
Cascade Classifier : Design and Application to Digit Recognition

Jean Duong, Hubert Emptoz
Laboratoire d’InfoRmatique en Images et Systèmes d’information (LIRIS)

Institut National des Sciences Appliquées (INSA) de Lyon
20 avenue Albert Einstein, 69621 Villeurbanne CEDEX (France)

jean.duong@liris.cnrs.fr, hubert.emptoz@liris.cnrs.fr

Abstract

The focus of this paper is on machine learning. More
specifically, a classifier combination is proposed. We name
it “cascade classifier”. Conceptually, this system is based
on confusion analysis and local re-training mechanism. We
describe its architecture. Experiments with handwritten
digit images of the MNIST (“Modified NIST”) database are
presented.

1. Introduction

Many computer applications often need classification
tools to process large amounts of data. Advances in pat-
tern recognition field result in different kinds of classifiers
to solve various problems e.g. neural networks, fuzzy sys-
tems, bayesian networks, makovian processes, support vec-
tor machines, etc. The higher the accuracy values are ex-
pected, the more difficult it becomes to make an a priori
choice between all these possible methods. Even with a
given architecture, more or less numerous parameters are
to be set for the chosen “machine”. This task can become
tedious for a non expert user.

In this paper, we propose a classifier combination mainly
based on data analysis techniques. Statistics paradigm may
be considered as highly reliable since a rigorous mathema-
tical background exists. Moreover, it is widely used in var-
ious research fields from biology to economics and many
other ones.

Our presentation is organized as following. In section 2,
we describe a combination called cascade classifier. Some
bibliographical remarks are issued in section 3. Experi-
ments involving a handwritten digit database are proposed
in section 4, leading to conclusion in section 5.

2. Cascade classifier

2.1 Data

Let X be a finite set of d dimension pattern vectors. In
other words, X ⊆ IRd. We assume that X is distributed
between k classes.

X =

k−1
⋃

i=0

Xi

For our purpose, we split X in three parts: a learning set
L, a validation set V , and a test set T . Each of the k classes
should be represented in each of these subsets.

We also consider two real numbers TR ∈ [0; 1] and TC ∈
[0; 1] that will be defined more precisely while designing
our classifier.

2.2 Learning procedure

To begin, we perform a Principal Component Analysis
(PCA) over the entire learning set. This kind of trans-
formation is a classical tool in statistical data processing
[2, 9, 3, 1]. The purpose is to find a new representation
in which each pattern is as far as possible from the others.
This space change is said to be a data decorrelation. It is
conducted as following.

• The average learning pattern L̄ is computed over L.

• Learning patterns are centered. That is, they are trans-
lated by −L̄.

• Covariance matrix for centered learning patterns is
computed.

• Eigenvectors of covariance matrix are retrieved to form
a new base in IRd.

• Centered learning patterns are projected on this base.

At this point, a nearest neighbour classifier is implicitely
built by saving L̄, the eigenbase and transformed learning
patterns.

Then, validation patterns are translated by −L̄ and ex-
pressed in the eigenbase. Next task is to classify them us-
ing nearest neighbour procedure with euclidian distance and
transformed learning patterns as references. Let Conf (V)
be the confusion matrix related to this classification. We
normalize it column by column.

We examine each column j in Conf (V) (with j ∈
[[0..k − 1]]). Value in cell (j, j) smaller than TR means that
less than 100× TR% of patterns labelled as j really belong
to class j. Thus, TR is the minimal required accuracy for
each class during validation step.

Let j be a class with validation accuracy smaller than
threshold TR. We retrieve indexes i ∈ [[0..k − 1]] \ {j}
such as Conf(i, j) > TC . Threshold TC is the maximal
acceptable confusion in validation step. We name Ij the
set of i indexes found in that way. Classes with label in Ij

are said to be adherent to j.
If Ij 6= ∅, we define the following new collections.

LIj
=

⋃

i∈Ij∪{j}

Xi ∩ L and VIj
=

⋃

i∈Ij∪{j}

Xi ∩ V

where patterns are from original sets (i.e. before transla-
tion and base change).

For each non-trivial index set Ij , new PCA process is
performed using LIj

and VIj
for learning and validation

respectively. This is equivalent to consider a sub-problem
involving only classes from Ij ∪ {j}. Let us write Nj =
Ij ∪ {j}

If χ is the classifier built using LIj
, we define its rank

as rχ = |Ij |+1 = |Nj | and χ is the basic classifier related
to Nj .

Prediction over VIj
is performed for χ and clusters of

adherent classes are determined. These will lead to design
new basic classifier.

2.3 Prediction

Prediction may be conducted in two different ways de-
pending of the size of pattern set resulting in two different
procedures.

Let X ∈ T be a pattern to label. We perform a clas-
sification via the maximum rank basic classifier (the first
one built during learning step) and consider j, the predicted
label. If Nj = ∅, the process ends. Otherwise, a new pre-
diction involving basic classifier trained over classes of Nj

is done.
The proposed classification procedure for a single test

pattern does not admit any alternative. We now discuss the
general case, where many vectors have to be labelled.

In intuitive approach, each pattern is processed sepa-
rately using the precedent algorithm. This is a correct but
(potentially) very time consuming way. Indeed, some basic
classifiers may be loaded many times: transformed refer-
ence patterns, corresponding labels, average pattern, eigen-
base have to be recalled, then discarded. To avoid such com-
putation overload, we suggest a procedure based on a loop
over isolated classifiers rather than over separate patterns.

Learning process has to be slightly adapted. Each basic
classifier receives a special and non-ambiguous label, for
instance, its order of construction during learning. Modifi-
cations for labelling algorithm are quite more subtle: each
test pattern gets two temporary labels. One indicates the
class prediction and the other refers to a classifier. At the
begining of the process, all reference labels are set to point
at the maximum rank classifier. Prediction labels are set to
some default value.

We choose χ, the most frequently referred classifier with
greatest rank (if there are many possible candidates, we
choose the one with the smallest index). χ is used to per-
form prediction over all patterns that point at it. Such pat-
terns are defined as calling patterns for χ and their set will
be written Tχ.

Class labels are updated for all calling patterns, using
predictions calculated via χ. For a given calling pattern,
if its new class label belongs to an adherent class cluster
regarding χ, then its reference label is updated to point at
corresponding basic classifier. Otherwise, reference label
is set to some absurd value, indicating that no further re-
classification is needed.

Re-labelling is resumed with another frequently referred
classifier until all reference labels are finally set to absurde
value.

3. Remarks

One may quote that our cascade machine is conceptually
close to a hierarchical classifier. When a pattern X is la-
belled as j, a set Nj of indexes indicates classes adherent
to j. Assuming a non void Nj , X is re-classified. In other
words, X is implicitely sorted to a super-class Nj . Thus, the
cascade classifier process X via successive appointments to
super-classes ordered by inclusion. This is typically a top-
down hierarchical classification mechanism which could be
related to decision tree paradigm [3, 1], except that each ap-
pointment is based on a metric analysis. Moreover, super-
classes (i.e. clusters of adherent classes) are automatically
defined during validation steps.

Local re-training and re-labelling mechanism are not to-
tally new concepts. L. Prevost [8] proposed a two level ar-
chitecture: a classifier is trained to separate all classes in
a given problem. After a validation step, pairs of confusing
classes are detected and specifically examined. Our cascade

classifier can be viewed as a generalization of this approach
without a priori knowledge (the number of classes in adher-
ent clusters is free).

A significant part of previous works on classifier combi-
nation is focused in fact on classifier selection [5, 6]. Many
machines (possibly from different kinds, or with different
parameter values) are trained as concurrent experts. One of
them is chosen in prediction step. Thus, several difficulties
arise: designing many classifiers may be time consuming.
Selecting an expert is not a trivial task. One must find ap-
propriate heuristics according to the nature of the consid-
ered problem, the type and the distribution of data in the
representation space, etc. That is, a meta-classifier has to be
produced.

4. Experiments

We ran our classifier on various data sets. We present
some results for the most interesting database: the MNIST
handwritten digit corpus. We considere two kinds of results:
global, or raw accuracy is defined as the ratio of correctly
classified patterns over a test set. The class accuracy is
the average value for accuracies computed in each class of
patterns. This last measure is expected to be less sensitive
to class distribution balance.

4.1 MNIST database

Modified NIST corpus, also called MNIST has been de-
signed by Y. LeCun1 et al. [7]. This database is a collection
of 255 level grayscale handwritten digit images (examples
in Fig. 1). Each sample image is 28 × 28 size.

Figure 1. Examples of handwritten digit im-
ages in MNIST

Actually, MNIST is the union of two subsets from
databases SD-1 and SD-3 proposed by the NIST2 consor-
tium (National Institute of Standards and Technology). SD-
3 was collected among Census Bureau employees, while
SD-1 was collected among high-school students. Hence,
SD-3 is easier to recognize than SD-1. To avoid influence
of database choice for training or test on classifiers perfor-
mances, patterns are mixed in MNIST.

In SD-1, 500 different writers produced 58 527 digits.
Patterns are shuffled. On the opposite, blocks of data from

1http://yann.lecun.com/exdb/mnist/index.html
2http://www.nist.gov/

each writer appeared in sequence in SD-3. Since identities
are available for SD-1, writers have been unscrambled and
the dataset has been splitted in two parts: characters written
by the first 250 writers went into a new training set. The
remaining 250 writers were placed in the new test set. Thus
two sets with nearly 30 000 samples each were built. The
new training set is completed with enough examples from
SD-3, starting at pattern 0, to become a full set of 60 000
training patterns. Similarly, the new test set is completed
with SD-3 examples starting at pattern 35 000 to make a
full set with 60 000 patterns.

In most of the previous works involving MNIST
database, only 10 000 test patterns are used. To make com-
parisons possible, we chose to keep this restriction. We split
training set in two balanced parts for learning and valida-
tion.

4.2 Dimensionnality reduction

To decrease computation load for prediction processes
(during validation steps and separate test procedure), it is
possible to perform a dimensionnality reduction. (Actu-
ally, this is one of the main motivations of PCA!) To achieve
this, we only keep d′ eigenvectors (with d′ < d) while de-
signing a basic classifier. Coordinate transformations will
produce new pattern vectors of size d′, more tractable.

To give an example, only 298 principal components are
needed to express 90% of variance when performing PCA
on the first 30 000 training patterns. In other words, es-
sential part of the information in the training base may be
stored using only half-dimensional representation.

In practice, we set a threshold ν ∈]0; 1] corresponding
to the minimal ratio of variance to be kept for analysis. For
each basic classifier to be designed, eigenvectors extracted
from learning pattern covariance matrix are ordered accord-
ing decreasing eigenvalues. Let vk (resp. Vk) be the k-th
value (resp. vector) arranged in this way. We keep the nν

first eigenvectors to form a base change matrix with

nν = min

n ∈ [[1..d]]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

k=1

vk

d
∑

k=1

vk

≥ ν

In other words, nν is the minimal number of principal
components to be kept to capture 100ν% of learning data
variance. It may vary from a rank to another or from a
dataset to another.

Results for experiments tuning ν value are presented in
Table 1. Minimal required accuracy on validation set for ba-
sic classifiers is chosen to be TR = 0.95, maximal accept-
able confusion ratio for each class is fixed at TC = 0.01.

Table 1. Effect of variance ratio on accuracy
over test patterns. Parameters are set to TR =
0.95 and TC = 0.01.

Learning Validation ν Accuracy (%)
raw class

30 000 30 000 0.80 96.16 96.21
30 000 30 000 0.85 96.35 96.40
30 000 30 000 0.90 96.26 96.32
30 000 30 000 0.95 96.07 96.13
30 000 30 000 1.00 96.13 96.18

In first experiment, we used half of the patterns in train-
ing dataset for learning, and the others for validation. We
chose a variance ratio of ν = 0.8 to decrease computation
load. Accuracy on test set is 96.16%, which is far better
than performances obtained by linear classifiers (results for
experiments using different classifiers are reported in [7]).

Examination of the global confusion matrix (see Table
2) for test patterns leads us to quote some trends. We es-
tablish good recognition for digits of classes zero and one.
Confusion rates are very low (all values under 0.5%). On
the opposite, classes four and nine are very adhering. Sim-
ilar remark may be issued for classes thee and five. These
confusions may be explained by strong morphological sim-
ilarity for handwritten digits (see example in Fig. 2).

Figure 2. Examples of handwritten digit im-
ages in MNIST. Five left (resp. right) images
show distorted “four” (resp. “nine”).

4.3 Effects of thresholds

Two other parameters may potentially influence our cas-
cade classifier’s generalization capacity: thresholds TR and
TC used during validation steps.

To simplify, we chose to focus on TR only. TC is set via
the heuristic relation

TC =
1− TR

k − 1

where k is the number of classes in the global classification
problem.

We realised experiments with different values for TR.
We quote that variations of TR between a wide range from

Table 2. Confusion matrix for ν = 0.8

98
.7

7
0.

10
0.

20
0.

0
0.

0
0.

10
0.

41
0.

10
0.

20
0.

10
0.

0
99

.4
7

0.
26

0.
26

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
77

0.
29

95
.9

3
0.

68
0.

58
0.

0
0.

19
1.

55
0.

0
0.

0
0.

20
0.

10
0.

40
96

.3
4

0.
0

1.
58

0.
0

0.
69

0.
10

0.
59

0.
0

0.
51

0.
0

0.
0

96
.2

3
0.

0
0.

41
0.

20
0.

10
2.

54
0.

22
0.

0
0.

11
2.

47
0.

11
95

.2
9

0.
67

0.
34

0.
67

0.
11

0.
63

0.
42

0.
21

0.
0

0.
42

0.
21

98
.1

2
0.

0
0.

0
0.

0
0.

0
1.

94
0.

78
0.

19
0.

39
0.

0
0.

0
95

.8
2

0.
10

0.
78

0.
41

0.
20

0.
92

2.
87

0.
10

1.
44

0.
72

0.
92

91
.6

8
0.

72
0.

30
0.

40
0.

10
0.

69
2.

38
0.

49
0.

10
1.

09
0.

49
93

.9
5

0 to 0.90 have no effect on accuracy for test set if we chose
ν = 1. Results reported in Table 3 show this phenomenon.
They also give an illustration of overtraining effect when
setting TR to excessive values (TR = 0.95 and TR = 1.0):
constraints over accuracy in validation steps are so strong
that generalisation is penalized.

To confirm our assertions, we tried different value of ν

parameter. Results are reported in Table 4. Class accuracies
are collected and presented as main results. Raw accuracies
are also indicated as secondary indicators in brackets. Once
again, overtraining appears for TR around 0.95.

5 Further work

We proposed a cascade classifier based on confusion ma-
trix analysis [4]. This system has been implemented and ex-
periments show encouraging results. Our tool is still under
development and many improvements are possible.

Source code may be optimized. We were mainly inter-
ested in classifier’s behavior and produced a software to run

Table 3. Set of experiments tuning minimal ac-
ceptable validation accuracy. Variance ration
set to ν = 1

Learning Validation TR Accuracy (%)
raw class

30 000 30 000 0.05 96.13 96.18
30 000 30 000
30 000 30 000 0.90 96.13 96.18
30 000 30 000 0.95 95.66 95.74
30 000 30 000 1.00 94.66 94.73

our experiments, without questioning about the efficiency of
data structures or the optimality of the implemented pro-
cedures. The predicted computational complexity is likely
to be decreased using implementation tricks (look-up tables,
loop optimization, etc.)

Heuristic rules are still to be found for parameter op-
timization. For instance, minimal validation accuracy
threshold may be more precisely determined using consid-
erations on dataset size, number of classes to be separated,
rank of basic classifier (compared to global problem rank),
etc. Introducing more parameters, joint analysis of effects
will be preferred. Analysis of variance (ANOVA) and de-
sign of experiments will help us in such task.

The cascade classifer concept may be reused with other
architectures. We built basic classifiers based on princi-
pal component analysis and nearest neighbour labelling be-
cause of the conceptual simplicity of such choice. Slight
adaptation in our code allows us to introduce n nearest
neighbours labelling (with n ≥ 1) which is expected to be
more precise. Experiments are under progress to confirm it.

Our current basic classifiers are based on PCA and
neighbourhood attraction. In even further perspective, we
plan to replace them by Support Vector Machines (SVM),
based on inter-class margin optimization. Linear SVM will
be tested before considering more complexe classifiers (e.g.
involving kernel functions).

References

[1] J.-M. Bouroche and G. Saporta. L’Analyse des Données. Que
sais-je? Presses Universitaires de France (PUF), Vendôme
(France), February 2002.

[2] J. de Lagarde. Initiation à l’Analyse des Données. Dunod,
Saint-Etienne (France), 1983.

[3] R. Duda, P. Hart, and D. Stork. Pattern Classification. Wiley
Interscience, 2001.

[4] J. Duong, R. Sabourin, and H. Emptoz. Proposition
d’un classificateur en cascade : application à la reconnais-
sance de polices de caractères rares. In Actes du 8

e Col-

Table 4. Set of experiments tuning validation
threshold and variance ratio. Class (resp.
raw) performances on test set are presented
as main (resp. secondary) figures.

ν

0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

T
R

0
.8

0
9
6
.0

8
9
6
.2

0
9
6
.1

7
9
6
.0

4
9
6
.0

9
(9

6
.1

4
)

(9
6
.2

5
)

(9
6
.2

3
)

(9
6
.1

0
)

(9
6
.1

4
)

0
.8

5
q

q
q

q
q

0
.9

0
q

q
q

q
q

0
.9

5
9
5
.7

9
9
5
.7

7
9
5
.8

1
9
5
.6

6
9
5
.6

6
(9

5
.8

6
)

(9
5
.8

4
)

(9
5
.8

9
)

(9
5
.7

4
)

(9
5
.7

4
)

1
.0

0
.

.
.

.
9
4
.6

6
.

.
.

.
(9

4
.7

3
)

loque International Francophone sur l’Ecrit et le Document
(CIFED’2004), pages 231–236, La Rochelle (France), 21-25
June 2004.

[5] G. Giacinto and F. Roli. Automatic design of multiple classi-
fier systems by unsupervised learning. In Proceedings of the
1

st International Workshop on Machine Learning and Data
Mining in Pattern Recognition, September 16-18 1999. Lec-
ture Notes in Artificial Intelligence, vol. 1715, pp. 131-143.

[6] G. Giacinto and F. Roli. Dynamic classifier selection. In
Proceedings of the 1

st International Workshop on Multiple
Classifier Systems, Cagliari (Italy), June 21-23 2000. Lecture
Notes in Computer Science (LNCS), vol. 1857, pp. 177-189.

[7] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[8] L. Prevost, C. Michel-Sendis, L. Oudot, and M. Milgram.
Combining model-based and discriminative classifiers : ap-
plication to handwritten character recognition. In Proceed-
ings of the 7

th International Conference on Document Analy-
sis and Recognition (ICDAR’2003), pages 31–35, Edinburgh
(Scotland, United Kingdom), August 3-6 2003.

[9] G. Saporta. Probabilités, analyse des données et statistique.
Technip, Paris (France), 1990.

