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Abstract

In this paper we present a new framework for subdivision surface fit-
ting of arbitrary surfaces (not closed objects) represented by polygonal
meshes. Our approach is particularly suited for output surfaces from a
mechanical or CAD object segmentation for a piecewise subdivision sur-
face approximation. Our algorithm produces a mixed quadrangle-triangle
control mesh, near optimal in terms of face and vertex numbers while re-
maining independent of the connectivity of the input mesh. The first step
approximates the boundaries with subdivision curves and creates an ini-
tial subdivision surface by optimally linking the boundary control points
with respect to the lines of curvature of the target surface. Then, a sec-
ond step optimizes the initial control polyhedron by iteratively moving
control points and enriching regions according to the error distribution.
Experiments conducted on several surfaces and on a whole segmented
mechanical object, have proven the coherency and the efficiency of our
algorithm, compared with existing methods.

1 Introduction

A subdivision surface is a smooth (or piecewise smooth) surface defined as the
limit surface generated by an infinite number of refinement operations using a
subdivision rule on an input coarse control mesh. Hence, it can model a smooth
surface of arbitrary topology (contrary to a NURBS model which needs a para-
metric domain) while keeping a compact storage and a simple representation (a
polygonal mesh). Moreover it can be easily displayed to any resolution. Sub-
division surfaces are now widely used for 3D imaging and have been integrated
to the MPEG4 standard [1]. For all these reasons, given an input target mesh,
subdivision surface approximation algorithms become quite beneficial in terms
of compression (the original mesh can be stored or transmitted in the form of
a coarse control polyhedron), remeshing (the subdivided control polyhedron is
often much regular than the original mesh), reverse engineering or animation.
In this context, we present an algorithm for fitting a piecewise smooth subdivi-
sion surface to an input mesh aiming at getting close to the optimality in terms
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of control points number and connectivity of the subdivision control polyhe-
dron. Our method is particularly suited for mechanical surfaces or CAD parts;
indeed in these cases the research of the optimality is quite relevant. Input
surfaces must be open, but can have multiple holes (our method cannot handle
closed surfaces) but this restriction is not critical since a closed surface can be
segmented to give adapted output surfaces. Section 2 details the related work
about subdivision surface fitting, while the overview of our method is presented
in section 3. Sections 4 and 5 deal with the two distinct steps of our method:
the initialization and the optimization of the subdivision surface. Finally, in
section 6, results are presented, evaluated and compared with existing methods.

2 Related Work

Several methods already exist for subdivision surface fitting, most of them take
as input a dense mesh and obtain the subdivision control mesh connectivity by
simplification: Lee et al. [2] and Ma et al. [3] use the Quadric Error Metrics
from Garland and Heckbert [4]. Kanai [5] uses a modified version which di-
rectly minimizes error between the original mesh and the subdivided simplified
mesh. With these simplification based approaches, the control mesh connec-
tivity strongly depends on the input mesh. Figure 1 shows an example of the
approximation method from Kanai [5] applied on two different meshes repre-
senting the same shape. It appears obvious that results are quite different.
Particularly, the control polyhedron in Figure 1.e obtained for the bad tessel-
lated mesh of Figure 1.d is not correct and gives a quite poor limit surface (see
Figure 1.f) regarding to the original one. In our algorithm, in order to remain
independent of the original connectivity, we use the boundaries and the curva-
ture information of the target surface to transmit the topology to our control
polyhedron. Suzuki et al. [6] also remain independent of the target mesh, by it-
eratively subdividing and shrinking an initial hand defined control mesh toward
the target surface. Unfortunately this method fails to capture local character-
istics for complex target surfaces, and is only suited for genus 0 closed surfaces.
Jeong and Kim [7] use a similar shrink wrapping approach and encounter the
same problems with complex topologies.

Concerning the geometry optimization, Lee et al. [2] and Hoppe et al. [8]
sample the original mesh with a set of points and minimize a quadratic error
to the subdivision surface. Suzuki et al. [6] propose a faster approach, also
used in [7]: the position of each control point is optimized, only by reducing the
distance between its limit position and the target surface. Hence only subsets of
the surfaces are involved in the fitting procedure thus results are not so precise
and may produce oscillations. Ma et al. [3] consider the minimization of the
distance from vertices of the subdivision surface after several refinements to the
target mesh. Our algorithm follows this framework while using not a point to
point distance minimization, but a point to surface minimization, by using the
local quadratic approximant introduced by Pottmann and Leopoldseder [9].
This algorithm allows more accurate and rapid convergence (see Section 3.2).
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Figure 1: An example of subdivision surface fitting using the algorithm from
Kanai [5].

To our knowledge, the optimality in terms of control point number and position
represents a minor problematic in the existing algorithms but is particularly
relevant for mechanical or CAD objects. Only Hoppe et al. [8] optimize the
connectivity (but not the number of control points) by trying to collapse, split,
or swap each edge of the control polyhedron. Their algorithm produces high
quality models but need of course an extensive computing time. Our algorithm
optimizes the connectivity of the control mesh by analyzing curvature directions
of the target surface, which reflect the natural parameterization of the object.
The number of control points is also optimized by enriching iteratively the
control polyhedron according to the error distribution.

3 Framework

Our framework for subdivision surface fitting is the following: firstly an initial
subdivision surface is constructed, independently of the target surface connectiv-
ity (see Section 4), by first approximating boundaries and then using curvature
information. Secondly this initial surface is enriched by inserting new control
points while optimizing the geometry and the connectivity.

3.1 The choice of the subdivision scheme

Within our framework, we have to choose a subdivision scheme. Many subdi-
vision rules exist, some of them are adapted for triangular control meshes, like
Loop [10] and others are adapted for quadrilateral ones, like Catmull-Clark [11].
For a given surface to approximate, the choice of the appropriate subdivision
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scheme is critical. Indeed, even if, in theory any triangle can be cut into quad-
rangles (quads for short) or any quad can be tessellated into triangles, results are
not equivalent. The fact is that the nature of the control polyhedron (quads or
triangles) strongly influences the shape and the parameterization of the resulting
surface. The body of a cylinder, for instance, is much more naturally param-
eterized by quads than by triangles. These reasons have led us to choose the
hybrid quad/triangle scheme developed by Stam and Loop [12]. This scheme
reproduces Catmull-Clark on quad regions and Loop on triangle regions (see
Figure 2). Corresponding subdivision masks are detailed in Figure 8.

Figure 2: Example of Triangle-quad subdivision.

3.2 The approximate squared distance

The subdivision curve approximation of the boundaries (see Section 4.2), as
the subdivision surface optimization (see Section 5.1), requires a convergence
process. The purpose, starting from an initial surface (resp. curve) is to fit
this surface to the target data by displacing iteratively the control points by
minimizing an energy term. This optimization problem ties up with the smooth
parametric curve and surface approximation problematic. Several algorithms
exist for this purpose concerning curves [13, 14] or surfaces [15]. They are
mostly based on a data parameterization wich is very complex to optimize.
Other approaches [16] construct a regular grid on the data to overcome this
parameterization problem, but these techniques are not adapted for subdivision
surfaces which do not rely on a parameterization. Hence, we have chosen to gen-
eralize the Active B-Spline approach from Pottmann and Leopoldseder [9] which
is based on the minimization of local approximate squared distances from the
target data and thus does not require parameterization. We have extended this
method which have proven to converge much faster than traditional ones [9, 17]
for subdivision curves and surfaces. Their principal contribution is the definition
of local approximants of the squared distance from a point to a surface (resp.
curve). Thus the minimization of this point to surface (resp. curve) distance is
much faster than traditional point to point distance. The local approximant of
point to surface quadratic distance is defined as follows: Considering a smooth
surface Ψ, we can define at each point t0, a Cartesian system (e1, e2, e3) whose
first two vectors e1, e1 are the principal curvature directions and e3 is the normal
vector. Considering this frame, the local quadratic approximant Fd(p) of the
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squared distance of a point p at (0,0,d) to the surface Ψ is given by [9]:

Fd(x1, x2, x3) =
d

d + ρ1
x2

1 +
d

d + ρ2
x2

2 + x2
3 (1)

where x1, x2 and x3 are the coordinates of p with respect to the frame (e1, e2, e3)
and ρ1 (resp. ρ2) is the curvature radius at Ψ(t0), corresponding to the curvature
direction e1 (resp. e2).

The local distance approximant from a point to a 3D curve is similar, the
reader may refer to [9] for a detailed derivation and proof of these formula.

4 Subdivision surface initialisation

4.1 Overview

The purpose of the initialization process is twice: transmitting the topology
from the original target surface to our initial control polyhedron and optimiz-
ing the connectivity of this control polyhedron. The initialization algorithm is
the following: first, the boundaries of the target surface are approximated by
piecewise smooth subdivision curves; then our process will attempt to connect
control points of the corresponding control polygons, in order to create the opti-
mal set of facets that will represent our initial control polyhedron. These edges
are chosen according to the curvature directions of the original surface. Accord-
ing to these edges, the topology of the surface is reconstructed, in a simple and
efficient manner even for complex topologies.

4.2 Boundary curve approximation

4.2.1 Subdivision curve presentation

A subdivision curve is created using iterative subdivisions of a control polygon.
In this paper we use the subdivision rules defined for subdivision surface by
Hoppe et al. [8] for the particular case of crease or boundary edges: new vertices
are inserted at the midpoints of the control segments and new positions P ′

i for
the control points Pi are computed using their old values and those of their two
neighbors using the mask:

P ′
i =

1
8
(Pi−1 + 6Pi + Pi+1) (2)

With these rules, the subdivision curve corresponds to a uniform cubic B-Spline,
except for its end segments. We also consider specific rules (those defined by
Hoppe [8] for corner vertices) to handle sharp parts and extremities:

P ′
i = Pi (3)

This subdivision curve will coincide with the boundary of a subdivision sur-
face generated by commonly used subdivision rules like Catmull-Clark [11] or
Loop [10].
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4.2.2 The approximation algorithm

Our main purpose concerning this part of the process is to get close to the op-
timality in terms of number and placement of the found control points. Our
algorithm is an extension for subdivision rules, including sharp vertex process-
ing, of the Active B-Spline Curve developed by Pottmann and Leopoldseder [9]
(see Section 3.2). One shortcoming of their method is the high dependency to
the initial active curve. Hence we have introduced a new process, analyzing
curvature properties of B-Splines, which computes a near optimal evaluation of
the initial number and positions of control points. Describing this curve approx-
imation method is beyond the scope of this paper, thus we invite readers to refer
to [18] for complete explanations and details about this algorithm. Globally,
our boundary curve approximation works as follows: firstly, sharp vertices are
detected and the boundary is cut into smooth parts. Then, for each smooth
part, we apply the approximation algorithm described in [18] to find a near
optimal approximating subdivision curve. Then smooth parts are connected
with associated sharp tagged control points. An example is shown on Figure 3.

Figure 3: Example of boundary approximation.

4.3 Edge score definition

Once the boundary control polygons have been extracted, the purpose is to
create edges and facets by connecting the control points in such a way that the
corresponding created initial subdivision surface is the better approximation of
the target surface for these given control points. For this purpose, we consider
the lines of curvatures of the original surface, represented by local directions
of minimum and maximum curvature. Control lines of a subdivision surface
are strongly linked to the lines of curvature. Indeed the topology of a control
polyhedron will strongly influence the geometry information of the associated
limit surface, which is also carried by lines of curvature [19]. This coherency
between control lines and lines of curvature is shown in the example on Figure 4.

Thus, for each couple of control points from the boundary control polygons,
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Figure 4: The coherency between control lines (a), minimum (b) and maximum
(c) directions of curvatures.

a Coherency Score (SC) is calculated, taking into account the coherency of
the corresponding potential control edge with the lines of curvatures of the
corresponding area on the target surface.

Figure 5: Mechanism for edge score definition.

The mechanism is illustrated on Figure 5: For each potential edge E, we
consider its vertices P0, P1 and their respective limit positions P∞

0 , P∞
1 . Then

we calculate the pseudo geodesic path, between these limit positions, to simulate
the control line, by applying the Dijkstra algorithm on the vertices of the original
surface. Finally we consider the curvature tensors of the n vertices Vi of this
path, and particularly their curvature directions. The coherency score SC for
this potential edge E is:

SC(E) =
min(

∑n
i=1 θmini,

∑n
i=1 θmaxi)

n
(4)
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with θmini (resp. θmaxi) is the angle between the minimum (resp. maxi-
mum) curvature direction of the vertex Vi and the segment P∞

0 P∞
1 . This score

SC ∈ [0, 90] is homogeneous to an angle value in degrees. Two special cases are
taken into account, concerning the nature of vertices Vi belonging to the path:

• If Vi owns an isotropic curvature tensor (plane or spherical region), hence
the directions of curvature do not carry information. In these cases θmini

and θmaxi are set to 45, to not influence the final score.

• If Vi is on a boundary (while not being the beginning or the end of the
path), then a penalty is introduced, because if the corresponding potential
edge represents a correct control edge, thus it should not cross or touch a
boundary. Therefore in these cases θmini and θmaxi are set to 90.

4.4 Topology extraction and reconstruction

The reconstruction of a control polyhedron having the same topology that the
original surface is not a trivial problem, knowing that the target surface can
have multiple holes (and therefore multiple boundary control polygons). Al-
liez et al. [19] use parameterization and constrained Delaunay algorithms for
topology reconstruction; we aim at avoiding such complex processes knowing
that moreover, parameterization does not always work on surfaces with multi-
ple holes. Our algorithm is the following: we extract a single contour, that we
call the Topologic Contour, representing the boundary of the final control poly-
hedron. In the case of a single boundary target surface, it is automatic. In the
case of a multiple boundaries target surface, we have several control polygons,
hence we link them by creating edges and doubling certain control points. For n
boundaries, we create (n− 1) edges, by choosing those associated with smallest
scores SC. This process is illustrated in Figure 6.

For a two holes surface (see Figure 6.a), we have created one single topolog-
ical oriented contour (see Figure 6.b). The difficulty here is to create a coherent
Topological contour. Figure 6.c presents this problematic. We have chosen to
start the topologic contour from control point B1

0 which, therefore, becomes C0,
then B1

1 becomes C1 and B2
1 becomes C2 and then a question occurs: does the

topological contour have to continue on B2
0 or B2

2? Even if this question seems
trivial for a plane object, it becomes very complex in the case of a topologi-
cally complex, multiple holes surface and moreover will be critical for the rest
of the process. Our solution is the following (see Figure 6.d): first, considering
limit positions of B1

1 and B2
1 , we mark every edge belonging to their pseudo-

geodesic path. Then we extract triangles from the previous path (TB1
0B1

1) and
from each possible path (TB2

0B2
1 and TB2

1B2
2). Finally we calculate the short-

est path, considering marked edges as impassable, from TB1
0B1

1 to TB2
0B2

1 and
TB2

1B2
2 . The shortest path (the blue arrow in the example) gives us the correct

control point to integrate to the topological contour (see Figure 6.e). Once the
topological contour has been extracted, our algorithm is quite simple (see Fig-
ure 7). We consider the potential edge associated with the smallest score SC
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Figure 6: Topology extraction for a surface with three boundaries.

(dotted segments in Figure 7), and we cut the contour along this edge, creat-
ing two sub-contours. This algorithm is repeated recursively on sub-contours
until it remains only plane contours (see contours 1,2,3 on Figure 7). Then for
each plane contour, we check its convexity, if it is convex, we create a facet,
and if not, we decompose it into convex parts, using the algorithm from Hertel
and Mehlhorn [20]. By assembling created facets we obtain our initial polyhe-
dron of which limit surface (see Figure 7) represents in most case a quite good
approximation of the original surface.

5 Subdivision surface optimization

Even if the initial subdivision surface often represents a good approximation
of the target surface, the initialization mechanism considers only the boundary
information. Hence we have now to take into account the interior data. Consid-
ering this purpose, we have defined two complementary mechanisms: A subdi-
vision inversion algorithm, generalizing Pottmann and Leopoldseder method [9]
for the complex quad-triangle subdivision rules, and a enrichment mechanism
which adds points and optimizes connectivity according to the error position
and distribution.

9



Figure 7: The initial control polyhedron creation mechanism.

5.1 Quad-triangle subdivision inversion

For a given target surface and a given approximating subdivision surface, this
process aims at displacing control points by minimizing a global error over the
whole surface. To achieve this purpose, we use a least square method based on
the quadratic distance approximant defined by Pottmann and Leopoldseder [9]
(see Section 3.2). Our algorithm is the following:

• The curvature is calculated for each vertex of the target surface. We have
implemented the work of Cohen-Steiner et al. [21], based on the Normal
Cycle. This estimation procedure has proven to be the most efficient and
stable among the others and gives very satisfying results even for bad
tessellated objects.

• Several sample points Sk are chosen on the subdivision surface, they cor-
respond to vertices of the subdivided polyhedron at a finer level l0. The
associated footpoints (projections of the sample points on the target sur-
face) are extracted. For each of them, we calculate the curvature tensor, by
a linear interpolation of those of the surrounding vertices, using barycen-
tric coordinates. This tensor allows us to construct the Frame e1, e2, e3

and the curvature radius ρ1 and ρ2, useful for the point to surface dis-
tance computation (see Equation 1). Sample points Sk can be computed
as linear combinations of the initial control points P 0

i (see Figure 8); they
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correspond to control points P l0
i at the finer level l0.

Sk = Ck(P 0
1 , P 0

2 , ..., P 0
n) (5)

• The functionnals Ck are determined using iterative multiplications of the
l0 subdivision matrices Ml associated with our subdivision rules (see Fig-
ure 8). These subdivision matrix Ml are such as:

P l = Ml.P
l−1 (6)

with P l = [(P l
1, P

l
2, ..., P

l
n)]T . The subdivision masks depends on the na-

ture of the neighboorhood of the considered control points. For a given
control point Pi, surrounded by ne edges and nq quads, the mask is given
in Figure 8.c. If Pi is surrounded only by triangles (resp. quads) the mask
is given in Figure 8.a (resp. Figure 8.b). We also take into account border
points (see Equation 2) and sharp border points (see Equation 3). The
functionnals Ck, for the level l0, are the lines of the matrix C such as:

C =
l0∏

l=1

Ml × Ll0 (7)

Ll0 is the limit matrix which gives the limit positions, proposed by Stam
and Loop [12], of the considered control points at the level l0.

• For all Sk, local quadratic approximants F k
d of the squared distances to

the target surface are expressed according to the frames e1, e2, e3 at the
corresponding Footpoints. The minimization of their sum F gives the new
positions of the control points P 0

i .

F =
∑

k

F k
d (Sk) =

∑
k

F k
d (Ck(P 0

1 , P 0
2 , ..., P 0

n)) (8)

Figure 9 shows an example of the algorithm. Figure 9.b and 9.e show
respectively a hand-made bad initial control polyhedron and the corresponding
limit surface. After only 5 iterations, the limit surface (Figure 9.g) is perfectly
fitted with the original one. Resulting errors are respectively 15.9 × 10−3 and
5.0× 10−3 after 1 and 5 iterations for our algorithm against respectively 21.4×
10−3 and 16.1×10−3 for the traditional point-to-point minimization used by Ma
et al. [3] for example. Our algorithm is clearly faster to converge. All surfaces
considered in the experiments were normalized in a cubic bounding box of length
equal to 1.
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Figure 8: Smoothing masks for Loop, Catmull-Clark and the quad-triangle
scheme.

5.2 Enrichment and connectivity optimization

In this section we present our method to enrich precisely the polyhedron, while
trying to keep a near optimal connectivity. The first step of this algorithm is the
principal error field extraction. The goal is to extract not only the maximum
error point but an area (a set of error points) corresponding to the error field in
order to be able to analyze the error distribution. For this purpose we consider
sample points Sk on the subdivision surface and associated distances dk to the
corresponding projections on the target surface. Then, we extract an add to our
error set, Skmax corresponding to the maximum error, and every sample points
corresponding to a significant error (we have fixed a threshold T = dkmax

2 ) and
connected to an other point of the error point set. This extraction is shown for
a 2D case in Figure 10.

Then, we distinguish two cases, illustrated in Figure 11 for the target objects
from figure 12.b and 12.a:

1. The error field corresponds to a local error. Hence, if several faces Fk

are concerned by the error field (they contain at least one error point), it
means that the topology in this region is not correct, hence, we merge these
faces and then add a point in the resulting face and connect it with its
neighbors. Figure 11.b show such an error field (error points are marked in
red). Corresponding faces have been merged, before adding a new control
point (see Figure 11.c).

2. The error field is diffuse. Hence, there is no precise error center, the error
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Figure 9: Example of our surface optimization. (a) original surface. (b,c,d)
control polyhedrons after 0,1 and 5 iterations. (e,f,g) limit surfaces.

Figure 10: Principal error field extraction.

field corresponds rather to a lack of degrees of freedom. Thus, every con-
cerned face Fk is enriched. A point is added at the center and connected
to its neighbors. If two faces are adjacent we also cut their common edge.
An example is shown on Figure 11.e and 11.f. This mechanism concerns
also cases were there exist one principal error but the error field already
contains a control point. This means that the control point does not bring
enough freedom to model the target surface, hence we enrich every face of
the field.

We detect these two cases, simply by considering the percentage of the er-
ror point set with an error close to dkmax (the theshold 0.80 × dkmax gives
satisfaying results). If this percentage is lower than a threshold (usually 50%)
thus the error set is considered as a Gaussian like distribution associated with
a local error (case 1), otherwise the error set is considered as a plateau like
distribution (case 2). This quite simple algorithm has given satisfying results in
our experiments.
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Figure 11: The two cases of error distribution with corresponding enrichment.

6 Complete algorithm and results

Our whole algorithm is the following:

Begin Subdivision Surface Approximation

The initial subdivision surface is created using boundary curves and curvature in-
formation (see Section 4).
while E > ε do

// E is the approximation error and ε a threshold value.
while E > ε and m < m0 do

// m is the iteration number and m0 a maximum number.
Optimisation procedure (see Section 5.1). The subdivision surface is moved
toward the target surface, by minimizing a sum of quadratic distances.

end while
if E > ε then

A new control point is inserted onto the subdivision surface according to the
error distribution (see Section 5.2).

end if
end while

End Subdivision Surface Approximation

Our approximation method was tested on several different objects (with
ε = 5×10−3 and m0 = 5). Figure 12 presents results for different target surfaces
with different topologies. Control polyhedrons have quite small numbers of
faces and vertices compared with initial surfaces (convenient for compression
tasks) and the approximation errors remain very low (see Table 1). Besides, for
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Figure 12: Examples of our subdivision surface approximation scheme.

the example of the cylinder (see Figure 12.c) results are quite better than for
the algorithm from Kanai [5] (see Figure 1). Moreover we can distinguish an
other advantage, dealing with the remeshing task, on Figure 12.c: the resulting
subdivided surface is a quite nicely remeshed model compared with the initial
target object. We have applied our method to a whole object (see Figure 13), by
previously segmenting it (we have used the algorithm from Lavoué et al. [22]),
and then applying our algorithm on each patch (boundaries where fixed to avoid
cracks). Then, all patches have been connected by marking boundary control
edges as sharp. The resulting subdivision surface is quite interesting in terms
of vertex and face numbers and approximation errors.

We have compared our results with methods from Ma et al. [3] and Hoppe
et al. [8] (see Table 2). We obtain a better approximation error than Ma et al.,
for a lower number of faces and vertices. Hoppe et al. obtain a better quadratic
error than ours but both are quite low and our control polyhedron is lighter
than theirs. Moreover their method relies on a very long and complex global
optimization while our algorithm is faster (about 5s for Fandisk). Ma et al.
and Hoppe et al. produce a triangle only control polyhedron, while our method
is able to adapt the connectivity to the natural parameterization of the target
object by creating triangles and quads.
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V/F Ini V/F Ctrl E L1 (×10−3)
(Fig12.a) 950/1734 20/30 2.69
(Fig12.b) 324/491 16/17 2.06
(Fig12.c) 168/248 10/5 1.72

Table 1: Vertex and Face numbers of initial objects (V/F Ini) and control
polyhedrons (V/F Ctrl), and Resulting errors (E L1).

Figure 13: Application of our fitting scheme to a complete object. (a) Segmented
object, (b) control polyhedron, (c) limit surface.

7 Conclusion

We have presented a new framework for subdivision surface fitting. Our al-
gorithm, adapted for open surface meshes, is independent of the connectivity
of the target mesh and aims at optimizing the generated subdivision surface,
in terms of connectivity and control points number. First, boundaries of the
target surface are approximated with subdivision curves which lead to a first
version of the subdivision surface by linking control points of the boundary con-
trol polygons. These edges are created with respect to the lines of curvature, to
preserve the natural parameterization of the target surface of which topology
is reconstructed using pseudo geodesic distances computation. The second step
is the following: the initial subdivision surface is iteratively enriched and opti-
mized until the approximation error becomes correct. The optimization step is
an extension for subdivision surfaces of the quite fast and efficient method from
Pottmann and Leopoldseder and the local enrichment step adds control points
while optimizing the connectivity according to the error distribution. Applica-
tions of our algorithm are quite large including compression, reverse engineering
and remeshing. Concerning perspectives, we plan to improve the connectivity
optimization during mesh enrichments, by conducting a deeper analysis of the
error dispersion.
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V/F Ctrl E L1 E L2
Our 75/89 0.82× 10−3 2, 63× 10−6

Ma 173/342 5.06× 10−3

Hoppe 87/170 1, 00× 10−7

Table 2: Vertex and Face numbers of control polyhedrons (V/F Ctrl), average
errors (E L1) and average quadratic errors (E L2) for different approximation
methods applied to the Fandisk object.
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