
1/24

DYNAMIC PLACEMENT OF CONTENT REPLICAS

IN DISTRIBUTED MULTIMEDIA SYSTEMS

Julien Gossa, Lionel Brunie, Jean-Marc Pierson

LIRIS, INSA de LYON

Firstname.Name@liris.cnrs.fr

ABSTRACT

We present in this article a multimedia content replica management system, able to satisfy

users' constraints and preferences, while limiting the load of the servers and the proxy-caches.

Our goal is to optimize the placement of a limited number of replicas via mechanisms of

duplication and migration. Our system allows owners to keep control over their multimedia

contents even with large scale replica dissemination. We developed an advanced model for

integrating multiple metrics on the execution context to better suit the dynamicity inherent to

distributed applications. Experiments on simulated networks of proxy-caches validate the

approach.

1. INTRODUCTION

An efficient way to improve the performances of distributed multimedia systems has long

been to use proxies in order to cache the content retrieved from the sources. In this approach,

data are handled on specialized nodes in the network, where they are kept for a certain amount

of time. Different mechanisms exist to decide which content is to be kept and for how long

(data replacement policies range from the usage of the data, their size, their difficulty to be

obtained, the interest of users in similar content and so on), where to keep it (close to the

server, close to the client, somewhere in the middle). Some works have investigated the

benefit of a collaborative decision, but few have been interested by the dynamic placement of

replicas in the network of proxy-caches.

The current trend in distributed multimedia systems is to tackle mobile environment

constraints : contents must be delivered any time, anywhere, and to anyone. This imposes to

be able to store contents as close as possible to the users. Future distributed multimedia

systems need new paradigms to be developed: the dynamicity and the unpredictability of

either the users or the infrastructure must find an efficient solution.

2/24

Our goal is to ensure within a light infrastructure, the best quality of service for the client,

while still maintaining a control on the dynamic number of replicas. Given the fact that

multiple replicas of data may exist on the network, questions like the following arise : which

one to select to answer a query ? when should we create a new replica ? where shall we create

it ? where shall we move it with respect to the users' usage ? how to monitor this usage and

control the replica use ?

The first problem to answer a query is the selection of one replica, which can be decomposed

in two parts : which is the best metric for comparing two replicas, and how shall we compute

it ? While the latter seems easier to tackle and more like a technical problem, the choice of the

metric is not that simple. It must take into account the content of the data itself and its usage :

Indeed, when the latency is the first parameter to look after for a small file, the bandwidth will

be one of the key criteria for a larger file. Many works limit their view on some uniform

measure and do not handle multiple criteria for their choice.

The second problem is the placement, the monitoring and the control of the replica. A solution

consists in copying all or a subset of data at many places in the network (it is the policy

implemented by Akamaï [1] for instance). The number of replicas is controlled by heavy

mechanisms and the pertinence of the number of deployed replicas is not addressed : the

system may copy in excess a piece of data, whereas the cost to obtain it is less than the cost to

maintain a replica on one site. Other solutions lead to distribute the content to well-known

clients, limiting de facto extensibility.

In mobile environments, none of these solutions adapts well : their responsiveness to the ever

changing and moving population of potential clients (geographic mobility but also interest

mobility) is limited, as well is their awareness of the network dynamicity (prediction tools to

predict the state of the network are rarely used). Moreover, the sensitive contents are often not

kept in caches, since a piece of data is sensitive whenever its owner wants it to be. A

mechanism to allow at owner's choice for caching such content (thus controlling the use of the

replica) must be proposed.

We present in this article a replica management architecture, able to satisfy the client

constraints and wills, limiting the workloads on the servers and the proxy caches, and that can

adapt to the ever evolving environment. We propose a distributed algorithm able to

dynamically keep the replicas close to their usage, based on parameters for measuring and

aggregating multiple metrics and to manage the life cycle of the replicas.

3/24

The rest of this article is organized as follows: First, we briefly present the Small world theory

and discuss the state of the art. Then we study our proposal (for the selection and the

placement of replicas) before presenting experiments. We discuss pros and cons of the

proposed algorithms. We finally conclude and open perspectives for this work.

2. STATE OF THE ART

2.1 The Small Worlds theory

Many studies [9][10] shows that the Internet is made up of "small worlds", i.e. the very

different users can be gathered in small communities sharing common interest. Furthermore

these communities often correspond to physical clusters having good internal communications

and few connections towards other clusters.

This can be related to local interest and fashion phenomena. Indeed, users from a scientific

campus will not be interested by the same documents as those from literature one. Another

example is the shifted release of a U.S. movie in France: the French will be interested in its

trailer then the Americans have already forgotten it. Moreover an album from a small local

group will get a stronger interest within its area of origin than elsewhere.

According to [9], the small world phenomenon opens great algorithmic perspectives in

networking and distributed systems. We decide to support it in the following approach with

the observation that contents are not as much useful anywhere and anytime, so we could

optimize their placement.

2.2 Managements of replicas

Positioning content replicas on network is a key factor in data management. A good strategy

allows a good customer QoS, while limiting the resource load. A contrario, an ineffective

management can be catastrophic when the volume of contents or users scales up.

[2][3] describe replica positioning methods in pervasive environment to optimize inner

mechanisms, like adaptation path, but do not consider users needs.

[5][7] deal with the optimization of replica selection to answer a user request, but do not

integrate replica placement.

Works [6][8] study the server replicas placement, but not data placement over the servers.

We did not find any work handling the optimization of data placement for customers’ requests

in pervasive environment, probably because this problem is quite new, emerging with mobile

4/24

data processing. And because systematic management was sufficient for traditional cabled

network of computers with great communication and storing capacities.

The existing strategies for collaborative systems either leave the replication free for non

sensitive contents, or prohibit it to keep a total control over the sensitive ones.

We are convinced that the key factors in mobile computing are flexibility and dynamicity.

Those are covered and synthesized in a work in progress [4].

While a majority of works are based either on more or less elaborated but static criteria:

kilometric distances, quantity of hops, bandwidth… or on dynamic ones like network state…

They do not consider replica nature and use context, what we call flexibility. Authors start

from the observation that it is impossible to select an a priori sure uniform criterion for

effective replicas management.

The concept of contract makes it possible to define the relevant criteria for a certain replica

management and to negotiate its replication on proxy-caches.

3. FLEXIBLE AND DYNAMIC PLACEMENT OF REPLICAS

In this paper, we study the problem of the replicas placement over a network of proxy-caches.

Our goals are to optimize the network use, to allow keeping a good control on the replicas and

to ensure a good user Quality of Service. Our priority is to deal with a great dynamicity of

users, network and contents. The work presented here follows a position paper [12].

3.1 Assumptions

We consider that a logical network of proxy-caches exists (for instance [15]). This represents

the middleware allowing nodes to know their direct neighbours, share messages or files and

store replicas. We will largely support above this middleware, assuming that it is rather open

to allow our work to run.

We mask end-users of data behind their proper mandatory proxy, which forward their

requests.

We call replica a copy of a content and request an end-user request for these contents.

We consider moreover than this network is working according to the small worlds theory.

5/24

3.2 Approach

The proxy-caches have only local partial information on the topology and the network state.

We deal with a very strong dynamicity and a constant need for readjustment within a

framework of unpredictability use. Moreover it is impossible to consider one uniform

criterion.

We believe that few well managed replicas are more effective than a lot not easily

controllable. By obtaining competitive results in term of user QoS with a limited quantity of

replicas, we will be able to allow an inexpensive advanced management: to know where all

the replicas are, which their uses are, to update them, to easily maintain their consistency and

safety, while allowing a real load balancing.

Our approach is based on replicas which are able to know where to position, when to

reproduce or commit suicide and to adapt to new needs thanks to simple interactions with

their direct environment.

3.3 The replica (re)placement problem and the K-server online algorithm

3.3.1 Original centralized algorithm – the DC-Tree (DoubleCoverture-Tree)

Our replica placement and selection strategy is derived from the on-line approximation

algorithm described in [16]. It presents a solution for the k-servers problem, which is

formalized as follow:

Let k be the number of mobile servers over a N nodes tree. Requests appear successively

anywhere on this tree. A request is served when one of the servers had move up to its

position. The total cost of the solution is the sum of the distances covered by the individual

servers.

The DC-Tree algorithm controls the k servers positions in order to answer in a competitive

time without knowing the request sequence in advance. This algorithm is depicted as follows:

"At each time, all the servers neighbouring the request are moving in a constant speed toward

the request" [11]

The main idea is that requests influence the positions of all its surrounding servers, and not

only the one selected to answer.

Request neighbourhood is defined as the first met servers while following the tree starting

from the request.

6/24

When answering a request, while the replicas are moving, a replica may overtake another one.

This latter is then excluded from the request neighbourhood and must stop moving. Thus, all

replicas will not cover the same distance.

Figure 1: Response to a Request

On the figure 1, to serve the request, each server in the request neighbourhood will move at constant

and equal speed towards the request.

Initial step: S1 is located behind S2 on the way towards the request, it is thus out of neighbourhood

and will not move. S2 and S3 move towards the request (m1).

End of move 1: S3 passes in front of S2 because of its movement. S2 is then excluded from the

neighbourhood and must be stopped at S2’.

S3 will be able to continue (m2) towards the request position.

This method has been proved (N-1)k-competitive. This means that its solution in the worst

case is (N-1)k heavier than the optimal one (the optimal could be found with advance

knowledge of the request sequence). Fortunately, it works much better in the general case.

Actually, the Small Worlds theory ensures very competitive results in real situation, since the

request sequence is not random, but rather presents focuses in different spots.

3.3.2 Adapted reformulation for replica placement.

We can formalize our problem as follows:

Let consider k replicas of the same content on a proxy-caches network. We want to optimize

dynamically their position so as to minimize the total distance between these replicas and the

whole requests.

S2

S1

S3

S2’ S3’

S
S’

Initial Server Position
Final Position Server
Server movement

Request

m1

m1

m2

7/24

The DC-Tree is well adapted to our problem thanks to its efficiency when confronted to

dynamicity and unpredictability. Thus we reformulate the original algorithm as: "At each

time, all the replicas neighbouring the request are moving in a constant speed toward the

request".

In the original algorithm, the servers move to the request to serve it. In our adaptation, a

replica do not move effectively to the proxy-cache requesting it. Selected replica to serve a

request is simply the nearest.

3.3.3 Adaptation to distributed environment: Distribution and Centralization

The original algorithm works in an entirely centralized environment. Complete topology

(distances between node, positions of replicas and requests…) is known and used for each

decision. Moreover this topology is static.

In network context, one node knows only its local inter-connexion graph and must take

decision independently. Dynamicity and flexibility due to instability of network state and

usage disparity must also be addressed correctly.

Our architecture is divided in two distinct parts: a completely distributed autonomous one and

an optional centralized one.

The distributed part concerns the vital functionalities, therefore the adaptation of the

algorithm described above. These functionalities concerns the evaluation of network state and

replica placement/selection. Each proxy-cache interacts autonomously with others : Thus it

benefits from classical Peer to Peer properties and remains flexible, adaptive, robust and

scalable.

The centralized part relates to the monitoring servers. They support two independent

functions: first they ensure the control of replicas through duplication/suicide authorisation;

second they gather information on replicas life cycle through usage monitoring. The

monitoring servers are administrated by each contents owner according to their needs.

Actually, these functionalities levels are independently configurable. For example an owner

could allow duplication and record each access.

3.4 Realization: implementation of the distributed part

In the original algorithm, servers "move at constant speed" on the network. This concept of

"constant speed", understood in the algorithm like a Euclidean speed, is not at all transposable

to network context. Moreover, in the original algorithm, replicas have to stop in the middle of

8/24

connections between two nodes, which once more is unrealizable. From the example of figure

1, difficulties are to detect that S1 is out of neighbourhood and to represent the fact that S2

"stops" in the middle of the connection.

We transpose the concept of "constant speed" towards the concept of "distance"1, which keeps

sense on network. We virtualize movement according to these distances. We will see how we

materialize distances in the section 3.5.

We separate replicas movement in two distinct functions:

¾ Updating virtual positions – attraction vector updating

¾ Concretization of these positions – attraction vectors maintenance.

3.4.1 Updating Virtual positions – attraction vector updating

Each proxy-cache maintains a virtual position of each of its managed replicas, according to its

local knowledge of topology. We call “link” a physical link between two neighbour proxy-

caches. We call “attraction” the value of the distance to the virtual position towards a

particular link. We call “attraction vector” of a particular replica the vector containing the

value of attraction for each link of a proxy-cache, plus the local attraction. This vector

represents the virtual position of the replica. Initially it is null, then it evolves in time

according to requests positions. An attraction towards a link is increased when the replica is

requested on this link. The added value corresponds to the covered distance envisaged in the

original algorithm, multiplied by a parametric factor DISTANCE2ATTRACTION.

Figure 2 : example of attraction variation due to request trigger

1 Note here that "distance" might be understood in an intuitive way, like remoteness for instance, and not as a mathematical

metric distance (our "distance" lacks properties of metric distance like triangular inequality and symmetry).

R2

R1

R3

R2’ R3’

R
R’

Real Replica Position
Virtual Replica Position
Attraction Variation

request

d1

d1

d2

9/24

The example of figure 2 shows attraction variation and virtual position, according to fig 1 instance.

R1 is out of neighbourhood, so it will not have any added attraction.

R2 having to virtually move distance d1, this one will be added to its attraction towards the

corresponding link.

R3 will have an added attraction of the total distance d1+d2.

Figure 3 : Example of attraction vectors at a given time with two Interested Small Worlds

We call Interested Small World (ISW), a physical cluster whose actors are currently interested

by the replicated content.

For Proxy-Cache A and replica R, one notes:

¾ a strong attraction towards itself, since it contains ISW1

¾ a strong attraction towards link 1, leading to ISW2

¾ a light attraction towards link 3, leading to non represented ISWs

¾ no attraction towards link 2, leading to no user

For the Proxy-Cache B and replica R, one notes:

¾ a strong attraction towards the link 1', leading to ISW2

¾ a light attraction towards the links 2' and 3' leading to other ISW

¾ no local attraction

In order to update this attraction vectors, we describe an inter proxy-cache protocol.

Attraction

Vector PCA

self 7

Link 1 5

Link 2 0

Link 3 1

Attraction

Vector PCB

self 0

Link 1' 5

Link 2' 2

Link 3' 1

R

Fig3:Virtual Positions

R
1

1’

2

3

2’

3’

Attraction per link

ISW2

PCB PCA (Proxy-Cache A)
ISW1

Interested Small World

10/24

Inter proxy-cache NCasting protocol.

This protocol allows maintaining the state of the attraction vectors. We call this mechanism

NCasting (for NeighbourCasting).

On Reception of NCasting(Replica, ReceivedDistance) by the proxy-cache PCre from PCor

If Replica owned by PCre

 add ReceivedDistance for the link to PCor to Replica attraction vector

Else

 let PCpp be the nearest proxy-cache owning Replica

 send NCasting(Replica, ReceivedDistance) on the driving link to PCpp

 send NCasting(Replica, (PCre-PCpp)Distance) to all neighbours except of PCpp and PCor

Figure 5 : pseudo code of NCasting protocol

When a proxy-cache receives an end-user request, it redirects it towards the nearest replica.

Then it initialize update of different concerned attraction vectors with a simple flooding of

NCasting(Replica, distance to nearest Replica).

Figure 6 : Example of the behaviour of the protocol

� init: F requires contents R, the distance to the nearest replica of R (R3) is D1+D2.

¾ 1: flood NCasting(R, d1+d2) starting from F

� D receives NCasting(R, d1+d2) and doesn’t own the replica, so it sends:

¾ 2: NCasting(R, d1+d2) towards E, which owns the nearest replica.

¾ 2': NCasting(R, d1) towards B, D1 being the distance to the nearest replica

� E receives NCasting(R, d1+d2) and owns R:

¾ it increments the attraction vector towards D by d1+d2

� B receives NCasting(R, d1) and own R:

R2

Fig4: Protocol behaviour

R1

R3

R2’ R3’

R
R’

Real Replica Position
Virtual Replica Position
Attraction Variation

requête
1

2

2’ Distance d2
Distance d1 A

B

C

D

E

F

G

H

1

1

11/24

¾ it adds e1 towards D to its attraction vector

Communication complexity of the protocol in terms of message quantity

Let consider a tree of N nodes.

The worst case occurs when replicas are positioned on each leave of the tree and requests are

on any other node. So, the request’s neighbourhood is the complete tree. NCasting messages

will be sent to all nodes. Which means a complexity of O(N).

Actually the request’s neighbourhoods are often less than the complete graph because of the

restraint number of replica. Moreover in small world context, as replicas move towards the

requests, neighbourhoods are progressively closing, and then message complexity is

progressively reducing.

Moreover, if we dispose of a good replica indexing (allowed by a powerful middleware), we

can limit the number of messages by contacting interested proxy-cache directly by multicast.

Another optimization is to accumulate a certain number of NCastings for a same replica

without triggering the rest of the system, and then send one only NCasting with the sum of

accumulated distances.

This protocol can also work on any graph by adding loop control.

3.4.2 Concretizations of virtual positions – attraction vectors maintenance.

We call "concretization" the materialization of replicas virtual positions. It triggers the

operations of migration, duplication or suicide.

The concretization is performed during the attraction vectors maintenance. This operation is

regularly run on each proxy-cache for each of its stored replica every time step defined by

MAINTAINANCE_TIMESTEP.

Migration

For migration, concretization happens when attraction vector exceeds distance to the linked

proxy-cache.

12/24

Figure 7 : Example of Concretization situation

On figure 7, one can see that the attraction of R towards ISW2 exceeds the distance to ISW2,

so the concretization will migrate R to ISW2.

Duplication

The original algorithm drives a fixed number of servers.

With flexibility and dynamicity needs, we have wanted the number of replicas can evolve

automatically, while remaining under supervisor control.

Our architecture places the duplications/suicide authorization service on the monitoring

servers. Those are centralized and administered by each replicas owner. These last select the

monitoring level for its own replicas trough a metadata DUPLICATION_AUTHORISATION

which stipulates explicitly if duplication is authorized/prohibited/controlled. In case of

controlled duplication, the monitoring server knows the exact quantity of replicas, but the

duplication is impossible in case of breakdown.

Actually, the attraction vector represents the directional popularity of replica. Thus many

significant values mean that the replica is useful in the many corresponding directions.

� If (DUPLICATION_AUTHORISATION=authorized) OR

(DUPLICATION_AUTHORISATION=controlled AND authorization is delivered)

¾ The replica is duplicated on the neighbour proxy-caches indicated by the attraction.

� If (DUPLICATION_AUTHORISATION=prohibited) OR

(DUPLICATION_AUTHORISATION=controlled AND no authorization is delivered)

Concretization

R

Attraction per link
Migration of R

ISW2

R

Concretization
The attraction toward ISW2
exceeds the distance to ISW2

13/24

¾ The replica cannot be copied and tries to migrate (which don’t change the number of

replicas) to find a better position in function of the attraction.

Suppression

We deal with episodically isolated request out of interested small world, which could be

considered as noise. Moreover we must slowly forget past demands in order to consider new

ones. So, we need to reduce the attraction values with time.

During the maintenance operation, we decrement the attraction vector values according to a

parameter ATTRACTION_DEGRADATION.

Replicas must be deleted when its attraction vector remains null for a parametric period

TIMETOSUICIDE, which means it keeps useless for this period.

Maintenance mechanism

This algorithm is regularly run by the proxy-caches for each of its replicas. It decides

duplications/migrations toward attractive link and suicide of useless replicas.

For a given replica R, let:

 V its attraction vector;

 L the list of links which attraction exceeds the distance to linked proxy-cache,

 sorted by descending order of attraction;

 NDA the amount of authorized duplications, case of DUPLICATION_AUTHORISATION

 if authorized:∞; if prohibited:0; if controlled: asked to the monitoring server|0 if unreachable

 TTS time before suicide

For i = 0 to min(NDA-1, size(L))

If L[i]!=self

 Duplicate R towards L[i]

 Update the attraction vector to 0 for L[i]

If L[NDA]!=self

 Migrate R towards L[NDA]

Update V: V=V-ATTRACTION_DEGRADATION

If V==null

 TTS=TTS-MAINTAINANCE_TIMESTEP

Else reset TTS : TTS=TIMETOSUICIDE

If TTS==0

 Delete R

Figure 8 : pseudo code of maintenance algorithm

14/24

3.5 Metrics management

As seen before, our algorithms rely on distance computation on network. Actually, attraction

has the same nature as distances between two nodes.

Unfortunately, distances computation over the network is not trivial and the context

constraints imply that we cannot choose one uniform metric, such as the latency or the

kilometric distance.

So, we propose to use an advanced metric model in order to ensure a flexible and dynamic

distance computation.

3.5.1 Metric Modelling

A metric, M, can be either dynamic, when associated to the network state, or static when

related to resources capacities. Dynamic metrics need to be evaluated in real time, whereas

static ones are declared.

The value of the individual computation of a metric Mi is noted Measurei.

The relevance of a metric is strongly related to the replica characteristics and its use. This

relevance is modelled by a coefficient α, between 0 and 1, defined for each metric Mi and

each class of replica R. We will see example of coefficients in section 3.5.5.

3.5.2 Temporal aggregation

We consider small variability of network, like ephemera breakdown, as noise. Moreover

certain metrics are expensive to measure, so we want to avoid remaking all measurements for

each response.

So, we aggregate the measurements according to time. This aggregation is done either by

sampling over a relative period (X last minutes), or by sampling over static absolute periods

(hour/day/…), which can prove relatively heavy, but rather close to the customers QoS

constraints.

3.5.3 Node to node route distances computation.

This computation is made by a simple weighted average of normalized measurements of all

metrics.

In order to incorporate metrics of different nature (for example a latency in second and a

distance in kilometre), normalization functions are used. They are declared together with

15/24

associated metrics. These normalization functions stand from metric measurement space

towards R [0..1].

()()iMeasurei
replica
i

replica
route fnAverageMeasure ×= α , where

replica
routeMeasure is the distance of route for replica, between 0 and 1

iMeasure is the temporal aggregation of metric i on route

ifn is the normalization function for metric i
replica
iα is the weight of metric i according to the class of replica.

We can evaluate and compare network distances in a flexible way whatever the number of

aggregated metrics is.

The beauty of this approach is that final customers will consider overloaded proxy-caches

farthest than underused ones. As the customers are redirected to the “nearest replica”, we

ensure final customers QoS while allowing real load balancing, because the users will more

requisition underused proxy-caches than overloaded ones.

3.5.4 Metrics Declaration

We want to remain as open as possible. So, we allow content providers to integrate new

metrics. A metric is described by four characteristics:

¾ Its name

¾ Its individual measurement tool (like “ping”)

¾ Its temporal aggregation function

¾ Its normalization function

This description largely depends on the underlying middleware. We will not describe it more

in detail. Nevertheless, we initially identify the metrics which appear a priori adequate.

16/24

On a route

 Dynamic Static

latency (RTT)

available band-width ideal band-width (theoretical)

On a resource (Proxy-Cache)

 Dynamic Static

system load (in term of CPU) system capacity

storage load storage capacity.

host availability time ratio

Figure 10 : example of adequate metrics

3.5.5 Choice of weighting

The choice of metrics weights according to replica nature occupies a significant place in the

effectiveness of our system. First we declare basic weightings related to replica

characteristics. For example, a small file will strongly weight latency, system load and

availability ratio in order to privilege reactive hosts. A contrario, a heavy video will weight

available band-width, load and capacity storage, in order to avoid overloads. These two

different files categories correspond to two different replicas classes describing these needs.

Thereafter, each content owner will refine theses basic weightings according to its specific

needs.

3.5.6 Replica Classes

We set up a hierarchical system of replica classes.

A replica class maps replica, according to its characteristics called intrinsic metadata, with a

set of parameters useful to its management, called exploitation metadata.

These classes are derivable to allow refining the choices by describing more and more

precisely the weights to be used. To find the membership class of a replica, we simply have to

descend this hierarchy.

17/24

 Intrinsic Metadata

 Description

Name The name of the cached file

Type Its type (extension)

Size Its size in byte

Date Its date of last update

Owner Its initial owner

 Exploitation Metadata

 Description

α 0… α 1 set of weight

Temporal aggregation absolute | relative

Monitoring server IP IP of the server controlling the replica use

Duplication authorization False | True | Controlled

Times before suppression Time without attraction variation before suppression

Figure 11 : Description of replicas metadata

The creation of a new class is announced by flooding all the proxy-caches in order to keep

consistency. This operation should be only specific and carried out with the objective of

managing a great amount of replicas. It should not thus involve network overload.

These classes are defined in the portable understandable XML format.

The Figure 12 shows an example of intrinsic metadata for a given replica identified by

re17845.

< intrinsic_metadata replica_id = "re17845" >

 < name > alizee – ta meilleure amie.mpg </name >

< type > mpg </ type >

 < size > 17845746 </size >

 < date > 2004/03/21 17:32:47 </date >

 < owner > universal company </owner >

 < monitoring_server_ip > monitoring.universal.com </monitoring_server_ip >

</intrinsic_metadata >

Figure 12 : Example of intrinsic metadata to contents

18/24

< replica_class id="rcid147825" parent_id="recl45621" >

 < intrinsic_metadata_condition >

 < name > * </name >

 < type > mpg|avi </ type >

 < size > * </size >

 < date >

 < min > 2000/01/01 00:00:00 </min >

 </date >

 < owner > universal company </owner >

 </intrinsic_metadata_condition >

 < exploitation_metadata >

 < weighting >

 < latency > 1 </latency >

 < available_bandwith > 8 </available_bandwith >

 < ideal_bandwith > 7 </ideal_bandwith >

 < system_load > 3 </system_load >

 < system_capacity > 2 </system_capacity >

 < disk_load > 5 </disk_load >

 < disk_capacity > 4 </disk_capacity >

 < host_availability > 9 </host_availability >

 </weighting >

 < temporal_aggregation> relative </temporal_aggregation >

 < duplication_authorization > controlled </duplication_authorization >

 < suicide_delay > 1 day </suicide_delay >

 < exploitation_vocation > QoS Customer </exploitation_vocation >

 </exploitation_metadata >

</replica_class>

Figure 13 : Example of a replica class

The figure 13 gives an example of the definition of a replica class (this class - rcid147825- is

a sub-class of recl45621, not described here).

One can note on the examples of figure 2 and 3, that replica re17845 may belong to the class

recl45621 (provided that the hierarchy leads to this class), since the replica intrinsic metadata

are included in the intrinsic metadata conditions of the class. Thus, we can obtain the

exploitation metadata of a replica from its intrinsic metadata.

19/24

PC3

PC2

PC0 PC1

0.5

0.5

0.8

4. VALIDATION AND EXPERIMENTATION

We have implemented a simulator of NCasting and concretization mechanisms.

This simulator generates a random interconnection tree.

The nodes represent the proxy-caches. The simulator emulates hot spots and fashion

phenomena : End-user’s requests occur following a Gaussian distribution rate.

The edges represent the network links and are weighted by random numbers, between 0 and 1,

representing the distances.

We first illustrate the behaviour of our algorithms on a simple example, with only 4 proxy-

caches and 100 time-steps. The interconnection graph and the distances between proxy-caches

(PC*) are given on figure 14.

Figure 14 : Interconnection graph

The figure 15 indicates the temporal distribution of requests per proxy-cache: Initially, a peak

of requests occurs on PC0; then a weaker peak appears on PC1; finally PC2 and PC3 receive

approximately the same number of requests; PC3 lasts a bit longer.

0

5

10

0 10 20 30 40 50 60 70 80 90 100 time

qu
er

ie
s

qu
an

tit
y

PC3

PC2

PC1

PC0

Figure 15 : Query distribution over time

Given this distribution, with one replica R (initially on PC1) and duplication prohibited, the

behaviour of the system is:

20/24

t=6: migration towards PC0, single site of requests at this time

t=27: migration towards PC1, single site of requests at this time

t=50: not being able to duplicate itself, R is attracted both by the simultaneous requests from

PC2 and PC3; R moves to a balanced position in PC0

t=78: balance is broken since the number of requests on PC2 is decreasing. R thus moves to PC3

which remains an active applicant.

With the same request distribution, but with authorized duplication, the behaviour becomes :

Differences arise when two sites start requesting the replica R.

t=63: R is duplicated on the two sites of requests PC2 and PC3

t=92: PC2 stops emitting requests : its replica is deleted.

The previous example shows that the algorithm is working as expected.

Then we were interested in the evaluation of the average distance between the set of requests

and the nearest replicas, as a function of the authorized replica number. This average distance

indicates the customers Quality of Service.

We configured the different parameters to obtain :

• a very reactive behaviour, i.e. with a high DISTANCE2ATTRACTION value (so each

request is important);

• and a low memory capacity, i.e. with a high ATTRACTION_DEGRADATION value

(so requests are soon forgotten).

We simulated 100, 300 and 1000 nodes, with 1 to infinite authorized duplications. Each

condition was tested on 100 different generated graphs.

PC3

PC2

PC0 PC1

R t=92

R

PC3

PC2

PC0 PC1

R

t=63
R

PC3

PC2

PC0 PC1

R

t=27 PC3

PC2

PC0 PC1

R

t=6 PC3

PC2

PC0 PC1

R

t=0

PC3

PC2

PC0 PC1

R t=78 PC3

PC2

PC0 PC1

R

t=50 PC3

PC2

PC0 PC1

R

t=27 PC3

PC2

PC0 PC1

R

t=6 PC3

PC2

PC0 PC1

R

t=0

21/24

average customers QoS
on 100 simulations with 100 to 1000 Proxy-caches

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14
authorized replicas quantity

av
er

ag
e

di
st

an
ce

100 PC
300 PC
1000 PC

Figure 16 : average customers QoS in function of the authorized replicas quantity.

The figure 16 displays the results we obtained. The Y-axis represents the average distance

between a user and the serving replica. A distance of 1 means that the replica is on average 2

hops from the user in the interconnection tree.

The average diameter of the interconnection trees: 11 for 100 nodes; 13 for 300 nodes; 17 for

1000.

The graph shows that with an average distance converging to [1..1.5], the system ensures a

good response time. This QoS is obtained with a limited number of replicas: With 100 nodes,

optimal results are obtained with only 9 replicas; 11 replicas are needed for 1000 node tree.

Moreover, the small difference between results with 100 and 1000 nodes indicates that our

solution is scalable in terms of number of replicas. This allows implementing resource

consuming mechanisms like real time monitoring or replica indexation.

The experiment described in this section show the efficiency of our solution in the context of

the assumptions described in section 3.1. We are implementing series of experiments using

traces coming from real proxy-caches and network monitoring tools.

5. DISCUSSION

Distributed multimedia systems take advantages of replica management systems where the

type of data is used to better fit both the needs of users and the cost of management. Our

22/24

proposal allows to manage replicas differently with respect to their class. It is obvious that

this information improves the global response time of the system, since the management

becomes adapted or personalized for each replica.

The presented methodology is particularly well adapted to Small Worlds where requests on

data are expressed by communities of interest, geographically close (in network terms).

Indeed, replicas of data appropriately located serve a set of users. A completely random

requests pattern without replica duplication could lead to a non effective management of

replicas : attractions to opposite directions may stick replicas on their creation sites, and the

cost of their management would overcome the benefit of an optimal placement of the replicas.

As seen in section 3, some parameters impact the behaviour of the algorithm : Finding

optimal ones for a given context (network topology, number of users, properties of data to

handle –size, privacy, time to live...-, ...) may be a difficult and long process. This makes the

full deployment of the infrastructure limited in the general case, even if a basic configuration

may help : The task to configure optimal parameters should be limited to well known

situations when specific needs have to be taken into account (either bandwidth, latency or disk

usage limitation, privacy, ...).

Management of sensitive data in a community, when users want to precisely control their

dissemination, obtains a great benefit using the framework. For medical data, typically, MRI

brain images acquired in an hospital interest mainly some practicians in this hospital, as well

as colleagues or researchers at specialized centres (cancerologists, neurologists, psychologists,

…), but have no intensive use in a maternity or a stomatology centre. These image replicas

must be controlled and monitored carefully. The solution presented in this article is not self

sufficient for this purpose and must be used together with strong access control to the actual

content of data : This aspect is also studied in the research team [13].

6. CONCLUSION AND FUTURE WORKS

We have presented in this article a dynamic replica management and selection mechanism :

Selection of the best replica to answer a user request is done using multiple criteria and is

personalized for each class of replicas (even for each replica if needed). The management of a

replica among the set of proxy-caches takes into account the usage of this replica by the users,

as well as the wills of the owner of the original data : Replicas can be duplicated, can be

deleted, can migrate from one proxy-cache to another. Algorithms have been proposed and

have demonstrated their efficiency in our experiments on simulated networks of proxy caches.

23/24

Future work includes “real world” experiments, based on traces coming from distributed

proxy-caches, given that we find a way to tackle all running conditions at the sites (see section

4). Another and complementary extension is to apply the infrastructure in a real framework :

We will integrate this work in the context of dynamic management of medical and genetic

data in the framework of a distributed warehouse and data-mining project [13].

REFERENCES

[1] Akamai, www.akamai.com.

[2] S. Buchholz, A. Schill. Adaptation-Aware Web Caching: Caching in the Future

Pervasive Web. In 13th GI/ITG Conference Kommunikation in verteilten Systemen

(KiVS), Leipzig, Germany, 2003.

[3] S. Buchholz, T. Buchholz. Replica Placement in Adaptive Content Distribution Network.

Proc. of the ACM Symposium on Applied Computing (SAC'04), Nicosia, Cyprus,

Mar 14-17, 2004.

[4] C. Ferdean and M. Makpangou. Flexible Contract Substrate for an Adaptable

Replication System. Concurrent Information Processing and Computing Advanced

Research Workshop, July 5-10, 2003

[5] R. Vingralek. Web++: A System For Fast and Reliable Web Service. Proceedings of the

USENIX Annual Technical Conference, Monterey, California, USA, June 6-11, 1999 ;

p171-184.

[6] M. Rabinovich. Issues in Web content replication, Data Engineering Bulletin, Invited

paper , Vol. 21 No. 4. December 1998.

[7] M. Rabinovich, A. Aggarwal. Radar: A scalable architecture for a global web hosting

service. In The 8th Int. World Wide Web Conf, May 1999.

[8] L. Qiu, V. N. Padmanabhan, G. M. Voelker. On the Placement of Web Server Replicas.

Proceedings of IEEE INFOCOM 2001, Anchorage, AK, April 2001.

[9] J. Kleinberg. The Small-World Phenomenon: An Algorithmic Perspective. Proceedings

of the 32nd ACM Symposium on Theory of Computing, 2000.

[10] K. Briggs, S. Tay. Efficient Network Topologies. 2000.

24/24

[11] A. Borodin, R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge

University Press, 1998.

[12] J. Gossa, JM. Pierson, L. Brunie. Replica placement and selection in pervasive

computing. UbiMob'04, Sophia-Antipolis, France. June 1-3, 2004 ; p195-198

[13] L. Seitz, JM Pierson and L. Brunie. Semantic Access Control for Medical Applications

in Grid Environments. ACM Europar'03, Klagenfurt, Austria, august 2003, LNCS

Springer Verlag, LNCS2790, pp374-383.

[14] L. Brunie, M. Miquel, JM Pierson, A. Tchounikine, C. Dhaenens, N. Melab, EG Talbi,

A. Hameurlain, F. Morvan: Information grids: managing and mining semantic data in a

grid infrastructure; open issues and application to geno-medical data. Workshop PADD

(Parallel and Distributed Database) in 14th International Workshop on Database and

Expert Systems Applications (DEXA'03), september 2003, Prague, Czech Republic, pp

509-514.

[15] Kacimi M., Chbeir R., Yetongnon K., "DM²P", Information Resources Management

Association conference, IRMA'04, May 23-26, New Orleans Marriot Hotel, 2004, To

appear.

