
Policy Administration Control and Delegation using
XACML and Delegent

Ludwig Seitz∗, Erik Rissanen†, Thomas Sandholm‡, Babak Sadighi Firozabadi†, and Olle Mulmo‡
∗LIRIS, INSA de Lyon, FRANCE

†ISL, SICS Kista, SWEDEN
‡PDC, KTH Stockholm, SWEDEN

Abstract— In this paper we present a system permitting con-
trolled policy administration and delegation using the XACML
access control system. The need for these capabilities stems from
the use of XACML in the SweGrid Accounting System, which is
used to enforce resource allocations to Swedish research projects.
Our solution uses a second access control systemDelegent,
which has powerful delegation capabilities. We have implemented
limited XML access control in Delegent, in order to supervise
modifications of the XML-encoded XACML policies. This allows
us to use the delegation capabilities ofDelegenttogether with the
expressive access level permissions of XACML.

I. I NTRODUCTION

The Swedish research community has a high demand for
computational and storage resources. This need is addressed
by SweGrid, a nation-wide Grid of computational resources,
currently interconnecting 600 nodes at 6 Swedish High-
Performance Computing centers with the 10 Gb/s GigaSunet
network.

In a process involving peer review, the Swedish National
Allocations Committee (SNAC) distributes resource quotas to
research projects. These allocations are enforced in real-time
by the SweGrid Accounting System (SGAS) [1]. In SGAS,
accounting policy can be defined on a per-project basis using
XACML [2]. The default access control mechanism in the
administrative part of the system is however relatively coarse-
grained: as an administrator of a project, you have the full priv-
ileges to change any arbitrary portion of the policy. This is not
adequate to fulfill the flexibility requirements for example in
case of a project consisting of collaborating teams, where you
may want to grant the project leaders the administrative right
to add or remove members from their respective teams. This
type of grant can be expressed as a constrained delegation.
An administrative authorization should be able to constrain
the content of all authorizations further down in the delegation
chain originating from that authorization. This way someone
higher up in the authorization hierarchy can put a constraint
to which groups the right may spread and limit the contents
of the access level authorization being delegated.

The current XACML standard does not support any form of
delegation, neither do the available XACML policy administra-
tion points support controlled administration of XACML poli-
cies. We therefore need a system that can distribute controlled
pieces of policy administration rights to local administrators,
without exposing the whole policy database to them. This re-
quires controlling modification to XML documents (XACML

policies are encoded in XML) and providing delegation capa-
bilities in the access control system used.

The work presented here describes a case study in which
we investigate how an authorization management system based
on XACML can be extended to use flexible delegation mech-
anisms.

The rest of this paper is organized as follows: Section II
presents related work. In section III we present the environ-
ment of our case study and the software tools we used. Section
IV gives a brief overview how our implementation works. We
present the components of our implementation and their use
in section V. We discuss the results of our work in section VI
and finally draw a conclusion and present directions for future
work in section VII.

II. RELATED WORK

Since XML [3] has emerged as a standard used to structure,
store and send data, various approaches have been proposed to
control access to XML documents. All approaches presented
here consider XML nodes as the most fine-grained objects for
which permissions are issued.

The approach calledstatic analysisproposed by Murata et.
al. in [4] considers only read actions on XML documents. To
refer to XML document nodes they use an XPath fragment that
restricts predicates to testing equality between XML attributes
and constant values.

In [5] Gabillon and Bruno propose XML document access
control based onXSLT. Their model is also limited to read
actions. Their system uses an XPath fragment that limits the
node navigation options.

Damiani et. al. propose an XML document access con-
trol approach in [6] and [7]. Their approach uses the full
XPath language and supports read and write operations. Write
operations are subdivided in three categories:insert, delete
andupdate. However, it remains unclear, how their approach
detects which node is going to be affected by the write
operation, given the original and/or the modified document.
Furthermore the prototype of this proposal1 currently only
supports read-operations.

Bertino et al. have published numerous articles on XML
document access control [8], [9], [10], [11] and [12]. We dis-
cuss the approach presented in [12]. It supports a set ofbrows-
ing (read) andauthoring (write) actions, which are grouped

1Available from http://seclab.dti.unimi.it/ xml-sec



TABLE I

SUMMARY OF THE FUNCTIONALITIES PROVIDED BY DIFFERENT SYSTEMS.

Approach node matching supported actions

Murata et al. subset of XPath read
Gabillon and Bruno subset of XPath read

Daimiani et al. full XPath read, write
Bertino et al. proprietary language read, write

XACL full XPath read, write

hierarchically. The approach uses a proprietary language to
refer to elements of an XML document. According to [13]
this language is equivalent to a subset of XPath, supporting
the use of predicates, with limited comparisons of elements
or attributes to constant values. We can see no justification
to replace XPath by a proprietary construct, since XPath is
standardized and offers a large variety of useful functions for
specifying and restricting the nodes to be selected.

Kudo and Hado proposeXACL as XML access control
language in [14]. Their approach seems to support the full
functionality of XPath to select XML nodes as access control
objects. They have specifiedread, write, createanddeleteac-
tions analogously to Damiani et. al. (wherewrite corresponds
to updateandcreateto insert).

The Table I summarizes our findings concerning above
systems.

None of the present solutions supports delegation, which is
a key requirement for being able to spread the load of ad-
ministration while minimizing the risk of abuse. Furthermore,
our problem requires elaborate XPath predicates to restrict the
values that a text or attribute node may adopt, and finally
our problem clearly requires an approach that supports write
actions on XML documents. We therefore decided to design
our own approach fulfilling all of these requirements.

III. E NVIRONMENT AND TOOLS

In this section we present the internal structure of SGAS
and the tools we used to achieve the goal of controlled policy
administration and having delegation capabilities.

A. SGAS

As mentioned in the introduction, the SweGrid Accounting
System (SGAS) [1] enforces resource allocations on SweGrid.
SGAS comprises a Bank service responsible for managing
the allocations, a logging and usage tracking service and
a workload manager integration component. The allocation
enforcement is governed by a 3-party (user, resource and
allocation authority) authorization policy framework, allowing
all stakeholders to manage and enforce their local policies.
The Bank service is the natural hub for policy administration,
enforcement, combination and evaluation in SGAS. Hence, it
offers an easily extendable authorization infrastructure, where
custom Policy Decision Points (PDP) and Policy Information
Points (PIP) may be combined and controlled by a generic
Policy Enforcement Point (PEP), and a general purpose Policy
Administration Point (PAP). PIPs are used to gather policy
attributes that can be used by PDPs to make authorization

decision. Each PDP manages its local policy. SGAS provides
a standard XACML policy evaluator2 combined with a per-
sistence layer storing the policy in a native XML Database.
The Policy Administration Point is exposed to administrators,
typically allocation authorities or research project leaders,
through a standard Web services interface, secured by the
means of WS-Security [15]. When a new policy is set via
this interface, the Service Authorization Management (SAM)
interface, the configured PDPs get a chance to either reject the
change or to use the new policy, or parts of it, to update their
local policies.

B. XACML

The eXtensible Access Control Markup Language
(XACML) [2] was developed in order to provide a uniform
way of specifying access control policies in XML. Policies
comprising Rules, possibly restricted by Conditions, may be
specified and targeted at Resources, Subjects and Actions.
Resources, Subjects, Actions and Conditions are matched with
information in an authorization request context using Attribute
values and a rich set of value-matching functions. Rules
and Policies may be combined using a few standard Rule-
and Policy-combining algorithms. The outcome or Effect
of a policy evaluation may be Permit, Deny, NotApplicable
(e.g., no Policy with matching target was found, or all Rules
evaluate to false) or Indeterminate (e.g. an error occurred
while evaluating a Rule). Further, a Permit decision may be
attached with obligations. The current XACML standard does
not provide support for delegation, neither does the related
assertion language standard SAML [16].

C. Delegent

Delegent is an authorization server based on research done
at the Swedish Institute of Computer Science [17]–[20].
The goal of the research has been to enable decentralized
management of access control by means of delegation of
administration. In Delegent all authorizations are expressed
in the form of delegations. A delegation has an issuer, time
stamp and an authorization. The interpretation of a delegation
is that the issuer asserts the contained authorization.

An authorization can be of two forms, either an access level
authorization or an administrative authorization, which are
completely separate so neither form implies the other. Access
level authorizations allow for the use of the objects under
access control and administrative authorizations decide which
other authorizations are considered to be valid. We say that one
delegation ’supports’ another if an administrative authorization
in the first delegation allows for the second delegation. The
support relations form edges in a graph with the delegations
as the nodes. There is a special form of delegation which is
used to define the roots of authority in the system. An access
level permission is considered to be valid if we can trace a
path from it to such a root delegation.

Delegent supports constrained delegation. To do this, Dele-
gent will compare authorizations to see whether one is more

2http://sunxacml.sourceforge.net



restricted than the other. This way the mechanism allows for
the division of responsibility and the corresponding delegation
of authority.

An access level permission in Delegent is a four-way tuple
with a subject or group of subjects, an object or group of
objects, a method or group of methods and a time interval. This
is much simpler than in XACML, so in relation to XACML
Delegent offers more features for decentralized administration
of the policies, while XACML offers more expressive access
permissions.

D. XPath

XPath is a language for addressing parts of an XML
document. Its specification [21] was conceived by the W3C
and numerous implementations exist3.

The feature that is important for us in XPath, apart from
matching elements of an XML document, is that you can spec-
ify conditions, calledpredicatesin the XPath specification, on
the values of attributes and text nodes in any part of an XML
document. Given the fixed structure of XACML policies, we
can create XPath expressions that match elements in a specific
rule of a specific policy, having specific attribute and text-node
values.

E. X-diff

When comparing a policy against its update we need to
find the differences between them, independent of reordering,
at node level. The general problem of change detection in
unordered trees is known to be NP-complete. Luckily certain
features of XML can be used to narrow this problem down
to a manageable task. We use X-diff [22], a polynomial time
algorithm that detects changes in XML documents.

The X-diff algorithm takes an original and a modified XML
document as input and generates a third combined XML docu-
ment that contains processing instruction nodes (a special kind
of XML node for passing data to applications), pointing out
updated, addedor deletedparts of the document. Both deleted
and added parts are contained in the combined document. For
updated parts the processing instruction contains the original
value of the node, while the combined document shows the
updated value.

The example in figure 1 shows an X-diff result on a policy
update where the effect of theSomeRulewas altered, a new
Subjectwas inserted and the empty RuleFinalRulewas deleted
4.

IV. SYSTEM OVERVIEW

This section gives an overview of the system components
and elaborates on how they interact. The internal functionality
of the components is discussed in detail in section V. We use
figure 2 to visualize our explanations.

3We use both the libxml2 implementation for the Delegent part and the
Xalan-Java implementation for the SGAS part of our work.

4Since XACML policies are very verbose we have simplified them to make
the examples more readable

<Policy PolicyId="TestPolicy">
<Rule Effect="Deny" RuleId="SomeRule">
<?UPDATE Effect FROM "Permit"?>
<Subject>
<?INSERT Subject?>
[contents of the Subject node] ...
</Subject>
...
</Rule>
<Rule Effect="Deny" RuleId="FinalRule">
<?DELETE Rule?>
</Rule>
</Policy>

Fig. 1. An X-diff result on a policy update.

A typical system task starts at the XACML-PAP. Note that
the PAP is not a part of our system, the Policy Administration
Control (PAC) is completely agnostic to the XACML-PAP
used to update policies. This is made possible by the SAM,
to which the XACML-PAP submits requests for policies and
for policy updates. When confronted with a policy update
request (step 1 in the figure), the SAM contacts the PAC
and submits the policy that would result from the requested
modifications (step 2). The PAC then gets the original XACML
policy from the policy database (step 3) and submits both
policies to X-diff, getting back a difference-document (step
4). This difference-document is then parsed by the PAC and
each elementary modification is turned into a Delegent access
query (step 5). The PAC collects the results of the Delegent-
PDP. If any of them is negative it notifies the SAM that the
whole update is denied, together with an error message that
describes why the update request was rejected (step 7). If no
elementary modification is rejected by the Delegent PDP, the
whole update is permitted and the PAC writes the modified
policy to the XACML policy-database (step 6) and returns
a positive result (step 7) to the SAM. The SAM forwards
the PAC’s results to the XACML-PAP (step 8). The Delegent
PAP is independent of all other components and access to it
gives unlimited power of Delegent permission administration,
thus in turn giving indirect unlimited XACML administration
rights.

V. COMPONENTUSAGE

This section describes the components of the policy admin-
istration control system. Detailing what parts were changed
in which way and what the new resulting functionality looks
like.

A. Delegent

To enable Delegent to regulate modifications of an XACML
policy we had to introduce a new type of Delegent permission.

The unmodified Delegent engine usessubject, objectand
methodstring identifiers to match a request to a permission.
The matching method is string equality. In our modified
permission typesubject, objectand methodare still strings,



Fig. 2. Overview of the Policy Administration Control system

however, the way the object match is verified has changed
as well as the way the object string of an access request is
created.

The access request objectcontains the XML structure af-
fected by the modification, and thepermission objectcontains
an XPath which will be applied to the request object5. If
one and only one match is found, the permission object
applies to the access request object. This implies that the
submitter of the access request must ensure that one and
only one elementary modification is contained in the request
object, otherwise it would be possible to sneak in unchecked
modifications together with a permitted one. Our PAC service
(see figure2 takes care of splitting the X-Diff results into
elementary modifications.

The example in figure 3 shows a Delegent access query
and a permission of the type described above. The permission
allowssomeAdminto add any user from thepdc.kth.sedomain
to the target subjects ofTestRule.

Delegent’s constrained delegation mechanism requires that
subject, object and method of the delegated permission are
restrictions of the same elements in the original permission.
As a result of this a delegation will always convey lesser or
equal rights. We therefore needed a special method to check
whether an object-XPath is a restriction of another.

We have defined the restriction of an XPath in the following
way:

Definition 1: An XPathA’ is a restriction of an XPathA if
for each node matched byA’ one of the following applies:

1) The node is also matched byA,
2) or the node is a descendant node of a node matched by

A.

5We use the XPath 1.0 standard as specified in [21]

<accessQuery>
<subject>someAdmin</subject>
<object>

<Policy PolicyId="TestPolicy">
<Rule RuleId="TestRule">
<Subject>
/O=NorduGrid/OU=pdc.kth.se/CN=T.Sandholm
</Subject>
</Rule></Policy>

</object>
<method>addRuleTargetSubject</method>

</accessQuery>

<permission>
<subject>someAdmin</subject>
<object>

/Policy[@PolicyId="TestPolicy"]
/Rule[RuleId="TestRule"]
/Subject
[starts-with("/O=NorduGrid/OU=pdc.kth.se/")]

</object>
<method>addRuleTargetSubject</method>
...

</permission>

Fig. 3. An example of the new type of Delegent access queries and the
corresponding permission.



An exact definition of thedescendantrelation is given in
chapter 5 of [21].
This definition can be resumed as the problem of detecting
whether an XPath matches a subset of the nodes matched
by another. This problem is also known as thecontainment
problem for XPaths. In [23] it is shown that the containment
problem is co-NP-complete. We have therefore decided to go
for a simplified algorithm that may falsely reject that an XPath
is a restriction of another, if certain conventions about creating
restricted XPaths are not respected.

These conventions are the following:
Definition 2: A restrictionA’ of an XPathA must copy the

entire content ofA with the following three exceptions:

• A’ may add predicates anywhere inA.
• A’ may add commands at the end that match successor

nodes of those matched byA.
• If A contains one or moreor-operators,A’ may leave any

of them out together with one of their operands.
We can then use a simple character matching algorithm that
takes care of the three special cases above to check if an XPath
is a restriction of another.

B. XACML

XACML was not modified at all by our system. However,
certain parts of the XACML specification are not supported
yet (policy sets and obligations). By putting up the SAM as
an interface between the XACML-PAP and the PAC, XACML
can remain unaware of the functions of the PAC and can be
used the same way with or without it.

C. X-diff

X-diff itself has been slightly modified to add the required
interfaces (in its original version it provided only a file-in-file-
out interface). However more importantly a post-treatment of
the X-diff results has proven to be necessary.

Given a policy update that includes two modifications, one
deleting an element in a policy and the other adding a new
element of the same type as the deleted one in the same policy,
X-diff returns the result that the deleted element was updated.
This is semantically incorrect from the access control point
of view. Such an update should be treated as separate delete-
element and add-new-element modifications. The example in
figure 4 shows such a semantically incorrect X-diff result and
the final result after passing our semantic post-treatment.

D. PAC

The PAC collects the semantically corrected results of X-
diff. For each of those results a Delegent access query is
generated. PAC uses the X-diff results to find the access query
object. The access query subject is passed down to the PAC
from the SAM. The access query method is determined by the
object (e.g., if the object is a modification of a rule-subject
the method becomesmodify-rule-subject). Those Delegent
queries are submitted to the modified Delegent-PDP and the
PAC collects the results. If none of them are negative, the
updated policy is written back to the XACML policy database;

Semantically false version:

<Subject>
/O=NorduGrid/OU=pdc.kth.se/CN=O.Mulmo
<?UPDATE FROM
/O=NorduGrid/OU=pdc.kth.se/CN=T.Sandholm
?>
</Subject>

Corrected version:

<Subject>
<?INSERT Subject?>
/O=NorduGrid/OU=pdc.kth.se/CN=O.Mulmo
</Subject>
<Subject>
<?DELETE Subject?>
/O=NorduGrid/OU=pdc.kth.se/CN=T.Sandholm
</Subject>

Fig. 4. A semantically false X-diff result and the corrected version.

otherwise an error message describing the reason why the
update request was rejected is sent back to the XACML-PAP
through the SAM.

VI. RESULTS

In this section we summarize the results of our work and
describe what our solution can and cannot do.

• The system makes it possible to use the powerful
XACML access level permissions together with the dele-
gation mechanisms provided by Delegent. Delegation per-
missions are described in the Delegent policy, whereas the
XACML policy describes the access level permissions.

• The system makes it possible to control access to the
XACML policy database by re-routing the XACML-PAP
output through the PAC module and checking it against
Delegent policy access control rules.

• The system relies on the SAM for authentication of a
user issuing a request through an XACML-PAP.

• The system does not control access to the Delegent policy
database.

• The system makes the assumption that communication
between the different subsystems is secured (e.g., by
TLS/SSL)

VII. C ONCLUSIONS ANDFUTURE WORK

With the present solution we can prevent abusive modifi-
cation of the XACML policy by administrators having access
to the XACML PAP. However, access to the Delegent PAP
needs to be restricted since it is not protected and the Delegent
policy controls the allowed modifications of the XACML
policy. The system can therefore be used by the primary
SGAS administrators to create a Delegent policy, specifying
allowed modifications on different elements of an XACML
policy for different users. Then access to the XACML PAP



can be granted to the administrators of local sites, which have
been allocated accounts in the SGAS system.

Integrating the PAC system into SGAS is relatively simple,
since it only interacts with the SAM. However, it requires
a deployment of a modified version of Delegent and no
inherent protection of the Delegent PAP exists. Furthermore,
managing the hybrid system involving two different access
control mechanisms and two different policy databases is
somewhat cumbersome and can therefore only be a temporary
solution. A good solution to this problem would be to add
delegation mechanisms to XACML, which then could be used
to control access to its own policies. Recently the XACML
community has started to work on such approaches [24].
However, this is outside the scope of this case study.

The PAC system could easily be extended to also manage
and restrict read access of the XACML policies, and with a
little more effort to a general read/write access control system
for XML documents supporting permission delegation. We
believe delegation is a crucial functionality when controlling
access and it should not be neglected.

AKNOWLEDGEMENT

The authors would like to thank the scientific service of the
French embassy in Stockholm for funding the French-Swedish
cooperation that led to this work.

REFERENCES

[1] Sandholm, T., Gardfjäll, P., Elmroth, E., Johnsson, L., Mulmo, O.: An
OGSA-Based Accounting System for Allocation Enforcement across
HPC Centers. In: Proceedings of the 2nd International Conference on
Service Oriented Computing, New York City, USA (2004) 279–288

[2] Godik, S., Eds., T.M.: eXtensible Access Control Markup Language
(XACML). Standard, Organization for the Advancement of Structured
Information Standards (OASIS) (2003) http://www.oasis-open.org/.

[3] Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E., Yergeau, F.:
Extensible Markup Language (XML) 1.0. W3C recommendation, World
Wide Web Consortium (1998) http://www.w3.org/TR/REC-xml.

[4] Murata, M., Tozawa, A., Kudo, M.: XML Access Control Using Static
Analysis. In: Proceedings of the 10th ACM conference on computer
and communication security, Washington, DC, USA (2003)

[5] Gabillon, A., Bruno, E.: Regulating Access to XML documents. In:
Proceedings of the fifteenth annual working conference on Database
and application security, Niagara on the Lake, Ontaria, Canada (2001)

[6] Damani, E., di Vimercati, S.D.C., Paraboschi, S., Samarati, P.: Securing
XML Documents. In: Proceedings of the 7th International Conference
on Extending Database Technology: Advances in Database Technology,
Konstanz, Germany (2000) 121–135

[7] Damani, E., di Vimercati, S.D.C., Paraboschi, S., Samarati, P.: A Fine-
Grained Access Control System. In: Transactions on Information and
System Security (TISSEC). Volume 5. ACM (2002) 169–202

[8] Bertino, E., Castano, S., Ferrari, E., Mesiti, M.: Specifying and enforcing
access control policies for xml document sources. World Wide Web
Journal3 (2000)

[9] Bertino, E., Castano, S., Ferrari, E.: On specifying security policies for
web documents with an xml-based language. In: Proceedings of the
sixth ACM Symposium on Access Control Models and Technologies,
SACMAT, Chantilly, Virginia, USA (2001)

[10] Bertino, E., Castano, S., Ferrari, E.: Securing xml documents: The
author-x project demonstration. In: Proceedings of the ACM Special
Interest Group on Management Of Data conference (SIGMOD), Santa
Barbara, CA, USA (2001)

[11] Bertino, E., Castano, S., Ferrari, E., Mesiti, M.: Protection and
admininstration of xml data sources. Data & Knowledge Engineering
(ELSEVIER) 43 (2002)

[12] Bertino, E., Ferrari, E.: Secure and Selective Dissemination of XML
Documents. In: Transactions on Information and System Security
(TISSEC). Volume 5. ACM (2002) 290–331

[13] Fundulaki, I., Marx, M.: Specifying access control policies for xml
documents with xpath. In: Proceedings of 9th ACM Symposium on
Access Control Models and Technologies, SACMAT, New York, USA
(2004)

[14] Kudo, M., Hada, S.: XML Document Security based on Provisional
Authorization. In: Proceedings of the 7th ACM conference on Computer
and communications security, Athens, Greece (2000) 87–96

[15] Nadalin, A., Kaler, C., Hallam-Baker, P., Monzillo, R., Eds., P.G.: Web
Services Security 1.0. Standard, Organization for the Advancement
of Structured Information Standards (OASIS) (2004) http://www.oasis-
open.org.

[16] Maler, E., Mishra, P., Eds., R.P.: The OASIS Security Assertion Markup
Language (SAML) v1.1. Standard, Organization for the Advancement
of Structured Information Standards (OASIS) (2003) http://www.oasis-
open.org.

[17] Firozabadi, B.S., Sergot, M., Bandmann, O.: Using Authority Certifi-
cates to Create Management Structures. In: proceedings of Security
Protocols, 9th International Workshop, Cambridge, UK. (2001) 134–145

[18] Firozabadi, B.S., Sergot, M.: Revocation Schemes for Delegated
Authorities. In: proceedings of IEEE 3rd International Workshop on
Policies for Distributed Systems and Networks, Monterey, USA (2002)

[19] Firozabadi, B.S., Sergot, M.: Revocation in the Privilege Calculus. In:
Proceedings of the 1st International Workshop on Formal Aspects in
Security and Trust (FAST 2003), Pisa, Italy (2003) 39–51

[20] Bandmann, O., Dam, M., Firozabadi, B.S.: Constrained Delegations.
In: proceedings of 2002 IEEE Symposium on Security and Privacy,
Oakland, CA, USA (2002)

[21] Clark, J., DeRose, S.: XML Path Language (XPath). W3C recommenda-
tion, World Wide Web Consortium (1999) http://www.w3.org/TR/xpath.

[22] Yuan, W., D. DeWitt, J.C.: X-diff: An Effective Change Detection Al-
gorithm for XML Documents. In: Proceedings of the 19th International
Conference on Data Engineering. (2003) 519–530

[23] Neven, F., Schwentick, T.: XPath Containment in the Presence of
Disjunction, DTDs, and Variables. In: Proceedings of 9th International
Conference on Database Theory (ICDT). (2003) 315–329

[24] Rissanen, E., Firozabadi, B.S.: Administrative Delegation in XACML.
In: Proceedings of the W3C Workshop on Constraints and Capabilities
for Web Services, Redwood Shores, CA, USA (2004)


