

INTEGRATION OF ACCESS CONTROL
IN INFORMATION SYSTEMS:

FROM ROLE ENGINEERING TO IMPLEMENTATION

Romuald Thion, Stéphane Coulondre
LIRIS / INSA

University of Lyon
20 Av. Albert Einstein

69621 Villeurbanne Cedex, France
Tel: +33 472 43 70 55; fax: +33 472 43 87 13

e-mail: romuald.thion@insa-lyon.fr

ABSTRACT

Pervasive computing and proliferation of smart gadgets
make organizations open their information systems,
especially by extensive use of mobile technology:
information system must be available any-time, any-where.
This cannot be performed reasonably without thorough
access control policies. Such an access control must be able
to deal with user’s profile, time and eventually with other
complex contexts like geographical position.
This paper shows that it is possible to take into account
confidentiality constraints straight into the logical data
model in a homogeneous way, for various aspects treated
independently (user profile, time, geographical position,
etc.). We propose a language called LORAAM which
includes a way to express authorizations at the class level.
We first present the syntactical aspects, then the semantics
of such a language, based on the object-oriented paradigm.

1 INTRODUCTION

Companies and public interest for new technologies keeps
growing, either for mobile use (laptops, Wi-fi, pocket-PC,
GPS, UMTS, Java technology in GSM, etc..) or for
"traditional" use. Information systems now become open
and online, and their security must be guaranteed. These
new technologies lead to the concept of context: a new
constraint to consider in access control to the information
system services. From now on, access control mechanisms
tend towards integration of user profile, time, state of the
computing environment and even geographical position.

In this paper, we show how to take into account general
context data (user roles, spatio-temporal environment, etc.)
in a homogeneous way, straight in the object data model
(and more generally in Information Systems, Objects, Web
Services, etc). Indeed security management, and especially
access control, is often postponed until the end of the
design cycle and is implemented at the end of the process.
The software is therefore often developed without taking
confidentiality constraints into account. We think that
confidentiality must also be present throughout the whole

development cycle. Our proposal provides a logical data
model in which contextual role-based access control is
integrated: we thus provide a support to upstream design
methods [1,2] which rely on it.

Section 2 presents the original Role-Based Access Control
that our proposal uses for the organisation of privileges
within an information system, and surveys previous work
in attempting to integrate the role concept in logical object
data models for security purpose. Section 3 details
syntactical and functional aspects of the LORAAM
language we propose, together with an illustrative example
in the medical area. Section 4 finally concludes the paper
and discusses some perspectives.

2 THE RBAC MODEL

2.1. An Access Control Model

The RBAC Model [3] was defined in the 90’s and has
been extended in many ways since (temporal, geographical
extensions, etc). It was introduced in order to tackle the
weaknesses of DAC (Discretionary Access Control) and
MAC (Mandatory Access Control) models: the former is
difficult to implement whith a large number of users, and
the latter is too rigid for modern applications.

The basic RBAC philosophy is based on the observation
that most of the access permissions are determined by a
person authority or function, inside an organisation. This
defines the central concept of role. The introduction of role
concept in access control policies as an intermediate layer
between subjects and permissions, really facilitates and
simplifies the system administration task. The RBAC
definition of a role is “a job function within the
organization with some semantics regarding the authority
and responsibility conferred on the member of the role”.

Figure 1. The RBAC model [3]

The RBAC model family is based on the identification of a
certain number of roles [4], each of them representing a set
of actions and responsibilities within the system. Thus in
the RBAC model (figure 1):

• No permission is granted directly to the subject (ex:
user, process, object...), permissions are only granted
to roles

• The subjects endorse the roles which are given by the
administrator (it is only possible to specify positive
authorisations, no prohibitions).

• Roles are defined and organised in a hierarchy: a child
role has the permissions granted to his/her parents.

An example of confidentiality policy in a hospital would
be:

• A nurse can only read the patient prescriptions. But
she can write the last care date and time, provided it
takes place during her working time.

• A doctor can only prescribe if he/she is geographically
located in the hospital. He has access to the whole
medical record, but he/she cannot write the last care
date and time.

• A head nurse has read access to prescriptions and cares
history without conditions of time.

Permissions associated to roles allow expressing access
authorisation in a generic way. Therefore we do not
specify that "Dr. Johnson" has access to "Mr. Rabot"
record. Instead we only specify that doctors have write
access to patient records. Note that in this paper we only
take into account the static aspect (i.e. not related to
individuals) of RBAC access control. Thus is is not
possible to specify that only "Dr. Johnson" has access to
"Mr. Rabot" record. The RBAC roles, their hierarchical
organisation and the associated permissions constitute the
organisation confidentiality policy.

2.2. Related work

The object paradigm is a very expressive framework,
largely used. However, implementing object roles is a
difficult task. Indeed, the multiplicity of roles and their
lifecycle (creation, deletion) is incompatible with the hard

constraints of class-based models: object identity, strong
typing, etc. Very few work focused on integrating of
RBAC within logical data models. Therefore,
confidentiality constraints are unfortunately taken into
account at the end of the development process, by mean of
various techniques added on top of the applications.

This problem could be partly solved with multiple
inheritance (figure 2a) in an object programming language.
But each combination of role must lead to create a new
class, which leads to an explosion of the number of
necessary classes. Moreover, their existence is only
motivated by technical reasons and not by a modelling
need. Another solution is to create a structure of "handles"
[5] (figure 2b) which corresponds to the desired multiple-
role instances. The handle references several OIDs, each
of them corresponding to a role played by this instance.
This leads to a referencing problem and involves the use of
message delegation. Moreover, "Jacques" would be only a
"handle", loosing its encapsulation, and therefore not an
object anymore.

A review of role-based object models in the programming
object and database areas can be found in [6,7]. However,
these models are intended mainly to take into account the
evolutive part of the objects during their life, but either
they do not propose in general any access control primitive
or they do not totally respect the standard paradigms of
object programming [8].

Figure 2. Empirical solutions for role implementation

3. THE LORAAM LANGUAGE

In order to tackle the problems of RBAC integration
within object data models, we propose a generic language
LORAAM allowing the expression of RBAC
authorisations and integrating an access control
mechanism. The declarative part of the language is
composed of:

• The body, which relies on C++ syntax (on a purely
illustrative basis, as any class-based language could
have been used: Java, Python, etc.) while adding
access authorisations formulae to methods.

• The header, which defines the roles which are to be
used in the definition of access authorisations.

Object

NurseDoctor Patient

Doctor
Nurse
Patient

Doctor
Nurse

Nurse
Patient

Patient
Doctor

Object

NurseDoctor Patient

oid2oid1 oid3

Handle #1 oid1 oid2 oid3

(a) (b)

3.1. The Header

The header is used to specify:

• Various categories of roles to be taken into account. In
this example we included the categories of [9] which
are adapted to organisations: functional, seniority and
context. These categories, freely chosen by the
developer, form groups of roles. These groups
represent transverse role aspects, which are combined
to form complex roles. It would be possible to add
some other groups such as "ward", (ex: cardiology,
radiology, etc. which remains static), or "classification"
(ex: white, grey, black information according to the
sensitivity of data) which can be used for example to
simulate a MAC access control.

• Hierarchical relations between roles [10]. For example
head << assistant means that the head has (at least) all
the privileges of the assistant. Thus, the conjunction of
these roles with a functional role "doctor" makes it
possible to specify complex roles, for example "head
doctor", who would have more privileges than a
“simple" doctor, but fewer privileges than the manager
(who is also a doctor).

• The various contexts in which the access authorisations
are defined. These contexts can be geographical (by
using the predicate "position") or temporal (with the
predicate "hour"). We suppose that the position of the
user is obtained by reliable mechanisms which are not
in the scope of this paper. We suppose we can get an
absolute reference as a couple of (X, Y) co-ordinates,
indicating the user position from where he/she invokes
the service. In practice, space modelling by mean of
linear constraints is sufficient for many cases [11].
Within the header, we can for example restrict access
only if the user is located within the hospital or the
building.

All simple roles defined in the header are combinable via
conjunctions and disjunctions, in order to create complex
roles, modelling access control constraints based on the
transverse aspects of the profile, time and space at the same
time.

Functional Roles {
Roles : nurse, doctor, day_nurse, night_nurse;
Hierarchy : day_nurse << nurse, night_nurse <<
nurse ;
}

Seniority Roles {
Roles : manager, head, assistant;
Hierarchy : manager << head << assistant;
}

Contextual Roles {
Hospital_enclosure = (position(X,Y) and X>10 and
X<50 and Y<10 and Y>30);
First_shift = (hour(H) and H>=4 and H<12)
Second_shift = (hour (H) and H>=12 and H<20);
Third_shift = ((hour (H) and H>=20) or (hour(H)
and H<4));
}

3.2. The Body

In LORAAM, the body part allows the expression of
access authorisations at the method level. This is made
possible using the auth keyword, followed by an
appropriate logical formula. The authorisation logical
formulae condition access to each method, according to
the roles defined in the header. These access authorizations
can model access control rules defined in the
confidentiality policy.

Class CElectronicPatientRecord {
Public:
contact getPatientContact()
auth (doctor or nurse);
string getLastPrescription()
auth (doctor or nurse);
string getPrescriptionHistory()
auth (doctor or (nurse and head));
string getCareHistory()
auth (doctor or (nurse and head));
void setPrescription(string prescription)
auth (doctor and Hospital_enclosure);
void setLastCare(hour h, string care)
auth ((day_nurse and first_shift)
or (day_nurse and second_shift)
or (night_nurse and third_shift));
/* This authorization prevent day nurse from
filling the LastCare field of the e-Patient
record during night and night nurse during the
day */
}

3.3. Functional Aspects

As the access control we propose is defined at the class
level, the following statements hold :

• For confidentiality-critical applications, access control
authorisations should be taken into account from the
very start of an information system design cycle [1].
We do think that it does not have to be postponed
until the end of the cycle.

• Roles must be defined as soon as the requirement
engineering stage.

• Roles and authorizations can only be static, as the
class structure is modified, therefore recompiling is
necessary. We consider that this is not necessarily a
major problem, as the set of information defined in the
header and authorizations are very static (ex:
hierarchical levels, internal organisation,
administrative responsibilities, etc.). However, no
recompiling is necessary for dynamic user role
assignment or revocation. Moreover, privilege
delegation is possible between users.

The principle of access control decision is as follows:
when a method call is detected, the LORAAM engine
checks if the dynamic user profile logical formula implies
the method authorisation. The dynamic user profile is
constructed as follows: each role r is defined within a
category c, and is associated to a logical first-order atom
c(r). The profile is obtained by conjunction of all played
roles and their parents roles. Contextual information is
obtained by mean of software/hardware tools such as
LDAP, GPS, time clock, etc. and also translated in a
logical formula. If the implication is valid, the method is
invoked, else an catchable exception is raised.

3.4. Example

Let us suppose that a user, John, wants to access the
setLastCare() method from his mobile device. John, who
has previously identified himself on the information
system, has a profile functional(nurse) and
functional(night_nurse) and position(150,45) and hour(23).
The functional part can be extracted from a LDAP directory
for example, and the spatio-temporal part can be added by a
time and position server.

The authorisation formula associated with the
setLastTreatment() method is specified within the
LORAAM body, as ((day_nurse and first_shift) or
(day_nurse and second_shift) or (night_nurse and
thrid_shift)). The LORAAM engine replaces these role
names by logical predicates, as defined in the header:

• day_nurse is replaced by functional(nurse) and
function(day_nurse). Indeed, day_nurse has at least all
the privileges of nurse. The same hold for night_nurse.

• first_shift is replaced by hour(H) and H>=4 and
H<12. The same holds for second_shift and third_shift.

The resulting formula (under disjunctive form) is
(functional(nurse) and functional(night_nurse) and
hour(H) and H<4) or (functional(nurse) and
functional(night_nurse) and hour(H) and H>=20) or
(functional(nurse) and functional(day_nurse) and hour(H)
and H>=4 and H<12) or (functional(nurse) and
functional(day_nurse) and hour(H) and H>=12 and
H<20). The LORAAM engine checks if the dynamic user
profile logical formula implies this formula. As the user
profile is functional(nurse) and functional(night_nurse) and
position(150,45) and hour(23), we can see that the
implication holds. Therefore, access is granted.

4. DISCUSSION

Our proposal makes it possible to take into account RBAC
access control to information systems straight into the
logical object data model. We presented the generic
LORAAM language, which contains two parts. The header
allows specification of roles categories and hierarchies. The
body part allows specification of authorisations at the
method level, by use of logical connectors in order to build
more complex ones. We also presented the functional part
of LORAAM, which relies on a first-order logic engine.

Software quality best practises recommend the specification
of access control constraints at the very beginning of the
design process. Thanks to LORAAM, the information
system architect can thus directly integrate authorizations in
his logical data model in a declarative way, without
worrying about the corresponding underlying mechanisms.

This methodology implies that the architect must conduct
the role engineering process prior to specifying the
information system data model, thus auditing the target

internal organization, as well as contextual information
system usage (temporal constraints, mobile access, etc.).
We currently work on automatic translation into
LORAAM of UML diagrams expressed in specific
security models [1,2]. LORAAM can indeed be used as a
target language for a CASE supporting a RBAC-based
design method, such as SecureUML. We currently plan to
validate this approach using our prototype, a LORAAM to
C++ preprocessor, with the Foundstone SecureUML Visio
template [12].

References

[1] Kim D.K., Ray I., France R., Li N., Modeling Role-

Based Access Control Using Parameterized UML
Models, Proceedings of Fundamental Approaches to
Software Engineering (FASE/ETAPS), Springer-
Verlag, p. 180-193, 2004.

[2] Lodderstedt T., Basin D., Doser J., SecureUML: A
UML-Based Modeling Language for Model-Driven
Security, Proceedings of the 5th International
Conference on The UML, Springer, p. 426-441, 2002

[3] Sandhu R., Coyne E., Feinstein H., Youman C., Role-
Based Access Control Models, IEEE Computer, vol.
29, num. 2, p. 38-47, 1996.

[4] Roeckle H., Schimpf G., Weidinger R., Process-
Oriented Approach for Role-Finding to Implement
Role-Based Security Administration in a large
industrial organization, Proc. of the 5th ACM
Workshop on RBAC, p 103-110, 2000

[5] Thomsen D., O’Brien D., Bogle J. Role Based Access
Control Framework for Network Enterprises, 14th
Annual Computer Security Applications Conference,
1998.

[6] Kappel G., Retschitzegger W., Schwinger W., A
Comparison of Role Mechanisms in Object-Oriented
Modeling, Modellierung '98, Proceedings des GI-
Workshops, Munster, 1998.

[7] Coulondre S., Libourel T., An Integrated Object-Role
oriented Model, Data and Knowledge Engineering,
Vol 42, num 1, p 113-141, Elsevier Science, 2002.

[8] Wong R., RBAC Support in Object-Oriented Role
Databases, Proceedings of the 2nd ACM Workshop on
Role-Based Access Control, p 109-120, 1998

[9] Crook R, Ince D., Nuseibeh B., Modelling Access
Policies using Roles in Requirements Engineering,
Information and Software Technology, issue 45, p.
979-991, 2003

[10] Moffett J.D., Lupu E.C., The Uses of Role Hierarchies
in Access Control, Proceedings of the 4th ACM
Workshop on Role-Based Access Control, p 153-160,
1999

[11] Grumbach S., Rigaux P., Segoufin L., Spatio-Temporal
Data Handling with Constraints, GeoInformatica, vol.
5, num 1, Kluwer Academic Publishers, p. 95-115,
2001

[12] Araujo R., Gupta S., Design Authorisation Systems
Using SecureUML, Foundstone Inc. Whitepaper, 2005.

