S.: The PRIMA System for
Privilege Management, Authorization and Enforcement. In: Proceedings of the 4th Interna-
tional Workshop on Grid Computing, Phoenix, AR, USA (2003)

15. McNab, A., Kaushal, S.: Gridsite: Grid access control language.
http://www.gridsite.org/1.0.x/gacl.html (2003) (Webpage visited on 12/04/05).

16. Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B., Ylonen, T.: SPKI Certificate
Theory. Request For Comments (RFC) 2693, Internet Engineering Task Force (IETF) (1999)
http://www.ietf.org/rfc/rfc2693.txt (Webpage visited on 12/04/05).

17. Ferraiolo, D., Sandhu, R., Gavrilla, S., Kuhn, D.R., Chandramouli, R.: A Proposed Standard
for Role Based Access Control. ACM Transactions on Information and System Security4
(2001)

18. PKIX Working Group: Public Key Infrastructure (X.509). Technical report, Internet Engi-
neering Task Force (IETF) (2002) http://www.ietf.org/html.charters/pkix-charter.html.

19. Seitz, L., Pierson, J., Brunie, L.: Key management for encrypted data storage in distributed
systems. In: Proceedings of the second Security In Storage Workshop (SISW), Washington,
D.C., USA, IEEE Computer Society (2003) 20–30


