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ABSTRACT 

We present in this article a multimedia content replica management system, able to satisfy 

users' constraints and preferences, while limiting the load of the servers and the proxy-caches. 

Our goal is to optimize the placement of a limited number of replicas via mechanisms of 

duplication and migration. Our system allows owners to keep control over their multimedia 

contents even with large scale replica dissemination. We developed an advanced model for 

integrating multiple metrics on the execution context to better suit the dynamicity inherent to 

distributed applications. Experiments on simulated networks of proxy-caches validate the 

approach.  

 

1. INTRODUCTION 

An efficient way to improve the performances of distributed multimedia systems has long 

been to use proxies in order to cache the content retrieved from the sources. In this approach, 

data are handled on specialized nodes in the network, where they are kept for a certain amount 

of time. Different mechanisms exist to decide which content is to be kept and for how long 

(data replacement policies range from the usage of the data, their size, their difficulty to be 

obtained, the interest of users in similar content and so on), where to keep it (close to the 

server, close to the client, somewhere in the middle). Some works have investigated the 

benefit of a collaborative decision, but few have been interested by the dynamic placement of 

replicas in the network of proxy-caches.  

The current trend in distributed multimedia systems is to tackle mobile environment 

constraints : contents must be delivered any time, anywhere, and to anyone. This imposes to 

be able to store contents as close as possible to the users. Future distributed multimedia 

systems need new paradigms to be developed: the dynamicity and the unpredictability of 

either the users or the infrastructure must find an efficient solution.  
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Our goal is to ensure within a light infrastructure, the best quality of service for the client, 

while still maintaining a control on the dynamic number of replicas. Given the fact that 

multiple replicas of data may exist on the network, questions like the following arise : which 

one to select to answer a query ? when should we create a new replica ? where shall we create 

it ? where shall we move it with respect to the users' usage ? how to monitor this usage and  

control the replica use ?  

The first problem to answer a query is the selection of one replica, which can be decomposed 

in two parts : which is the best metric for comparing two replicas, and how shall we compute 

it ? While the latter seems easier to tackle and more like a technical problem, the choice of the 

metric is not that simple. It must take into account the content of the data itself and its usage : 

Indeed, when the latency is the first parameter to look after for a small file, the bandwidth will 

be one of the key criteria for a larger file. Many works limit their view on some uniform 

measure and do not handle multiple criteria for their choice.  

The second problem is the placement, the monitoring and the control of the replica. A solution 

consists in copying all or a subset of data at many places in the network (it is the policy 

implemented by Akamaï [1] for instance). The number of replicas is controlled by heavy 

mechanisms and the pertinence of the number of deployed replicas is not addressed : the 

system may copy in excess a piece of data, whereas the cost to obtain it is less than the cost to 

maintain a replica on one site.  Other solutions lead to distribute the content to well-known 

clients, limiting de facto extensibility.  

In mobile environments, none of these solutions adapts well : their responsiveness to the ever 

changing and moving population of potential clients (geographic mobility but also interest 

mobility) is limited, as well is their awareness of the network dynamicity (prediction tools to 

predict the state of the network are rarely used). Moreover, the sensitive contents are often not 

kept in caches, since a piece of data is sensitive whenever its owner wants it to be. A 

mechanism to allow at owner's choice for caching such content (thus controlling the use of the 

replica) must be proposed. 

 

We present in this article a replica management architecture, able to satisfy the client 

constraints and wills, limiting the workloads on the servers and the proxy caches, and that can 

adapt to the ever evolving environment. We propose a distributed algorithm able to 

dynamically keep the replicas close to their usage, based on parameters for measuring and 

aggregating multiple metrics and to manage the life cycle of the replicas. 
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The rest of this article is organized as follows: First, we briefly present the Small world theory 

and discuss the state of the art. Then we study our proposal (for the selection and the 

placement of replicas) before presenting experiments. We discuss pros and cons of the 

proposed algorithms. We finally conclude and open perspectives for this work. 

 

2. STATE OF THE ART 

2.1 The Small Worlds theory  

Many studies [9][10] shows that the Internet is made up of "small worlds", i.e. the very 

different users can be gathered in small communities sharing common interest. Furthermore 

these communities often correspond to physical clusters having good internal communications 

and few connections towards other clusters. 

This can be related to local interest and fashion phenomena. Indeed, users from a scientific 

campus will not be interested by the same documents as those from literature one. Another 

example is the shifted release of a U.S. movie in France: the French will be interested in its 

trailer then the Americans have already forgotten it. Moreover an album from a small local 

group will get a stronger interest within its area of origin than elsewhere.  

According to [9], the small world phenomenon opens great algorithmic perspectives in 

networking and distributed systems. We decide to support it in the following approach with 

the observation that contents are not as much useful anywhere and anytime, so we could 

optimize their placement. 

 

2.2 Managements of replicas  

Positioning content replicas on network is a key factor in data management. A good strategy 

allows a good customer QoS, while limiting the resource load.  A contrario, an ineffective 

management can be catastrophic when the volume of contents or users scales up. 

[2][3] describe replica positioning methods in pervasive environment to optimize inner 

mechanisms, like adaptation path, but do not consider users needs. 

[5][7] deal with the optimization of replica selection to answer a user request, but do not 

integrate replica placement.  

Works [6][8] study the server replicas placement, but not data placement over the servers.  

We did not find any work handling the optimization of data placement for customers’ requests 

in pervasive environment, probably because this problem is quite new, emerging with mobile 
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data processing. And because systematic management was sufficient for traditional cabled 

network of computers with great communication and storing capacities.  

The existing strategies for collaborative systems either leave the replication free for non 

sensitive contents, or prohibit it to keep a total control over the sensitive ones.  

We are convinced that the key factors in mobile computing are flexibility and dynamicity.  

Those are covered and synthesized in a work in progress [4]. 

While a majority of works are based either on more or less elaborated but static criteria: 

kilometric distances, quantity of hops, bandwidth… or on dynamic ones like network state… 

They do not consider replica nature and use context, what we call flexibility. Authors start 

from the observation that it is impossible to select an a priori sure uniform criterion for 

effective replicas management.  

The concept of contract makes it possible to define the relevant criteria for a certain replica 

management and to negotiate its replication on proxy-caches.  

 

 

3. FLEXIBLE AND DYNAMIC PLACEMENT OF REPLICAS  

In this paper, we study the problem of the replicas placement over a network of proxy-caches. 

Our goals are to optimize the network use, to allow keeping a good control on the replicas and 

to ensure a good user Quality of Service. Our priority is to deal with a great dynamicity of 

users, network and contents. The work presented here follows a position paper [12]. 

 

3.1 Assumptions  

We consider that a logical network of proxy-caches exists (for instance [15]). This represents 

the middleware allowing nodes to know their direct neighbours, share messages or files and 

store replicas. We will largely support above this middleware, assuming that it is rather open 

to allow our work to run. 

We mask end-users of data behind their proper mandatory proxy, which forward their 

requests. 

We call replica a copy of a content and request an end-user request for these contents.  

 

We consider moreover than this network is working according to the small worlds theory. 
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3.2 Approach 

The proxy-caches have only local partial information on the topology and the network state. 

We deal with a very strong dynamicity and a constant need for readjustment within a 

framework of unpredictability use. Moreover it is impossible to consider one uniform 

criterion.  

We believe that few well managed replicas are more effective than a lot not easily 

controllable. By obtaining competitive results in term of user QoS with a limited quantity of 

replicas, we will be able to allow an inexpensive advanced management: to know where all 

the replicas are, which their uses are, to update them, to easily maintain their consistency and 

safety, while allowing a real load balancing. 

Our approach is based on replicas which are able to know where to position, when to 

reproduce or commit suicide and to adapt to new needs thanks to simple interactions with 

their direct environment. 

 

3.3  The replica (re)placement problem and the K-server online algorithm 

3.3.1 Original centralized algorithm – the DC-Tree (DoubleCoverture-Tree)   

Our replica placement and selection strategy is derived from the on-line approximation 

algorithm described in [16]. It presents a solution for the k-servers problem, which is 

formalized as follow: 

Let k be the number of mobile servers over a N nodes tree. Requests appear successively 

anywhere on this tree. A request is served when one of the servers had move up to its 

position. The total cost of the solution is the sum of the distances covered by the individual 

servers.  

The DC-Tree algorithm controls the k servers positions in order to answer in a competitive 

time without knowing the request sequence in advance. This algorithm is depicted as follows: 

"At each time, all the servers neighbouring the request are moving in a constant speed toward 

the request" [11]  

The main idea is that requests influence the positions of all its surrounding servers, and not 

only the one selected to answer. 

 

Request neighbourhood is defined as the first met servers while following the tree starting 

from the request.   
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When answering a request, while the replicas are moving, a replica may overtake another one. 

This latter is then excluded from the request neighbourhood and must stop moving. Thus, all 

replicas will not cover the same distance. 

 

 
Figure 1: Response to a Request 

 
On the figure 1, to serve the request, each server in the request neighbourhood will move at constant 

and equal speed towards the request.  

Initial step: S1 is located behind S2 on the way towards the request, it is thus out of neighbourhood 

and will not move. S2 and S3 move towards the request (m1).  

End of move 1: S3 passes in front of S2 because of its movement. S2 is then excluded from the 

neighbourhood and must be stopped at S2’. 

S3 will be able to continue (m2) towards the request position.  

 

This method has been proved (N-1)k-competitive. This means that its solution in the worst 

case is (N-1)k heavier than the optimal one (the optimal could be found with advance 

knowledge of the request sequence). Fortunately, it works much better in the general case.   

Actually, the Small Worlds theory ensures very competitive results in real situation, since the 

request sequence is not random, but rather presents focuses in different spots.  

 

3.3.2 Adapted reformulation for replica placement.  

We can formalize our problem as follows:  

Let consider k replicas of the same content on a proxy-caches network. We want to optimize 

dynamically their position so as to minimize the total distance between these replicas and the 

whole requests.  

S2

S1 

S3

S2’ S3’ 

S
S’

Initial Server Position 
Final Position Server 
Server movement  

Request 

m1 

m1 

m2 
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The DC-Tree is well adapted to our problem thanks to its efficiency when confronted to 

dynamicity and unpredictability. Thus we reformulate the original algorithm as: "At each 

time, all the replicas neighbouring the request are moving in a constant speed toward the 

request". 

In the original algorithm, the servers move to the request to serve it. In our adaptation, a 

replica do not move effectively to the proxy-cache requesting it. Selected replica to serve a 

request is simply the nearest. 

 

3.3.3 Adaptation to distributed environment: Distribution and Centralization  

The original algorithm works in an entirely centralized environment. Complete topology 

(distances between node, positions of replicas and requests…) is known and used for each 

decision. Moreover this topology is static. 

In network context, one node knows only its local inter-connexion graph and must take 

decision independently. Dynamicity and flexibility due to instability of network state and 

usage disparity must also be addressed correctly. 

Our architecture is divided in two distinct parts: a completely distributed autonomous one and 

an optional centralized one.  

The distributed part concerns the vital functionalities, therefore the adaptation of the 

algorithm described above. These functionalities concerns the evaluation of network state and 

replica placement/selection. Each proxy-cache interacts autonomously with others : Thus it 

benefits from classical Peer to Peer properties and remains flexible, adaptive, robust and 

scalable.  

The centralized part relates to the monitoring servers. They support two independent 

functions: first they ensure the control of replicas through duplication/suicide authorisation; 

second they gather information on replicas life cycle through usage monitoring. The 

monitoring servers are administrated by each contents owner according to their needs. 

Actually, these functionalities levels are independently configurable. For example an owner 

could allow duplication and record each access. 

 

3.4 Realization: implementation of the distributed part  

In the original algorithm, servers "move at constant speed" on the network. This concept of 

"constant speed", understood in the algorithm like a Euclidean speed, is not at all transposable 

to network context. Moreover, in the original algorithm, replicas have to stop in the middle of 
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connections between two nodes, which once more is unrealizable. From the example of figure 

1, difficulties are to detect that S1 is out of neighbourhood and to represent the fact that S2 

"stops" in the middle of the connection.  

 

We transpose the concept of "constant speed" towards the concept of "distance"1, which keeps 

sense on network. We virtualize movement according to these distances.  We will see how we 

materialize distances in the section 3.5.  

 

We separate replicas movement in two distinct functions:  

¾ Updating virtual positions – attraction vector updating 

¾ Concretization of these positions – attraction vectors maintenance.  

 

3.4.1 Updating Virtual positions – attraction vector updating 

Each proxy-cache maintains a virtual position of each of its managed replicas, according to its 

local knowledge of topology. We call “link” a physical link between two neighbour proxy-

caches. We call “attraction” the value of the distance to the virtual position towards a 

particular link. We call “attraction vector” of a particular replica the vector containing the 

value of attraction for each link of a proxy-cache, plus the local attraction. This vector 

represents the virtual position of the replica. Initially it is null, then it evolves in time 

according to requests positions. An attraction towards a link is increased when the replica is 

requested on this link. The added value corresponds to the covered distance envisaged in the 

original algorithm, multiplied by a parametric factor DISTANCE2ATTRACTION.  

 

 
Figure 2 : example of attraction variation due to request trigger 

                                                 
1 Note here that "distance" might be understood in an intuitive way, like remoteness for instance, and not as a mathematical 

metric distance (our "distance" lacks properties of metric distance like triangular inequality and symmetry). 
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The example of figure 2 shows attraction variation and virtual position, according to fig 1 instance. 

R1 is out of neighbourhood, so it will not have any added attraction.  

R2 having to virtually move distance d1, this one will be added to its attraction towards the 

corresponding link. 

R3 will have an added attraction of the total distance d1+d2.  

 

 
Figure 3 : Example of attraction vectors at a given time with two Interested Small Worlds 

 

We call Interested Small World (ISW), a physical cluster whose actors are currently interested 

by the replicated content. 

 

 

For Proxy-Cache A and replica R, one notes:  

¾ a strong  attraction  towards itself, since it contains ISW1 

¾ a strong  attraction  towards link 1, leading to ISW2 

¾ a light attraction  towards link 3, leading to non represented ISWs   

¾ no attraction towards link 2, leading to no user  

 

 

For the Proxy-Cache B and replica R, one notes:  

¾ a strong  attraction  towards the link 1', leading to ISW2 

¾ a light  attraction  towards the links 2' and 3' leading to other ISW  

¾ no local  attraction 

 

 

In order to update this attraction vectors, we describe an inter proxy-cache protocol. 
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Inter proxy-cache NCasting protocol.  

This protocol allows maintaining the state of the attraction vectors. We call this mechanism 

NCasting (for NeighbourCasting). 

 

On Reception of NCasting(Replica,  ReceivedDistance) by the proxy-cache PCre  from PCor 

 

If Replica owned by PCre  

 add ReceivedDistance for the link to PCor to Replica attraction vector  

Else 

 let PCpp be the nearest proxy-cache owning Replica   

 send NCasting(Replica, ReceivedDistance) on the driving link to PCpp  

 send NCasting(Replica, (PCre-PCpp)Distance) to all neighbours except of PCpp  and PCor 

Figure 5 : pseudo code of NCasting protocol 

 

When a proxy-cache receives an end-user request, it redirects it towards the nearest replica. 

Then it initialize update of different concerned attraction vectors with a simple flooding of 

NCasting(Replica,  distance to nearest Replica). 

 

 
Figure 6 : Example of the behaviour of the protocol 

 
� init: F requires contents R, the distance to the nearest replica of R (R3) is D1+D2.  

¾ 1: flood NCasting(R, d1+d2) starting from F   

� D receives NCasting(R, d1+d2) and doesn’t own the replica, so it sends:  

¾ 2: NCasting(R, d1+d2) towards E, which owns the nearest replica.  

¾ 2': NCasting(R, d1) towards B, D1 being the distance to the nearest replica  

� E receives NCasting(R, d1+d2) and owns R:  

¾ it increments the attraction vector towards D by d1+d2  

� B receives NCasting(R, d1) and own R:  

R2

Fig4: Protocol behaviour 
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¾ it adds e1 towards D to its attraction vector  

 

Communication complexity of the protocol in terms of message quantity 

Let consider a tree of N nodes.  

The worst case occurs when replicas are positioned on each leave of the tree and requests are 

on any other node. So, the request’s neighbourhood is the complete tree. NCasting messages 

will be sent to all nodes. Which means a complexity of O(N). 

Actually the request’s neighbourhoods are often less than the complete graph because of the 

restraint number of replica. Moreover in small world context, as replicas move towards the 

requests, neighbourhoods are progressively closing, and then message complexity is 

progressively reducing. 

Moreover, if we dispose of a good replica indexing (allowed by a powerful middleware), we 

can limit the number of messages by contacting interested proxy-cache directly by multicast.  

Another optimization is to accumulate a certain number of NCastings for a same replica 

without triggering the rest of the system, and then send one only NCasting with the sum of 

accumulated distances. 

 

This protocol can also work on any graph by adding loop control.  

 

3.4.2 Concretizations of virtual positions – attraction vectors maintenance.  

We call "concretization" the materialization of replicas virtual positions. It triggers the 

operations of migration, duplication or suicide.  

The concretization is performed during the attraction vectors maintenance. This operation is 

regularly run on each proxy-cache for each of its stored replica every time step defined by 

MAINTAINANCE_TIMESTEP. 

 

Migration 

For migration, concretization happens when attraction vector exceeds distance to the linked 

proxy-cache. 
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Figure 7 : Example of Concretization situation 

 

On figure 7, one can see that the attraction of R towards ISW2 exceeds the distance to ISW2, 

so the concretization will migrate R to ISW2.  

 

Duplication 

The original algorithm drives a fixed number of servers. 

With flexibility and dynamicity needs, we have wanted the number of replicas can evolve 

automatically, while remaining under supervisor control.  

 

Our architecture places the duplications/suicide authorization service on the monitoring 

servers. Those are centralized and administered by each replicas owner. These last select the 

monitoring level for its own replicas trough a metadata DUPLICATION_AUTHORISATION 

which stipulates explicitly if duplication is authorized/prohibited/controlled. In case of 

controlled duplication, the monitoring server knows the exact quantity of replicas, but the 

duplication is impossible in case of breakdown. 

 

 

Actually, the attraction vector represents the directional popularity of replica. Thus many 

significant values mean that the replica is useful in the many corresponding directions. 

 

� If   (DUPLICATION_AUTHORISATION=authorized) OR  

(DUPLICATION_AUTHORISATION=controlled AND authorization is delivered) 

¾ The replica is duplicated on the neighbour proxy-caches indicated by the attraction.  

� If   (DUPLICATION_AUTHORISATION=prohibited ) OR  

(DUPLICATION_AUTHORISATION=controlled AND no authorization is delivered) 

Concretization 

R 

Attraction per link 
Migration of R 

ISW2

R 

Concretization
The attraction toward ISW2
exceeds the distance to ISW2 
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¾ The replica cannot be copied and tries to migrate (which don’t change the number of 

replicas) to find a better position in function of the attraction. 

 

Suppression 

We deal with episodically isolated request out of interested small world, which could be 

considered as noise. Moreover we must slowly forget past demands in order to consider new 

ones. So, we need to reduce the attraction values with time.  

During the maintenance operation, we decrement the attraction vector values according to a 

parameter ATTRACTION_DEGRADATION.  

Replicas must be deleted when its attraction vector remains null for a parametric period 

TIMETOSUICIDE, which means it keeps useless for this period. 

Maintenance mechanism 

This algorithm is regularly run by the proxy-caches for each of its replicas. It decides 

duplications/migrations toward attractive link and suicide of useless replicas. 

For a given replica R, let: 

 V its attraction vector;   

 L the list of links which attraction exceeds the distance to linked proxy-cache,  

  sorted by descending order of attraction; 

 NDA the amount of authorized duplications, case of DUPLICATION_AUTHORISATION  

  if authorized:∞; if prohibited:0; if controlled: asked to the monitoring server|0 if unreachable 

 TTS time before suicide  

 

For i = 0 to min(NDA-1, size(L)) 

If L[i]!=self  

  Duplicate R towards L[i]   

  Update the attraction vector to 0 for L[i]  

If L[NDA ]!=self  

 Migrate R towards L[NDA]  

 

Update V: V=V-ATTRACTION_DEGRADATION  

If V==null  

 TTS=TTS-MAINTAINANCE_TIMESTEP 

Else reset TTS : TTS=TIMETOSUICIDE 

If TTS==0  

 Delete R  

Figure 8 : pseudo code of maintenance algorithm 
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3.5 Metrics management 

As seen before, our algorithms rely on distance computation on network. Actually, attraction 

has the same nature as distances between two nodes. 

Unfortunately, distances computation over the network is not trivial and the context 

constraints imply that we cannot choose one uniform metric, such as the latency or the 

kilometric distance. 

So, we propose to use an advanced metric model in order to ensure a flexible and dynamic 

distance computation. 

 

3.5.1 Metric Modelling 

A metric, M, can be either dynamic, when associated to the network state, or static when 

related to resources capacities. Dynamic metrics need to be evaluated in real time, whereas 

static ones are declared. 

The value of the individual computation of a metric Mi is noted Measurei.  

The relevance of a metric is strongly related to the replica characteristics and its use. This 

relevance is modelled by a coefficient α, between 0 and 1, defined for each metric Mi and 

each class of replica R. We will see example of coefficients in section 3.5.5. 

 

3.5.2 Temporal aggregation  

We consider small variability of network, like ephemera breakdown, as noise. Moreover 

certain metrics are expensive to measure, so we want to avoid remaking all measurements for 

each response.  

So, we aggregate the measurements according to time. This aggregation is done either by 

sampling over a relative period (X last minutes), or by sampling over static absolute periods 

(hour/day/…), which can prove relatively heavy, but rather close to the customers QoS 

constraints. 

 

3.5.3 Node to node route distances computation.  

This computation is made by a simple weighted average of normalized measurements of all 

metrics. 

In order to incorporate metrics of different nature (for example a latency in second and a 

distance in kilometre), normalization functions are used. They are declared together with 
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associated metrics. These normalization functions stand from metric measurement space 

towards R [0..1]. 

 

( )( )iMeasurei
replica
i

replica
route fnAverageMeasure ×= α , where 

 
replica
routeMeasure  is the distance of route for replica, between 0 and 1 

iMeasure  is the temporal aggregation of metric i on route  

ifn   is the normalization function for metric i  
replica
iα   is the weight of metric i according to the class of replica.  

 

We can evaluate and compare network distances in a flexible way whatever the number of 

aggregated metrics is. 

The beauty of this approach is that final customers will consider overloaded proxy-caches 

farthest than underused ones. As the customers are redirected to the “nearest replica”, we 

ensure final customers QoS while allowing real load balancing, because the users will more 

requisition underused proxy-caches than overloaded ones. 

 

3.5.4 Metrics Declaration  

We want to remain as open as possible. So, we allow content providers to integrate new 

metrics. A metric is described by four characteristics:  

¾ Its name  

¾ Its individual measurement tool (like “ping”) 

¾ Its temporal aggregation function  

¾ Its normalization function 

 

This description largely depends on the underlying middleware. We will not describe it more 

in detail. Nevertheless, we initially identify the metrics which appear a priori adequate. 
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On a route  

 Dynamic  Static  

latency (RTT)   

available band-width  ideal band-width (theoretical)  

 

On a resource (Proxy-Cache)  

 Dynamic  Static 

system load (in term of CPU)  system  capacity  

storage load  storage capacity.  

host availability time ratio  

Figure 10 : example of adequate metrics 

 

3.5.5 Choice of weighting   

The choice of metrics weights according to replica nature occupies a significant place in the 

effectiveness of our system. First we declare basic weightings related to replica 

characteristics. For example, a small file will strongly weight latency, system load and 

availability ratio in order to privilege reactive hosts. A contrario, a heavy video will weight 

available band-width, load and capacity storage, in order to avoid overloads. These two 

different files categories correspond to two different replicas classes describing these needs. 

Thereafter, each content owner will refine theses basic weightings according to its specific 

needs.  

 

3.5.6 Replica Classes 

We set up a hierarchical system of replica classes.  

A replica class maps replica, according to its characteristics called intrinsic metadata, with a 

set of parameters useful to its management, called exploitation metadata.  

These classes are derivable to allow refining the choices by describing more and more 

precisely the weights to be used. To find the membership class of a replica, we simply have to 

descend this hierarchy.  
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 Intrinsic Metadata  

 

 Description  

Name  The name of the cached file  

Type  Its type (extension)  

Size  Its size in byte  

Date  Its date of last update  

Owner  Its initial owner  

 

 Exploitation Metadata 

 

 Description  

α 0… α 1  set of weight 

Temporal aggregation   absolute | relative  

Monitoring server IP IP of the server controlling the replica use 

Duplication  authorization  False | True | Controlled 

Times before suppression  Time without attraction variation before suppression 

Figure 11 : Description of replicas metadata 

 

The creation of a new class is announced by flooding all the proxy-caches in order to keep 

consistency. This operation should be only specific and carried out with the objective of 

managing a great amount of replicas. It should not thus involve network overload.  

 

These classes are defined in the portable understandable XML format. 

The Figure 12 shows an example of intrinsic metadata for a given replica identified by 

re17845. 

 

< intrinsic_metadata replica_id = "re17845" >  

 < name > alizee  – ta meilleure amie.mpg </name >  

< type > mpg </ type >  

 < size > 17845746 </size >  

 < date > 2004/03/21 17:32:47 </date >  

 < owner > universal company </owner >  

 < monitoring_server_ip > monitoring.universal.com </monitoring_server_ip >  

</intrinsic_metadata >  

Figure 12 : Example of intrinsic metadata to contents 

 



18/24 

< replica_class id="rcid147825" parent_id="recl45621" >  

 < intrinsic_metadata_condition >  

  < name > * </name >  

  < type > mpg|avi </ type >  

  < size > * </size >  

  < date >   

   < min > 2000/01/01 00:00:00 </min >  

  </date >  

  < owner > universal company </owner >  

 </intrinsic_metadata_condition >  

 < exploitation_metadata >  

  < weighting >  

   < latency > 1 </latency >  

   < available_bandwith > 8 </available_bandwith >  

   < ideal_bandwith > 7 </ideal_bandwith >  

   < system_load > 3 </system_load >  

   < system_capacity > 2 </system_capacity >  

   < disk_load > 5 </disk_load >  

   < disk_capacity > 4 </disk_capacity >  

   < host_availability > 9 </host_availability >  

  </weighting >  

  < temporal_aggregation> relative </temporal_aggregation >  

  < duplication_authorization > controlled </duplication_authorization >  

  < suicide_delay > 1 day </suicide_delay >  

  < exploitation_vocation > QoS Customer </exploitation_vocation >  

 </exploitation_metadata >  

</replica_class>  

Figure 13 : Example of a replica class 

 

The figure 13 gives an example of the definition of a replica class (this class - rcid147825- is 

a sub-class of  recl45621, not described here).  

One can note on the examples of figure 2 and 3, that replica re17845 may belong to the class 

recl45621 (provided that the hierarchy leads to this class), since the replica intrinsic metadata 

are included in the intrinsic metadata conditions of the class. Thus, we can obtain the 

exploitation metadata of a replica from its intrinsic metadata. 
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4. VALIDATION AND EXPERIMENTATION  

We have implemented a simulator of NCasting and concretization mechanisms.  

This simulator generates a random interconnection tree.  

The nodes represent the proxy-caches. The simulator emulates hot spots and fashion 

phenomena :  End-user’s requests occur following a Gaussian distribution rate.  

The edges represent the network links and are weighted by random numbers, between 0 and 1, 

representing the distances.  

 

We first illustrate the behaviour of our algorithms on a simple example, with only 4 proxy-

caches and 100 time-steps. The interconnection graph and the distances between proxy-caches 

(PC*) are given on figure 14.  

 

 

 

 

 

 

Figure 14 : Interconnection graph 

 

The figure 15 indicates the temporal distribution of requests per proxy-cache: Initially, a peak 

of requests occurs on PC0; then a weaker peak appears on PC1; finally PC2 and PC3 receive 

approximately the same number of requests; PC3 lasts a bit longer.  
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Figure 15 : Query distribution over time 

 

Given this distribution, with one replica R (initially on PC1) and duplication prohibited, the 

behaviour of the system is:   
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t=6:  migration towards PC0, single site of requests at this time 

t=27:  migration towards PC1, single site of requests at this time 

t=50:  not being able to duplicate itself, R is attracted both by the simultaneous requests from 

PC2 and PC3; R moves to a balanced position in PC0  

t=78:  balance is broken since the number of requests on PC2 is decreasing. R thus moves to PC3 

which remains an active applicant. 

 

With the same request distribution, but with authorized duplication, the behaviour becomes :   

 
Differences arise when two sites start requesting the replica R.  

t=63:  R is duplicated on the two sites of requests PC2 and PC3  

t=92:  PC2 stops emitting requests : its replica is deleted. 

 

The previous example shows that the algorithm is working as expected.  

Then we were interested in the evaluation of the average distance between the set of requests 

and the nearest replicas, as a function of the authorized replica number. This average distance 

indicates the customers Quality of Service. 

We configured the different parameters to obtain  : 

• a very reactive behaviour, i.e. with a high DISTANCE2ATTRACTION value (so each 

request is important); 

• and a low memory capacity, i.e. with a high ATTRACTION_DEGRADATION value 

(so requests are soon forgotten).  

We simulated 100, 300 and 1000 nodes, with 1 to infinite authorized duplications. Each 

condition was tested on 100 different generated graphs. 

 

PC3 

PC2 

PC0 PC1

R t=92 

R

PC3 

PC2 

PC0 PC1 

R

t=63 
R

PC3 

PC2 

PC0 PC1

R

t=27 PC3 

PC2 

PC0 PC1 

R

t=6 PC3 

PC2 

PC0 PC1 

R

t=0 

PC3 

PC2 

PC0 PC1

R t=78 PC3 

PC2 

PC0 PC1 

R

t=50 PC3 

PC2 

PC0 PC1

R

t=27 PC3 

PC2 

PC0 PC1 

R

t=6 PC3 

PC2 

PC0 PC1 

R

t=0 



21/24 

average customers QoS
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Figure 16 : average customers QoS in function of the authorized replicas quantity. 

 

The figure 16 displays the results we obtained. The Y-axis represents the average distance 

between a user and the serving replica. A distance of 1 means that the replica is on average 2 

hops from the user in the interconnection tree.  

The average diameter of the interconnection trees: 11 for 100 nodes; 13 for 300 nodes; 17 for 

1000. 

The graph shows that with an average distance converging to [1..1.5], the system ensures a 

good response time. This QoS is obtained with a limited number of replicas: With 100 nodes, 

optimal results are obtained with only 9 replicas; 11 replicas are needed for 1000 node tree. 

Moreover, the small difference between results with 100 and 1000 nodes indicates that our 

solution is scalable in terms of number of replicas. This allows implementing resource 

consuming mechanisms like real time monitoring or replica indexation.  

 

The experiment described in this section show the efficiency of our solution in the context of 

the assumptions described in section 3.1. We are implementing series of experiments using 

traces coming from real proxy-caches and network monitoring tools. 

 

5. DISCUSSION 

Distributed multimedia systems take advantages of replica management systems where the 

type of data is used to better fit both the needs of users and the cost of management. Our 
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proposal allows to manage replicas differently with respect to their class. It is obvious that 

this information improves the global response time of the system, since the management 

becomes adapted or personalized for each replica. 

The presented methodology is particularly well adapted to Small Worlds where requests on 

data are expressed by communities of interest, geographically close (in network terms). 

Indeed, replicas of data appropriately located serve a set of users. A completely random 

requests pattern without replica duplication could lead to a non effective management of 

replicas : attractions to opposite directions may stick replicas on their creation sites, and the 

cost of their management would overcome the benefit of an optimal placement of the replicas. 

As seen in section 3, some parameters impact the behaviour of the algorithm : Finding 

optimal ones for a given context (network topology, number of users, properties of data to 

handle –size, privacy, time to live...-, ...) may be a difficult and long process. This makes the 

full deployment of the infrastructure limited in the general case, even if a basic configuration 

may help : The task to configure optimal parameters should be limited to well known 

situations when specific needs have to be taken into account (either bandwidth, latency or disk 

usage limitation, privacy, ...).   

Management of sensitive data in a community, when users want to precisely control their 

dissemination, obtains a great benefit using the framework. For medical data, typically, MRI 

brain images acquired in an hospital interest mainly some practicians in this hospital, as well 

as colleagues or researchers at specialized centres (cancerologists, neurologists, psychologists, 

…), but have no intensive use in a maternity or a stomatology centre. These image replicas 

must be controlled and monitored carefully. The solution presented in this article is not self 

sufficient for this purpose and must be used together with strong access control to the actual 

content of data : This aspect is also studied in the research team [13]. 

 

6. CONCLUSION AND FUTURE WORKS 

We have presented in this article a dynamic replica management and selection mechanism : 

Selection of the best replica to answer a user request is done using multiple criteria and is 

personalized for each class of replicas (even for each replica if needed). The management of a  

replica among the set of proxy-caches takes into account the usage of this replica by the users, 

as well as the wills of the owner of the original data : Replicas can be duplicated, can be 

deleted, can migrate from one proxy-cache to another. Algorithms have been proposed and 

have demonstrated their efficiency in our experiments on simulated networks of proxy caches.  
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Future work includes “real world” experiments, based on traces coming from distributed 

proxy-caches, given that we find a way to tackle all running conditions at the sites (see section 

4). Another and complementary extension is to apply the infrastructure in a real framework : 

We will integrate this work in the context of dynamic management of medical and genetic 

data in the framework of a distributed warehouse and data-mining project [13]. 
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