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Abstract. Current methods of four-dimensional (4D) CT imaging of
the thorax synchronise the acquisition with a respiratory signal to re-
strospectively sort acquired data. The quality of the 4D images relies on
an accurate description of the position of the thorax in the respiratory
cycle by the respiratory signal. Most of the methods used an external
device for acquiring the respiratory signal. We propose to extract it di-
rectly from thorax cone-beam (CB) CT projections. This study implied
two main steps: the simulation of a set of CBCT projections, and the
extraction, selection and integration of motion information from the sim-
ulation output to obtain the respiratory signal. A real respiratory signal
was used for simulating the CB acquisition of a breathing patient. We
extracted from CB images a respiratory signal with 96.4% linear corre-
lation with the reference signal, but we showed that other measures of
the quality of the extracted respiratory signal were required.

1 Introduction

Four-dimensional (4D) CT imaging, defined by Keall [1] as the ”acquisition of a
sequence of CT image sets over consecutive segments of a breathing cycle”, consti-
tutes the first step of 4D radiotherapy, which is ”the explicit inclusion of the tempo-
ral changes in anatomy during the imaging, planning and delivery of radiotherapy”.
The 4D CT imaging of a free-breathing thorax must face one major technical prob-
lem: the time required (�0.5 second per scan) for acquiring several complete 3D
CT images along one respiratory cycle (�4 second). Mori et al [2] have proposed a
prototype 256-slice CT-scanner dedicated to real-time 4D imaging. Other meth-
ods currently in use address the slowness of actual CT acquisitions relatively to the
respiratory cycle on both scanner geometries: spiral/helical and cone-beam (CB).

The respiratory correlated method is based on the spatial periodicity of res-
piration: suppose a respiratory signal f(t), representing the periodic spatial vari-
ations of the position of the thorax in the respiratory cycle during acquisition;
it is possible to sort a posteriori acquired data into n bins and reconstruct n
3D images [3][4][5]. Different respiratory synchronization techniques have been
used: Vedam et al [3], Underberg et al [4] and Pan et al [5] synchronized CT
acquisition with the position of the thorax skin surface in the antero-posterior
direction; Low et al used a spirometer [6]; Damen et al [7] a thermometer under
the patient’s nose.
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Grangeat et al [8] also proposed a dynamic reconstruction algorithm with
CB projections obtained from a CBCT system with a fast rotative gantry,
without such synchronization signal. However, the gantry rotation of modern
CBCT systems coupled with a linear accelerator is too slow to apply Grangeat’s
dynamic reconstruction.

With the respiratory correlated method, the critical issue stands with the
quality of the respiratory signal, whatever the scanner geometry. Contradictory
studies have explored the accuracy of these signals. Depending on the studies,
the method using the antero-posterior position of the skin surface does not seem
totally accurate [9][10] whereas the air volume obtained with a spirometer seems
to have better results [11]. This is why some have proposed methods extracting
the signal directly from image data, without any marker, both on spiral CT scan
slices [5] and on CBCT projections [12].

We propose to analyze the motion of thorax CBCT projections obtained using
a CBCT scan system with a slow rotating gantry to accurate respiratory signal
extraction from image data. This study implied two main steps: the simulation
of a set of CBCT acquisitions from a 4D model and a respiratory signal, and the
extraction, selection and integration of motion information from the simulation
output to obtain the respiratory signal for the time of acquisition. The simulation
uses a reference respiratory signal, used as a gold standard for evaluating the
results of our method.

2 Cone-Beam CT Acquisition Simulation

Our simulation follows a temporal respiratory signal; at each instant t, the res-
piratory signal (section 2.1) gives the position f(t) in the respiratory cycle and
the 4D model (section 2.2) gives the corresponding 3D volume. Digitally Re-
constructed Radiographs (DRR) of the volume, i.e. CBCT projections, are then
computed using a home made shearwarp algorithm [13].

2.1 Respiratory Signal

For each given time t, the respiratory signal indicates the position of the thorax
in the respiratory cycle, denoted by f : R → R

n. We define that f must respect
the following properties: when f(t1) = f(t2), the thorax has the same spatial
configuration at times t1 and t2; f is continuous, meaning that the spatial con-
figuration at time t + ε is almost equivalent to the one at time t when ε is very
small. Previous studies [14] have suggested that the signal can be characterized
in first approximation by a 1D function (n = 1). It is pseudo-periodic with a
pseudo-period around 4 seconds and its extrema often correspond to maximal
expiration and inspiration.

2.2 4D Model

From f(t), we must determine the corresponding spatial volume (spatial posi-
tion) of the thorax, i.e. the corresponding 3D image. Our team had produced
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such a 4D model not elaborated from a complete 4D acquisition but from two
3D breathhold acquisitions, one at the end of normal expiration (I1) and one
at the end of normal inspiration (I2), acquired using spiral CT imaging and
the Active Breathing Coordinator (ABC, Elekta Oncology Systems) [15]. The
non-rigid registration of I2 on I1 produced a dense vector-field representing the
displacement of each point of I2 toward I1. From these displacements, and sup-
posing in first approximation that each point of the thorax moves on a line, we
could interpolate intermediate positions between the two extrema and produce
a 4D image. We computed the air volume of the lungs by thresholding and mor-
phological operations, indexing thus the different 3D images in the respiratory
cycle and obtaining our 4D model.

3 Respiratory Signal Extraction

Visual observation of the motion of a set of CBCT projections, acquired from
a free-breathing patient, intuitively led us to believe that the respiratory signal
could be extracted a posteriori from this set of images. Following the same path,
Zijp et al [12] have focused on the diaphragmatic cupola and projected their CB
projections in the cranio-caudal direction, which produced a set of 1D signals
from which they extracted the respiratory signal. The result is not compared to
a reference for validation of its accuracy.

We propose here a study of the motion in a sequence of 2D CBCT projections
for respiratory signal extraction. The method comports three sequential parts:
selection of points of interest, motion extraction and trajectory processing.

3.1 Points of Interest

Some specific parts of the thorax are generally observed for motion extraction
[14][12][10], like diaphragmatic cupolas or lung walls. Instead, we chose to con-
sider a uniform set of points constituting a sub-sampling of the pixels of CB
projections for a complete study of motion in sequential CBCT projections,
with no limitation to any anatomic part. We typically used between 100000 and
200000 points of interest in total.

3.2 Motion Extraction

Our aim was to follow each point from CB projection to CB projection, i.e. the
motion of points in the 2D projective space over the time of acquisition. We used
a Block Matching Algorithm (BMA) [8].

CBCT imaging does not provide the projection of 3D points in a 2D space,
but the integration of tissue densities on lines, which implies that the application
of the BMA in the 2D projective space does not follow the projection of a 3D
point, but the projection of a high tissue contrast 3D area, like chest and lung
walls. It is then almost inevitable to lose the trajectory of the projected area
after a significant rotation.
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We took this observation into account when using the BMA. Firstly, we com-
puted the most probable trajectory of each point of interest by using the BMA
from CB projection to CB projection, using the maximum linear correlation co-
efficient CC as similarity measure. Secondly, we detected when the BMA is not
following the original high contrast area projection: we compared each newly
detected block to the original block and stopped when the CC fell under a given
user-defined threshold.

3.3 Trajectory Processing

Motion analysis of the set of points of interest produced a set of trajectories E{T }
where T : N → N

2 defines the spatial position (x, y) in the 2D projective space of
a pixel, for CB projections Pi with 0 ≤ i < N , and N being the total number of
CB images. These pieces of signal were processed to reconstruct the respiratory
signal over the complete time of acquisition, respecting the characteristics of the
respiratory signal described in 2.1 above.

Trajectory projection. We obtained a 1D respiratory signal by transforming the
function T : N → N

2 into a function f : N → R, using a method that preserved
maximum motion information, i.e. variations of the position of the point of
interest over time. We firstly calculated the unit vector −→u corresponding to the
best approximation line of all positions Mi(x, y) with a linear regression and the
mean 2D spatial position of points in time C(x, y). Then, for each projection
i, the 1D projection value of the 2D spatial position Mi(x, y) was given by
fT (i) =‖ −−→

CMi � −→u ‖ which is the norm of the projection of
−−→
CMi on the best-fit

line (figure 1).

Fig. 1. On the left: the bottom left profile of a simulated CB projection of the lungs,
with the selected trajectory (green) of an original block (red) and the best-fit line (blue).
On the right: the computed 1D piece of respiratory signal (green) compared to the
reference (red). The X axis represents the number of CB projections (chronologically
numbered) and the Y axis the respiratory signal value f(t).
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Fig. 2. On the left: a CBCT projection with points extracted by the BMA; on the
right: the selected final points. In between: the point (umax,CC) drawn for each piece
of signal demonstrates the efficacy of frequency selection. Most of the signal pieces
highly correlated to the reference have a period between 3 and 5 sec (0.33 and 0.2 Hz).

Filtering. These 1D pieces of signal generally contain information about the
respiratory signal, but this information is correlated with the motion due to
cone-beam rotation. As this motion corresponds to an ellipsoidal motion with
low frequency, we simply processed the data through a Fourier high pass filter.

Selection. Integration of the different pieces of signal provided good results, but an
individual visual observationof thedifferent trajectories showed thatmostwerenot
relevant to the respiratory signal and a selection was required. We first eliminated
short signals (< 7 seconds) or signals with weak mean absolute amplitude (< 2
pixels) because their spatial and/or temporal resolutions were not satisfactory.

To find an interesting selection parameter p, we refered to an important char-
acteristic of the respiratory signal, its temporal pseudo-periodicity. We measure
the higher amplitude value of the signal in the Fourier domain, i.e. p = umax with
F (umax) = max(|F (u)|), u → |F (u)| being the Fourier amplitude spectrum. Se-
lected signals have p � pref , where pref corresponds to the pseudo-period of
respiration.
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This selection criterion was validated using the gold standard as reference
by calculation of CC for each piece of signal. After drawing CC(p) (figure 2),
we observed that p for all signal pieces with high CC approximated a particular
value pref � 4 sec., which confirms our supposition.

Integration. Selected signals represent pieces of the respiratory signal over over-
lapping intervals of the time of acquisition. We integrated all the signals to
determine the whole respiratory signal over the time of acquisition. We consid-
ered that extreme positions were matched for all thorax points, thus making
integration simpler. Firstly, we linearly normalized all signal pieces between 0
and 1 and eventually put them in phase when they were in phase opposition.
For each time t, the respiratory signal value was equal to the mean of the values
of all different pieces at this time.

4 Experiments and Results

Experiments. We simulated 720 CB projections, one every 0.5˚and every 0.36
second (Elekta Synergy parameter [12]), with a resolution of 600x460. Simulation
was based on a real respiratory signal (irregular in phase and amplitude), ac-
quired with an ABC system and two CT 3D breath-hold images of 512x512x65
voxels. Motion extraction used blocks of 40x40 pixels and stopped when CC
fell under 93%. We selected trajectories with a maximum period in the Fourier
domain between 3 and 5 seconds (0.33 and 0.2 Hz).

Measurement. The measure commonly used for evaluating respiratory signals
with respect to a reference is the CC [10][11]. Here we also calculated another
measure in direct relation with our use of the respiratory signal. We sorted
both the respiratory signal extracted from CB images (result bins) and the gold
standard (reference bins), then measured the percentage of misplaced samples
in the result bins compared to the reference ones. We also calculated σ, the
average of σ, the respiratory signal standard deviation from reference values
in each bin, for both reference and result bins, and their ratio σref/σres. The
smaller σ is, the more data in each bin were in phase with the respiratory cycle.
σref automatically decreases with the number of bins, but σres stops decreasing
when the number of bins is too big because of the inaccuracy of the respiratory
signal result. σref/σres is equal to 1 when both sortings are equally good and
decreases when the quality of the result sorting decreases.

Binning. There are different methods for sorting CB images with the respiratory
signal, depending whether one takes hysteresis into account and whether bins
have the same size. If bins have the same size, the 3D images have homogeneous
resolutions but variation of the respiratory signal in each bin is variable; else,
extrema have a higher resolution because there are more data used for their
reconstruction. We chose to take hysteresis into account and to divide the signal
into equal bins.

We extracted a respiratory signal with 96.4% correlation with the reference.
After sorting, we obtain:
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Number of bins Misplaced samples σref σres σref/σres

1 0 0.249 0.249 1
2 23 (3%) 0.123 0.127 0.97
4 57 (8%) 0.093 0.101 0.92
8 122 (17%) 0.055 0.068 0.81
12 184 (25%) 0.038 0.055 0.69

5 Discussion and Conclusion

An interesting result of this method is the location of selected trajectories on
CB images, i.e. points of CBCT images having a motion directly related to
respiration. Most of these points are located around the diaphragmatic cupola,
which corroborates Zijp et al [12] hypothesis, but others are also located on lung
walls in the inferior lobe (figure 2). Their motion direction depends on their
location: mostly cranio-caudal for points around the cupola, and perpendicular
to the lung walls otherwise. The location of the points of interest has now been
determined; future work will improve the method with a priori detection of the
points of interest.

The computed respiratory signal is visually very close to the reference, as
confirmed by the high CC. But the result bins has a proportion of misplaced
points compared to the reference bins which increases with the number of bins.
The impact of these misplacements is measured by σref/σres. It is unnecessary
to increase the number of bins if σref/σres is too low, and/or if it does not
decrease sufficiently σ. This measurement points out the importance of an ac-
curate respiratory signal for 4D imaging, and the not so good capacity for the
CC to measure this accuracy. However, the number of bins is limited because
the quantity of data in each bin is a primordial criterion for the quality of the
reconstruction.

4D CT images will be reconstructed with a number of bins deduced from
these observations. They will be used for modeling the thorax motion, and will
offer the possibility to take motion into account for treatment planning. Future
work will also include validation on real CBCT data.
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