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Reconstruction of a simplified mesh Local dynamic reconstruction refinement

Figure 1. Our reconstruction framework, illustrated on the TRIPLE HECATE model. Starting from a dense input point set, we reconstruct a simplified
mesh (center). Benefiting from the connectivity of this initial reconstruction, we can make it to evolve dynamically so as to refine the approximation
locally. This refinement can be achieved either in an automatic fashion, for example in order to improve the quality of the elements of the mesh, or
interactively, in order to add or remove sample points. Here, the draped dress has been locally enhanced (right).

Abstract

In this paper, we introduce a flexible framework for the
reconstruction of a surface from an unorganized point set,
extending the geometric convection approach introduced by
Chaine [9]. Given a dense input point cloud, we first ex-
tract a triangulated surface that interpolates a subset of the
initial data. We compute this surface in an output sensitive
manner by decimating the input point set on-the-fly during
the reconstruction process. Our simplification procedure
relies on a simple criterion that locally detects and reduces
oversampling. If needed, we then operate in a dynamic fash-
ion for local refinement or further simplification of the re-
constructed surface. Our method allows to locally update
the reconstructed surface by inserting or removing sam-
ple points without restarting the convection process from
scratch. This iterative correction process can be controlled
interactively by the user or automatized given some specific
local sampling constraints.
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1. Introduction

Shape modeling from point-sampled geometry has re-
ceived considerable attention in the past few years, due to
the recent advances of 3D digital acquisition and the in-
creasing number of application domains. Today’s range
scanning devices are able to produce highly detailed digital
surface models that can contain millions of sample points.
To produce efficient shape representations for interactive vi-
sualization or further geometry processing, the complexity
of these models has to be reduced.

From a dense input point set, we consider the problem of
computing a simplified piecewise linear surface. This goal
can be achieved by first reconstructing an initial mesh, and
then simplifying this mesh. However, the time and mem-
ory costs can be prohibitive if connectivity relations have
to be established for all points of the input point set. An-
other solution consists in first simplifying the input point



set, and then reconstructing. The goal of point set simpli-
fication algorithms is to extract the relevant data of a dense
input point set so as to accelerate a subsequent surface re-
construction process. Most of these algorithms are not de-
signed to perform both point set simplification and surface
reconstruction in a single stage, and do not compute their
result in an output sensitive manner. The coarse-to-fine sur-
face reconstruction algorithm by Boissonnat and Cazals [5]
is a notable exception. One limitation of this work is that the
refinement is not achieved in a complete dynamic fashion
when a consistent orientation for normals has to be deter-
mined. For the purpose of multiresolution shape modeling,
when transmitting point samples over networks, or during
the 3D acquisition process, updating the reconstructed sur-
face on-the-fly by incorporating or removing points dynam-
ically can be useful.

In this paper, we introduce a dynamic framework for the
reconstruction of a simplified triangulated surface from a
set of unorganized points sampled from a smooth surface
in R3. We build upon Chaine’s geometric convection al-
gorithm [9]. As many surface reconstruction algorithms in
the Computational Geometry community [8], this algorithm
outputs a triangulated surface embedded in the 3D Delau-
nay triangulation (or DT for short) of the input point set.
Unlike in the original method, we do not require a global
3D DT of the entire input point set. Given a geometric error
tolerance, we produce a piecewise linear approximation of
the original surface that interpolates only a relevant subset
of the input data. We compute this surface in an output sen-
sitive manner by decimating the input point set on-the-fly
during the reconstruction process. Our simplification pro-
cedure involves a simple criterion that locally detects and
reduces oversampling. If desired, the reconstructed surface
can be customized in a second stage either to refine the ap-
proximation, or to eliminate undesirable features. One key
feature of our method is the ability to dynamically insert and
remove sample points without restarting the reconstruction
process from scratch, taking benefit from the current recon-
structed surface. This iterative process can be automatized
given some specific local sampling constraints or controlled
interactively.

1.1. Background and Related Work

Our work is closely related to surface reconstruction
and surface resampling problems. We focus here on point
set simplification techniques and review two coarse-to-fine
sampling algorithms that output a mesh approximation.

There are mainly two kinds of algorithms for simplifying
a dense point set:subsamplingandresamplingalgorithms.
Subsampling algorithms output a decimated point set that
is a subset of the original point set. This can be achieved
fine-to-coarse by iterative point removal operations. Dey et

al. [13] and Funke and Ramos [16] rely on an approxima-
tion of the local feature size of the sampled surface. This
approximation is computed from the 3D DT of the input
point set. Linsen [17] and Alexa et al. [1] estimate local ge-
ometric properties using Least Squares techniques. Moen-
ning and Dogson [18] have adopted a coarse-to-fine Farthest
Point Sampling strategy based on a distance field represen-
tation computed over a regular grid. Wu and Kobbelt [21]
compute an optimal set of splats to cover a point sampled
surface. For every sample point is computed a circular or
elliptical linear surface element called ’splat’ that approx-
imates the surface locally. A global optimization process
eliminates redundant splats and finds an optimal placement
for the remaining ones.

The coarse-to-fine surface reconstruction algorithm by
Boissonnat and Cazals [5] starts from a random subset of
the input point sample. From the 3D DT of this subset is
estimated a signed distance function to the sampled surface
based on natural neighbor interpolation. This function is
used to enrich the initial set of points till a sufficient number
of sample points lie below a prescribed error tolerance. The
surface is reconstructed from the 3D DT of the augmented
subset. If this surface does not meet the error condition,
additional points can be inserted iteratively. The interesting
idea is that the 3D DT is computed in an output-sensitive
manner. However, priority queue updates are required to
maintain the implicit representation and oriented normals,
which does not make the final result easily customizable.

Resampling algorithms rely on a global or local esti-
mated representation of the true surface to compute new,
well chosen point locations. This representation is gener-
ally computed from the input point set. The fine-to-coarse
technique by Dey et al. [14] makes use of the local fea-
ture size estimated from the 3D DT. Pauly et al. [20] have
proposed several algorithms inspired by mesh simplification
schemes. Moenning and Dogson [19] have extended their
subsampling technique to resampling. Wu and Kobbelt [21]
use a relaxation scheme to compute an optimal placement
for a set of splats.

Boissonnat and Oudot [6, 7] have recently revisited
Chew’s Farthest Point sampling technique [11] to gener-
ate optimal feature size-dependent triangulations for a fixed
implicit or polyhedral surface. Chew’s algorithm maintains
the restricted DT of a point sample generated incrementally
on a smooth surface. The restricted DT of a point sam-
ple is the set of facets of its 3D DT such that their dual
Voronöı edge intersects the surface. After convergence, the
sampling properties of Chew’s algorithm make this set of
facets a good approximation of the sampled surface, with
both geometric and topological guarantees. Following this
approach, Boissonnat and Oudot [6, 7] reconstruct a sur-
face from a point set using a Moving Least Squares implicit
surface representation. Their method requires to compute



the local feature size for some points on the surface, which
involves expensive computations. Cheng et al.’s [10] algo-
rithm proceeds in the same way. They do not rely on the
local feature size, but on a set of critical points of a Morse
function on the surface, which is also a global information
whose computation is a difficult task.

1.2. Overview

Let P = {pi} be a set of sample points that lie on or
near a smooth surfaceS embedded inR3. We suppose that
P is sufficiently dense in the sense this point set forms a
ε-sample ofS for some constantε > 0 [2]. This point set
can be locally oversampled w.r.t. the local feature size, i.e.
the shortest distance to the medial axis. In our framework,
we need an (unoriented) normal direction at every sample
point p ∈ P . If normals are not supplied as part of the
input data, we estimate the normal direction at a pointp by
fitting a least squares plane top and itsk nearest neighbors
in a preprocessing step. For a reliable estimation, a locally
uniform sampling distribution is required [3]. We recall the
geometric convection algorithm in Section 2. We proceed
in two stages, as illustrated in Figure1.
• In the first stage (Section 3), we compute a linear ap-

proximation ofS that interpolates a subsetP ′ of P w.r.t.
a geometric error toleranceρ > 0 prescribed by the user.
Each time a new point is inserted in the reconstructed sur-
face, we decimate the input point set in a small neighbor-
hood around. We achieve this simplification in a feature-
sensitive manner thanks to a normal-based error metric. The
result is a consistent triangulated surface embedded in the
3D DT of P ′. For this reconstruction, we do not require
to compute the 3D DT ofP explicitly. We only need to
compute the 3D DT ofP ′ in prevision of the second stage.
• In the second stage (Section 4), corrections can be ap-

plied dynamically to the reconstructed surface. We propose
a refinement algorithm to improve the quality of the trian-
gles and give the possibility to the user to customize the
result by adding or removing details. For this purpose, we
introduce an algorithm to locally update the reconstructed
surface by inserting or removing sample points. We store
the history of the reconstruction process by maintaining the
3D DT of the set of points that actually belongs to the re-
constructed surface.

In Section 5, we present some experimental results. We
conclude and discuss future work in Section 6.

2. The geometric convection algorithm

The geometric convection algorithm [9] is based on the
convection model introduced by Zhao, Osher and Fed-
kiw [22]. From a point setP sampled from a surfaceS,
the latter solve the reconstruction problem by computing a

closed surface that minimizes a global distance function to
the input point set. A convection scheme is used to com-
pute an initial approximation ofS. This approximation is
obtained by shrinking a surfaceS′ that enclosesP . At each
step, every pointx of S′ evolves along the normal direction
n(x) of S′ at pointx, with displacement speed proportional
to−∇d(x) · n(x) whered(x) is the distance betweenx and
its closest point inP .

Zhao et al. [22] compute the convection result on a regu-
lar grid with a so-called fast tagging algorithm. Chaine [9]
translates the convection scheme into Computational Ge-
ometry terms, yielding an efficient, purely data-dependent
surface reconstruction algorithm. This work is built on the
following theorem.

Theorem (proved in Chaine [9]) Given a closed surface
S′ enclosing a point setP , the convection ofS′ through
the velocity field−∇d(x) converges to a closed, piecewise
linear pseudo-surface. All the facets of this pseudo-surface
are Delaunay facets oriented consistently towards the
interior of the shape that meet anoriented Gabriel property.

An oriented Delaunay facetf is said to meet theori-
ented Gabriel propertyif the half of its minimum enclosing
sphere located on the positive side off does not contain
any point ofP in its interior. The termpseudo-surface
means that different parts of this surface can be pinched
together, i.e. can locally share common geometric infor-
mation, while remaining topologically independent. More
formally, a piecewise-linear pseudo-surface can be defined
as the geometric embedding of an orientable manifold
polyhedral complex such that the geometric images of two
vertices, edges of facets are either identical or disjoint. This
structure can represent the evolving surface all along the
reconstruction process. It supports topological changes and
allows to maintain a consistent mesh at every step of the
convection scheme.

Algorithm From the above theorem is derived an algorithm
that extracts the reconstructed surfaceS′ from the 3D DT of
P . The idea is to shrink an initial piecewise-linear pseudo-
surface (or just pseudo-surface for short) through this trian-
gulation, which is equivalent to make it convect through the
velocity field−∇d(x). Figure2 illustrates the reconstruc-
tion process on a 2D point set.

The pseudo-surface is initialized with the boundary of
the convex hull ofP , all facets oriented inwards. If an ori-
ented facet does not meet the oriented Gabriel property, it
is removed from the pseudo-surface to be replaced by three
other ’hidden’, consistently oriented facets of the Delaunay
tetrahedron it belongs to. An oriented facet can be opened
towards a point location that is already attached to a vertex
of the current pseudo-surface. Two oriented facets of the
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Figure 2. Convection towards a 2D point set. In (a), the pseudo-curve is initialized to the convex hull of the point set. The current edge, enclosed
by its (dashed) nonempty half-circle, forms a Delaunay triangle (dark gray) with the dark gray point. This triangle becomes external, and the pseudo-
curve is updated consistently in (b), where two other Delaunay triangles have been opened. The pseudo-curve evolves as long as the oriented Gabriel
property is not met for any of its oriented edges. In (c), an edge is found to block a cavity. The result in (d) contains coupled oriented edges (the
’tail’ at the bottom right of the shape).

pseudo-surface with identical geometry are said to becou-
pled – they necessarily have opposite orientations. When
one of two coupled oriented facets of the pseudo-surface
does not meet the oriented Gabriel criterion, both are re-
moved and are said tocollapse, which can involve topolog-
ical changes of the pseudo-surface. All facets are processed
separately, following a breadth-first traversal.

The convection stops as soon as every oriented facet
meets the oriented Gabriel property. In presence of con-
cavities larger than the Gabriel half-spheres raised from the
pseudo-surface, the basic convection process stops prema-
turely. If the point sample correctly reflects the local fea-
ture size, the pseudo-surface is further shrunk through these
pocketsby detecting inconsistencies between the size of
blocking facets and local density. A more global solution
for this problem can be derived from a topological persis-
tence criterion [15, 8].

The resulting pseudo-surface is a combinatorial mani-
fold, that can contain coupled oriented facets calledthin
parts. These thin parts are not always significant, so it is
important to identify desirable ones. This is achieved by
pursuing the convection process in 2D on these thin parts,
starting from their boundary.

Complexity The complexity of this algorithm is dominated
by the time to compute the 3D DT of the input point set. It
can be computed incrementally in timeO(N log N), where
N is the size of the input point set [12]. For a locally uni-
form ε-sample, the number of tetrahedra is almost linear
w.r.t. N [4]. Remaining operations correspond to a partial
breadth-first traversal of the 3D DT.

The basic convection process does not require anyglobal
Delaunay-related information such as the poles [2], that can
be needed to obtain an estimation of the local feature size
for example. Only the pocket detection could benefit from
such a global information, but the proposed local solution
gives satisfactory results in practice. The 3D DT allows to
directly identify the points towards which oriented facets
open during the convection process. For redundant input
point sets, time and memory are wasted unnecessarily, since

not all points are relevant. For our purpose of reconstructing
a simplified triangulated surface, we investigate a way to
avoid the computation of the 3D DT of the entire point set.

3. Reconstruction and simplification

The first stage of our framework consists in constructing
a mesh from the input point cloud while simplifying it. To
fit our simplification purpose, we couple the geometric re-
construction algorithm with a subsampling procedure. We
take benefit of the locality property of the convection pro-
cess to avoid the computation of the 3D DT ofP . Next,
we describe our decimation scheme. Then, we present the
complete reconstruction algorithm and take a look at some
properties of the reconstructed surface.

3.1. Decimation scheme

Let Pev denote the set of points interpolated by the
evolving pseudo-surface at a given time. If a new sam-
ple pointp is inserted into the evolving pseudo-surface, we
remove some redundant points ofP − Pev located in its
surface neighborhood following an isotropic region grow-
ing strategy. We grow the neighboring region aroundp by
adding its nearest neighbors in the order of their distance
to p. The idea is to makep a good representative of the
geometric information hold by the sample points to be re-
moved in its neighborhood, given an error toleranceρ ≤ 1.
A good representativemeans that the set of facets that will
be incident to this point will have to correctly approximate
the surface both geometrically and topologically, at global
scale. We thus define two kinds of sub-sampling criteria
to control the decimation process: onegeometric approxi-
mationcriterionCgeom, and onetopological diskcriterion
Ctopo. A point that fulfills both criteriaCgeom andCtopo is
eliminated, and the growing stops as soon as one of these
conditions is not met. The distance betweenp and the far-
thest point that fulfills bothCgeom andCtopo will be called
decimation radiusof p.



Our geometric criterion (Fig.3) relies on a normal-based
error metric. A pointpi fulfills the geometric approxima-
tion criterion if and only if the following condition is met:

(Cgeom) |n(pi) · n(p)| > ρ

where0 < ρ ≤ 1.
The topological criterion must guarantee that the ball

B(p) bounding the decimation region aroundp con-
tains only sample points that belong to the local surface
neighborhood ofp on S. This criterion is designed to
prevent oriented facets from having an half-sphere that
’encroaches’ another part of the surface, which would result
in a topologically incorrect reconstruction. As illustrated
in Figure 4, we derive an intrinsic criterion. A pointpi

fulfills the topological criterion if and only if the following
condition is met:

(Ctopo) |n(pi) ·
p− pi

‖p− pi‖
| < ρ′

where0 < ρ′ ≤ 1 is a value that depends on the sampling
conditions. IfP = S, the idea is that ifB(p) touches an
other part ofS at a sample pointpi, B(p) becomes tangent
to S at pi so that n(pi) andppi are collinear. The trans-
position to the discrete setting is straightforward, provided
P reflects the local feature size. Depending on the input
type, theoretical bounds forρ′ could be derived. In prac-
tice, we found thatρ′ = 0.95 generally gives satisfactory
results. Figure5 illustrates the effect of this criterion on the
screwdriver model.
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Figure 3. Decimation of the point set in the neighborhood ofp.
A point pi with a normal that makes an angle less thanθmax with
n(p) satifies the conditionCgeom.
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Figure 4. Illustration of the topological disk criterion. Here,pi
is the first point that does not belong to the topological disk con-
structed fromp. The angle between the normal n(pi) and the edge
ppi should be small ifP is sufficiently dense.

Figure 5. Reconstruction of the SCREWDRIVERmodel with sim-
plification (k = 6, ρ = 0.98). The reconstruction on the left does
not uses our topological criterion. On the right, the topological cri-
terion is enabled.

3.2. Reconstruction

We extend the original convection algorithm by in-
troducing the previously described decimation scheme to
produce a simplified reconstruction. Our algorithm does
not compute the 3D DT of the input point set explicitly.
We shrink a pseudo-surface mesh aroundP by computing
required Delaunay tetrahedra on-the-fly, while eliminating
irrelevant sample points. We will denote asR the set of
points eliminated during the reconstruction process, i.e.
R = P − P ′. In the two following paragraphs, we present
our data-structures and detail our algorithm.

Data-structures We represent the evolving surface by a
pseudo-surface mesh data-structure [9] that is not supported
by an explicit 3D DT of the input point set. We delegate
spatial searching to akd-tree data-structure that stores the
input point setP . We require this data-structure to perform
point locations efficiently.

Figure 7. Two reconstructions of the APHRODITE model (left,
46K points) with different values ofρ. With ρ = 0.9, the surface is
approximated by 3.5K points (center). Withρ = 0.98, the surface
is approximated by 10.8K points (right).
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Figure 6. Convection with simplification towards a 2D point set. In (a), the pseudo-curve is first initialized to the convex hull of the point set. The
black points have been eliminated while computing the convex hull. The current edge forms a Delaunay triangle with the dark gray point. In (b), the
two black points in the neighborhood of the selected point are found to lie below the prescribed error tolerance. These points are removed and the
pseudo-curve is updated in (c). The pseudo-curve evolves as long as the oriented Gabriel property is not met for any of its oriented edges. The final
result is shown in (d).

Algorithm We first initialize the pseudo-surfaceSev by
computing an approximate convex hull ofP using the
Quick Hull algorithm. Each time a new sample point is
added to the convex hull, we call our decimation procedure
on this sample point. We then start from this mesh for the
convection process.

Let pqr be an oriented facet of the pseudo-surface. To
decide whether this facet should be opened or not towards
a point ofP , it suffices to check whether its meets the ori-
ented Gabriel criterion. We first report all points ofP lo-
cated in the Gabriel half-sphereH of pqr .

• If the criterion is not verified, we check whether the two
coupled oriented facetspqr and qpr both belong toSev.
If it is the case, the two coupled oriented facets collapse
and the connectivity is restored between their neighboring
facets [9]. Otherwise, we have to find the points∈ H∩(P−
R) such thatpqrs forms a Delaunay tetrahedron. This point
is the one that maximizes the radius of the circumsphere
S of pqrs. The sphereS is a medial sphere that satisfies
the Delaunay empty ball criterion. We call the decimation
procedure ons if s does not belong to the pseudo-surface.
Then, we just replacepqr by the oriented trianglespqs, qrs
andrps, which can be achieved by a simple vertex insertion.

• If pqr satisfies the oriented Gabriel property, we rely on
normals to detect and pursue the convection process through
pockets. Let nf denote the unit normal to the oriented facet
f . If the greatest value between|nf · n(p)|, |nf · n(q)|,
and|nf · n(r)| is less than0.5, we consider thatf blocks a
pocket. In this case, we search for the points such that the
tetrahedronpqrs forms a Delaunay tetrahedron. We call the
decimation procedure ons if sdoes not already belong to the
pseudo-surface, and then inserts into pqr as previously.

The convection stops as soon as every oriented facet of
the pseudo-surface meets the oriented Gabriel property and
does not pass the pocket detection test. Our reconstruction
algorithm is schematized in 2D in Figure6. Figure7 il-
lustrates our technique on the APHRODITE point set with
different values of the tolerance parameterρ.

3.3. Sampling density and regularity of the mesh

The sampling density and regularity of the resulting
mesh are controlled both by the radius of the decimation
region around sample points and by the order in which the
convection processes them. We provide here some elements
of explanation, but not a complete study, on which we are
currently working.

Our simplification procedure is closely related to the ge-
ometry of the whole surface, but not directly guided by the
local feature size [2]. The radius of decimation is another
geometric measure that quantifies the local thickness of the
surface. We make a parallel with the local feature size on a
simple 2D example, in the continuous setting (Fig.8). We
distinguish two different portions of a parabola. In (a), the
light portion identifies the set of points such that the nearest
point on the medial axis is the center of the osculating cir-
cle at the originO, where the local curvature is maximized.
For every other point on the parabola, the nearest point on
the medial axis is the center of a bitangent ball (for exam-
ple, p). In (b), the light portion of the curve is the set of
points such that every ball centered on this portion is never
tangent to the parabola. The growth of a decimation ball
around a sample point on this portion (p) would be stopped
by theCgeom criterion, that only depends on the local sur-
face variations. The radius of a decimation ball built around
a sample point on the dark portion (q) would be determined
by Ctopo for a sufficiently permissive criterionCgeom, i.e.
by the distance to the opposite side of the surface.

r(q)

r(p)lfs(p)

(a)
O O O

p

(b)

q

p

Figure 8. Local feature size (a) vs. radius of decimation (b) on a
parabola.



The sampling distribution can be explained by the order
in which sample points are incorporated into the evolving
pseudo-surface. The neighborhood graph on the pseudo-
surface results from a breadth-first propagation around ex-
isting vertices that is induced by the geometric convection
process. An oriented facet that does not match the oriented
Gabriel property tends to open towards a point that forms
a neighborhood edge with one of its 3 vertices, except in
the case where the entered Delaunay cell corresponds to a
branching of the medial axis. In the latter case, a new ’seed’
vertex is created. The neighborhood graph is thus grown
from several seeds at a time, and advancing fronts merge at
the bottom of concavities.

This way of processing yields regular connectivity in
regions that exhibit no important change in curvature, i.e.
every sample point has exactly 6 neighbors on the sur-
face (Fig.10(a)). In smooth regions, it can also be ob-
served that retained points are distributed uniformly around
a given one. However, strong curvature variations induced,
for example, by the presence of sharp features such as edges
or corners, produce long and skinny triangles coupled with
high valence vertices, which can be inadequate for further
mesh processing (Fig.10(b)). When growing the decima-
tion region around a sample point, we have no cheap means
to anticipate on these variations. Sharp features could be
detected earlier by precomputing the radius of the decima-
tion region for every input sample point without simplify-
ing, but we prefer to compute this radius only for retained
sample points. We improve the quality of the mesh that re-
sults from the reconstruction process in a second stage, that
we develop in the following Section.

p

(a) (b)

p

Figure 9. Optimal (a) vs. non-optimal (b) neighborhood configu-
ration. Every sample point is represented with its circular decima-
tion region.

4. Dynamic correction

The purpose of the correction stage is to refine the ini-
tial reconstructed surface by inserting or removing sample
points. This functionality first serves the purpose of improv-
ing the quality of bad shaped triangles. Second, we want to
provide the user with means of locally changing the level
of detail of the reconstruction. Two kinds of questions nat-
urally arise: Which points are good candidates for further

p

(a) (b)

p

Figure 10. Optimal (a) vs. non-optimal (b) neighborhood config-
uration. Every sample point is represented with its circular deci-
mation region.

insertions or deletions? How to update the pseudo-surface
in a dynamic fashion after these points have been chosen?

For triangle-quality improvement, we devise a simple
greedy refinement algorithm inspired from Chew’s algo-
rithm [11], recently revisited by Boissonnat and Oudot [6].
Unlike in the latter method, we do not resample a smooth
approximation of the surface, but simply reinsert some sam-
ple points that have been eliminated in the first stage till a
smooth density gradient is achieved on the whole mesh and
an aspect ratio criterion is met for every triangle of the re-
constructed surface. For user-controlled detail insertion or
suppression, we propose to restart the convection process in
a prescribed region with a value of the parameterρ modu-
lated according to a potential field function.

To achieve sample point insertions or deletions in the
reconstructed surface, we have designed an efficient algo-
rithm that ’reinflates’ the pseudo-surface in an altered re-
gion and restarts the convection process only locally. This
algorithm requires the computation of the 3D DT ofP ′ dur-
ing the first stage, and supports either one or several inser-
tion or deletion operations at a time.

In the following paragraphs, we first describe our al-
gorithm for local update of the pseudo-surface. Then, we
present our methods for improving the quality of the trian-
gles and for interactive refinement.

4.1. Local update of the pseudo-surface

Let us recall that a pseudo-surfaceS′ that interpolates
a subsetP ′ of the original input point setP is embedded
in the 3D DT ofP ′. At the end of the convection process,
every oriented facet ofS′ meets the oriented Gabriel prop-
erty w.r.t.P ′. When a pointp is inserted (resp. removed) in
the 3D DT, the latter is modified onlylocally in a connected
region spanned by the set of cells in conflict withp (resp.
incident top). We exploit this locality property to update
the convection result without restarting the convection pro-
cess from the convex hull of the point set. Figure11 gives
a simple example on a 2D point set, where one new sample
point is inserted.

At the beginning of the initial convection process, the



Figure 11. Local update of a pseudo-surface in 2D. The top row
illustrates the initial reconstruction process. In the bottom trow,
a new (black) sample point is inserted. The conflict region is
bounded by the dark contour. The DT is updated and the final
pseudo-surface is shown bottom-right.

pseudo-surface lies on the convex hull of the points ofP ′.
All the Delaunay cells ofP ′ areinternal except the infinite
cells1 that areexternal. During the convection process, the
pseudo-surface evolves and the cells it goes through become
external. An external cellC2 is said to have beendiscovered
from a cellC1 if C2 becomes external when the facet inci-
dent toC1 andC2, oriented towardsC2, is opened by the
convection process. A cellC2 can be discovered onlyonce.
In the case a facet oriented from a cellC3 towards a cellC2

is pushed towards a cellC2 that has already been discov-
ered, it means that the pseudo-surface locally has coupled
facets betweenC2 andC3 that collapse. The cellC2 is said
to have beenrediscoveredfrom the cellC3.

The graph that represents the discovering relation be-
tween cells is a forest of rooted treesD = ∪Di where each
treeDi is rooted on an infinite cell. A given forestD is
not unique in the sense there may exists several equivalent
configuration of the discovering relation depending on the
order in which Delaunay tetrahedra are opened. Given a
cell C2 discovered from a cellC1 and rediscovered from
a cell C3, the discovering and the rediscovering relations
can be switched if and only ifC2 is not an ascendant ofC3

(Fig. 12).
When points are inserted into or removed from the 3D

DT, some cells disappear, that we will call cellsin conflict
in both cases. These are replaced bynew cells resulting
from the local retriangulation. This alters the integrity of
the discovering relation. The external cells that do not dis-
appear and that were previously discovered from a conflict
cell become roots of the discovering relation, though they
are not infinite cells. These cells are calledorphancells.
To restart the convection process, we reinflate the pseudo-

1These cells are artifically created so that the facets of the convex hull
are incident to two cells.

C1

C2

C3

C1

C2
C3

Discovering relation.

Rediscovering relation.

Figure 12. Equivalence between two cell configurations in 2D.
The discovering and rediscovering relations can be switched pro-
vided there is no cycle creation.

surface so that it encloses the conflict region (Fig.13,(a)).
The newly created cells then become internal. The pseudo-
surface is composed of facets oriented towards the interior
of the surface, that are of three types:
• The restart facets, that are oriented towards new internal
cells and that previously encoded discovering or rediscov-
ering relations.
• Thereversable facets, that are oriented from new internal
cells towards orphan cells.
• The other facets.

orphan cellconflict region
initial pseudo−surface

(a) (b)
reversable facets temporary facet

Figure 13. Convection through a conflict region in 2D. The con-
flict region is bounded by the dashed curve. In (a), the convection
starts from two entry points, corresponding to discovering and re-
discovering relations. Gray cells are orphan cells. In (b), the con-
vection through the conflict region has stopped. One temporary
facet appears.

The update process consists in coherently restoring the
discovering relation regarding the new cell configuration in-
duced by the updated new point set. This process can be
described through the following three steps:
1. We first launch the convection process from the restart
facets and restrict it to the conflict region. The pseudo-
surface stops temporarily at the boundary of this conflict re-
gion, on standby of an opportunity to re-establish a discov-
ering or rediscovering relation towards the outside. These
facets are calledtemporary facets(Fig. 13(b)).
2. This step deals with orphan cells. We have to restore
the connectivity between cells so that these orphan cells get
discovered, while maintaining a forest. Care must be taken



to avoid the creation of cycles while re-establishing the dis-
covering relation. If that is not possible for a given orphan
cell, this cell cannot be external with the new point set con-
figuration and the pseudo-surface will be reversed locally.

Let C denote an orphan cell. Suppose there exists a cell
C1 adjacent toC, outside the evolving pseudo-surface and
such thatC could be opened fromC1. If C is not an as-
cendant ofC1 for the discovering relation, we create a dis-
covering relation betweenC1 andC. Now thatC has been
discovered, the facets that separateC from the interior of
the pseudo-surface could be discovered by the convection
process. These facets are pushed into the temporary set.

If one of the candidate cell to beC1 is a new cell (i.e. in-
side the retriangulated region), then it is chosen rather than
the others. If there is no cell candidate to discoverC, the
cell C becomes internal and the pseudo-surface backtracks
consistently. If a cellC2 was discovered fromC, then it be-
comes an orphan cell (if not infinite) that will be processed
in turn. The connectivity of the discovering relation is then
restored.
3. The last step consists in launching the convection process
from the remaining facets in the temporary set.

4.2. Triangle quality improvement

Let f be an oriented facet ofS′. We call rmin (resp.
rmax) the minimum (resp. maximum) decimation radius of
the three vertices off . We define the following two refine-
ment criteria:

• (Car) f meets the criterion if the ratio between the ra-
dius of the circumcircle off and the length of its short-
est edge is less than a positive constantβ.

• (Cden) f meets the criterion ifrmin

rmax
≥ γ, whereγ is a

positive constant.

CriterionCar aims at guaranteeing a minimal aspect ra-
tio for every triangle inS′. Criterion Cden prevents big
facets from being incident to small facets and so, ensures
a smooth gradient of density over the whole mesh.

The idea of the refinement algorithm is to ’break’ every
triangle ofS′ that does not meet one of the above condi-
tions. In Chew’s algorithm, an interesting idea for produc-
ing well-shaped triangles is to create a new sample point
equidistant from the three vertices of a facet with bad as-
pect ratio. In our framework we extend this idea consider-
ing the reconstructed pseudo-surfaceS′ and the remaining
set of pointsR. Let f denote a facet that does not passCar

or Cden, and letBf be its minimal enclosing sphere. For
every such facet, our algorithm proceeds by inserting inS′

the pointsof Bf ∩R that is the nearest from the intersection
point betweenS′ and the line that supports the dual Voronoı̈
edge off . The algorithm stops either when both conditions

Car andCden are met or whenBf ∩R is empty. Our current
implementation does not take boundaries of thin parts into
account, but it could be easily extended. Figure14 illus-
trates one level of refinement for the APHRODITEmodel.

Figure 14. Triangle quality improvement for the APHRODITE

model. Starting from an initial reconstruction withρ = 0.95 (left),
the refinement was performed withβ = 0.8 andγ = 0.5 (right).

4.3. Interactive refinement

Our interactive refinement technique consists in rescal-
ing the value of the parameterρ locally and to update the
reconstructed surface according to the new local sampling
conditions. By being more or less restrictive locally on the
normal variation, we allow to add details or remove some
features with an intuitive control. We have implemented a
simple brush tool based on a potential field function param-
eterized by a centerc, a radiusr and a maximum intensity
ρc at c. For every point samplep is computed a local er-
ror toleranceρloc(p) that depends on the distance between
c andp. We define this local error tolerance as follows:

ρloc(p) = ρ +
ρc − ρ

r2n
(rn − ‖p− c‖n)2

where n ≥ 2 is an integer constant. This function
smoothly varies in a monotonically fashion betweenρc

(reached ifp = c), andρ (reached if‖p−c‖ ≥ r). If ρc > ρ,
more points will be inserted. Otherwise, some points will
be removed. TheC2 nature of this function ensures a con-
tinuous density gradient between the altered region and the
remaining of the reconstructed surface.

To refine the reconstruction, we reinflate the pseudo-
surface in the region of influence of the tool, and restart
the convection process in this region regarding the new lo-
cal simplification parameters. Figures1, 15and16illustrate
our interactive refinement tool on various point sets.



Figure 15. Interactive refinement of the Isis model. The original
model exhibits hieroglyphs on the back that are not captured for a
too small value ofρ (left, center-top). Our interactive refinement
tool allows to make them to appear (center-bottom, right).

Figure 16. Interactive customization of the IGEA model. The orig-
inal point set has 134K points. The reconstruction on the left has
only 17K points. The ridge on the left cheek was interactively re-
moved to obtain the result on the right.

5. Results and discussion

We have implemented our dynamic reconstruction
framework on a Linux platform using the Computational
Geometry Algorithm Library, CGAL2. We require CGAL’s
filtered predicates for robust point location and computation
of Delaunay tetrahedra.

We demonstrate the effectiveness of our framework on
several point set models that were obtained from laser range
scanning (Figs.1, 5, 16, 7), including a particularly noisy
point set (Fig.17). If normal directions are not supplied, the
user has to give a value for the size of thek-neighborhood.
A value for the geometric error toleranceρ is required.
The reconstruction stage then works automatically. The
correction stage can be either skipped or run given user-
defined parameters. The triangle-quality improvement pro-
cedure requires a maximum tolerated aspect ratioβ, and/or

2http://www.cgal.org

Figure 17. Reconstruction of a noisy point set. In (a) is shown a
reconstruction of the original RAM model with 622K points, with-
out simplification. In (b) is shown a simplified reconstruction ob-
tained with our method, withk = 18 andρ = 0.94 (43K points).
Our normal-based error metric based on a local normal estimation
acts as a noise filter.

a minimum density factorγ. Interactive correction neces-
sitates defining the brush tool properties and areas of in-
terest picked on the reconstructed surface. Table 1 reports
the overall timings and final number of points for the ini-
tial reconstruction stage and for the correction stage. All
the results presented here were obtained on a Pentium IV
3.2GHz, 1GB RAM workstation. Reconstruction timings
take into account the incremental generation of the 3D DT
of the simplified point set. This generation takes less than 5
seconds for all the point sets we tested.

Our approach for locating points that form a Delaunay
tetrahedron in Gabriel half-spheres is not currently optimal,
which results in relatively high computation times. Some
facets, in particular on the convex hull, may have a Gabriel
half-sphere that contains a great part of the input point set.
Since the intersection between these half-spheres are not al-
ways empty, some point samples can be tested many times
before they become part of the surface or they are elimi-
nated. This search could be improved in several ways. We
could benefit from the 3D DT of the points inserted in the
surface to improve the locality of the point locations or fur-
ther exploit the normals to guess the position of the next
candidate to insertion.

Model Reconstruction Correction
name #points ρ #points time #points time

TRIPLE HECATE 90,180 0.98 28,718 281 34,310 120
SCREWDRIVER 27,152 0.98 7,944 49 – –

APHRODITE 46,096 0.90 4,507 67 7,644 42
ISIS 187,644 0.95 8,368 96 10,994 38
IGEA 134,344 0.98 17,232 102 17,104 24
RAM 622,716 0.94 43,498 1,472 – –

Table 1. Performance of our reconstruction framework for various
point sets. Computational timings are given in seconds for both
initial reconstruction and correction steps.



6. Conclusion and future work

In this paper, we have presented a new framework for
reconstructing a surface from an unorganized point set that
takes only relevant sample points into account. In a first
stage, we construct a triangulated surface that interpolates
only a relevant subset of the input data. We decimate the
input point set on-the-fly during the reconstruction process.
The sampling density is controlled by local geometric and
topological constraints. If needed, we then make correc-
tions to the reconstructed surface, which requires the 3D DT
of the simplified point set. We improve the quality of the
triangles by a refinement algorithm and enable interactive
insertion of details or further simplification. These correc-
tions are achieved in a dynamic fashion, without restarting
the reconstruction process from scratch, which makes our
reconstruction framework very flexible.

Future work will first include the search for a more effi-
cient, dedicated data-structure for point locations. We could
then extend our algorithm to automatically produce a mul-
tiresolution decomposition of an input point set. This de-
composition could be used for progressive reconstruction
with our dynamic update procedure. For non-uniformly dis-
tributed point sets, it could be interesting to incorporate a re-
laxation procedure into our algorithm. The question of giv-
ing guarantees on the sampling density of the output point
set also certainly deserves further investigation.
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