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Abstract. Given Boolean data sets which record properties of objects,
Formal Concept Analysis is a well-known approach for knowledge dis-
covery. Recent application domains, e.g., for very large data sets, have
motivated new algorithms which can perform constraint-based mining of
formal concepts (i.e., closed sets on both dimensions which are associated
by the Galois connection and satisfy some user-defined constraints). In
this paper, we consider a major limit of these approaches when consid-
ering noisy data sets. This is indeed the case of Boolean gene expression
data analysis where objects denote biological experiments and attributes
denote gene expression properties. In this type of intrinsically noisy data,
the Galois association is so strong that the number of extracted formal
concepts explodes. We formalize the computation of the so-called δ-bi-
sets as an alternative for capturing strong associations between sets of
objects and sets of properties. Based on a previous work on approximate
condensed representations of frequent sets by means of δ-free itemsets,
we get an efficient technique which can be applied on large data sets. An
experimental validation on both synthetic and real data is given. It con-
firms the added-value of our approach w.r.t. formal concept discovery,
i.e., the extraction of smaller collections of relevant associations.

1 Introduction

Formal Concept Analysis has been developed for more than two decades [1]. It
supports knowledge discovery (e.g., clustering, association rule mining) in con-
texts where a number of Boolean properties hold or not for a collection of objects.
For instance, Table 1 is a toy example data set r where we see that attributes p2
and p5 are true for object o2. Informally, formal concepts are maximal rectangle1

of true values. For instance, ({o1, o3}, {p1, p3, p4}) is a formal concept in r.
Among others, formal concepts can be considered as overlapping clusters

which are intrinsically characterized: the reason why o1 and o3 are in the same
cluster is that they all share properties p1, p3, and p4. Such a conceptual clus-
tering [2] is crucially needed in many application domains. For this purpose,
co-clustering (also called bi-clustering) has been proposed [3,4,5,6]. The goal is
to identify bi-partitions, i.e., associated partitions on both dimensions. When
applied on Boolean matrices, these techniques tend to provide rectangles with

1 Rectangle has to be understood modulo arbitrary permutations of lines and columns.
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Table 1. A Boolean context r

p1 p2 p3 p4 p5

o1 1 0 1 1 0
o2 0 1 0 0 1
o3 1 0 1 1 0
o4 0 0 1 1 0
o5 1 1 0 0 1
o6 0 1 0 0 1
o7 0 0 0 0 1

mainly true values. Notice however that they are based on heuristic techniques
(i.e., local optimization) and that they generally compute collections of non over-
lapping bi-clusters. Instead, the strength of Formal Concept Analysis is that,
when tractable, it is based on complete collections of formal concepts which
are overlapping clusters. The state-of-the-art is that we can compute collections
of formal concepts in many practical applications. First, some algorithms are
dedicated to formal concept discovery (see [7] for a survey). Then, for tackling
very large contexts, constraint-based mining of formal concepts has been studied
(see, e.g., [8,9]). In this case, we still compute complete collections containing
every formal concept which satisfies some other user-defined constraints (e.g., a
minimal size for their set components).

The application domain which motivates our research is Boolean gene ex-
pression data analysis, i.e., knowledge discovery from data sets which encode
gene expression properties (e.g., over-expression) in various biological situations
or experiments. Given Table 1, we might say that, e.g., genes denoted by p1,
p3, p4 are considered over-expressed in situation o1. Interestingly, in such a con-
text, formal concepts can be considered as putative transcription modules, i.e.,
maximal sets of genes that are co-regulated associated to the maximal sets of
experiments which seem to trigger this co-regulation. Notice that bi-cluster over-
lapping makes sense from the biological point of view (i.e., the same gene can
be involved in various biological functions). Transcription module discovery is
an important step towards the understanding of gene regulation and we address
a severe limitation of putative transcription module discovery from formal con-
cepts2. Within a formal concept, we have a maximal set of objects (i.e., a closed
set) which are in relation with all the elements of a maximal set of properties
and vice versa. The strength of such an association is often too strong in real-life
data. Assume that, e.g., c1 = ({o1, o3, o4}, {p1, p3, p4}) is a “valid” association
in the application domain. Let us now consider that, like in r, we do not record
that p1 is true for o4. As a result, we do not get c1 but instead the two formal
concepts ({o1, o3, o4}, {p3, p4}) and ({o1, o3}, {p1, p3, p4}). In fact, the presence
of false values which have been set “by error” leads to an explosion of the number
of formal concepts. We have problems with values inappropriately set to true as
well. Such noisy data is quite common, e.g., in life science domains, where we
can not avoid errors of measurement but also further problems with Boolean
2 More generally, we consider the search for interesting bi-clusters from Boolean data.
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property encoding. For instance, encoding a gene expression property, say over-
expression, from typical numerical microarray data relies on the definition of
a threshold whose value enables to encode true or false [10]. This intrinsically
introduces noise. As a result, the number of formal concepts which hold in real-
life Boolean gene expression data sets can be huge, e.g., up to several millions.
Even though the extraction might remain tractable, the needed post-processing
phases turn to be tedious or even impossible.

These observations have motivated a new direction of research where inter-
esting bi-clusters are considered as dense rectangles of true values (see, e.g.,
[11,12,13]). Such rectangles look like formal concepts with a number of excep-
tions, i.e., hopefully, a bounded number of false values per line and per column.
To the best of our knowledge, previous attempts are not really satisfactory for
our application domain. Either they rely on very expensive algorithms (e.g., [11]
which is based on formal concept merging) or they assume quite strong hypoth-
esis on the data (e.g., [12] which assumes a built-in order on both dimensions).
Instead of looking for such fault-tolerant formal concepts, we would like to revisit
a previous work on the so-called δ-free itemsets, i.e., one of the few approximate
condensed representations of frequent itemsets [14]. The idea was to consider
specific itemsets, the δ-free ones, whose frequency have to be counted in order to
infer without counting and with a bounded error the frequency of many others.
We consider the bi-sets which can be built on δ-free sets of properties and their
δ-closures (i.e., associated attributes which are almost always true) on one hand,
on the sets of objects which support the δ-free set on the properties on another
hand. As a result, δ-bi-sets contain a bounded number of exceptions per column.
An example in the data set r is that {p1} is a 1-free set whose 1-closure (the
properties which are almost always true with p1, i.e., with at least 1 exception) is
{p3, p4}. It means that the bi-set ({o1, o3, o5}, {p1, p3, p4}) is a 1-bi-set. Indeed,
it has at most 1 exception per column. The extraction of δ-bi-sets can be ex-
tremely efficient thanks to δ-freeness anti-monotonicity. Such collections can be
computed in many data sets, including huge ones. Our intuition is that, in real
data sets, the distribution of these exceptions among the lines will be acceptable
such that δ-bi-sets capture really strong associations between sets of objects and
sets of properties. By considering synthetic data sets but also real-life data sets,
we illustrate that formal concept extraction can be hard and/or useless in noisy
data sets. We also demonstrate the added-value of the δ-bi-set extraction method
in order to get an a priori interesting collections of overlapping bi-clusters.

Section 2 provides the needed definitions for the formalization and the use of
the δ-bi-set mining task. Section 3 provides experimental results on synthetic or
benchmark data when various levels of noise are added. Section 4 considers sev-
eral experiments on real-life bio-medical data sets which are intrinsically noisy.
Section 5 is a short conclusion.

2 An Alternative to Formal Concepts in Noisy Data Sets

Assume a set of objects O = {o1, . . . , om} and a set of Boolean attributes P =
{p1, . . . , pn}. The Boolean context to be mined is r ⊆ O×P , where rij = 1 if the
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attribute pj is true for the object oi. In Boolean gene expression data sets, if oi

is a biological sample, pj denotes an expression property of a gene, e.g., rij = 1
means that gene associated to pj is over-expressed in oi.

It is interesting to look for associations between sets of objects and sets of
properties, i.e., bi-sets. An obvious measure which quantifies the strength of
such associations is the density of true values within the bi-set. Formal concepts
are maximal bi-sets with only true values. The problem is that the number of
formal concepts in noisy data sets explodes and that it makes sense to relax the
associated closeness constraint to capture less but relevant strong associations,
i.e., some kind of fault-tolerant formal concepts.

Formally, a bi-set (T, G) is a couple of sets from 2O × 2P . T is called an
objectset and G is called an itemset. Let us first recall the basic definition of our
Galois connection (see, e.g., [1]).

Definition 1 (Galois connection). If T ⊆ O and G ⊆ P, φ and ψ constitute
a Galois connection when φ(T, r) = {p ∈ P | ∀o ∈ T, (o, p) ∈ r} and ψ(G, r) =
{o ∈ O | ∀p ∈ G, (o, p) ∈ r}. h = φ ◦ ψ and h′ = ψ ◦ φ denote the closure
operators. A set T ⊆ O (resp. G ⊆ P) is said closed in r iff T = h′(T, r) (resp.
G = h(G, r)).

We can now formalize some usual pattern types.

Definition 2 (1-rectangles, formal concepts, supporting sets). A bi-set
(T, G) is a 1-rectangle in r iff ∀o ∈ T and ∀p ∈ G, (o, p) ∈ r. A bi-set (T, G)
is a formal concept in r iff T = ψ(G, r) and G = φ(T, r). It is equivalent to
T = h′(T, r) and G = φ(T, r) or to G = h(G, r) and T = ψ(G, r). An important
property is indeed that each closed set on one of the two dimensions is associated
to a unique closed set on the other dimension. We say that the support of an
itemset G (resp. an objectset T ) in r is ψ(G, r) (resp. φ(T, r)).

For example, {{o1, o3}, {p1, p3}} is a 1-rectangle in r (see Table 1) but it is not
maximal. ({o1, o3}, {p1, p3, p4}),({o1, o3, o4}, {p3, p4}), and ({o2, o5, o6},{p2, p5})
are examples of formal concepts among the 8 ones which hold in r. {o1, o3, o5}
is the supporting set of {p1}. {p1, p3, p4} is the supporting set of {o1}.

Sections 3 and 4 illustrate on concrete examples that, even in small matrices,
the number of formal concepts can be huge. In fact, the size of the collection of
formal concepts in a given matrix is exponential in its smallest dimension. For-
malizing the δ-bi-set mining task, we want to compute smaller collections which
still capture important associations within the data. Collections are smaller
because a given δ-bi-set can always be described as a merge of some formal
concepts.

Let us first recall the popular association rule mining task [15] since it is
needed to understand the δ-freeness property.

Definition 3 (association rule, frequency, confidence). An association
rule R in a data set r is an expression of the form X ⇒ Y , where X, Y ⊆ P,
Y �= ∅ and X ∩ Y = ∅. The frequency of R is |ψ(X ∪ Y, r)| and the confidence
of R is |ψ(X ∪ Y, r)|/|ψ(X, r)|.
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In an association rule X ⇒ Y with high confidence, the properties in Y are
almost always true for an object when the properties in X are true. Intuitively,
the itemset X ∪ Y associated to the set of object T = ψ(X, r) is then a dense
bi-set. Moreover, the more the rule is frequent, the larger the bi-set will be.

We now consider our technique for computing association rules with high
confidence, the so-called δ-strong rules [14].

Definition 4 (δ-strong rule). Given an integer value δ, a δ-strong rule in a
Boolean context r is an association rule X ⇒ Y (X, Y ⊂ P) such that |ψ(X, r)|−
|ψ(X ∪ Y, r)| ≤ δ, i.e., the rule is violated in no more than δ objects.

Interesting collections of δ-strong rules with minimal left-hand side can be
computed efficiently from the so-called δ-free-sets [14] and their δ-closures.

Definition 5 (δ-free set, δ-closure). Let δ be an integer and an X ⊂ P be
an itemset, X is a δ-free-set w.r.t. r if and only if there is no δ-strong rule
which holds between two of its own and proper subsets. The δ-closure of X in r,
hδ(X, r), is the maximal (w.r.t. set inclusion) superset Y of X s.t. for every item
p ∈ Y \ X, |ψ(X ∪ {p})| is at least |ψ(X, r)| − δ. In other terms, the frequency
of the δ-closure of X in r is almost the same than the frequency of X when δ is
small w.r.t. the number of objects. It means also that ∀p ∈ hδ(X) \ X, X ⇒ p is
an association rule with high confidence, more precisely a δ-strong rule.

For example, in Table 1, the 1-free itemsets are {p1}, {p2}, {p3}, {p4}, {p5},
{p1, p2}, and {p1, p5}. An example of 1-closure for {p1} is {p1, p3, p4}. The asso-
ciation rules {p1} ⇒ {p3} and {p1} ⇒ {p4} have only one exception.

δ-freeness is an anti-monotonic property such that it is possible to compute δ-
free sets (eventually combined with a minimal frequency constraint) in very large
data sets. Notice than when δ = 0, h0 = h, i.e., the classical closure operator.
Looking for a 0-free itemset, say X , and its 0-closure provides a closed itemset
Y . When a closed set is computed by this technique, we get easily the formal
concept (T, Y ) by associating its supporting set of objects T = ψ(Y, r). We can
now use the properties of δ-free-sets and δ-strong rules to extract a collection of
dense bi-sets with a bounded number of exceptions per column.

Definition 6 (δ-bi-set). A δ-bi-set (T, G) in r is built on each δ-free-set X ⊂ P
and we have G = hδ(X, r) and T = ψ(X, r).

It is clear that for a δ-bi-set (T, G), when δ << |T |, (T, G) denotes a
strong association between T and G. In Table 1, itemsets {p3} and {p5} are
examples of 1-free-sets. The related 1-bi-sets are {{o1, o3, o4}, {p1, p3, p4}} and
{{o2, o5, o6, o7}, {p2, p5}}. Obviously, when δ = 0, each δ-bi-set is a formal
concept.

An algorithm to extract δ-bi-sets. For the experimentations, we have been
using a straightforward extension of the Min-Ex implementation described in
[14]. Indeed, we just added the automatic generation of the supporting set for
each extracted δ-free-set. Min-Ex is a typical instance of the levelwise search



Towards Fault-Tolerant Formal Concept Analysis 217

algorithm presented in [16]. Thanks to the antimonotonicity of the conjunction
of δ-freeness and a minimal frequency constraint, it explores the itemset lattice
(w.r.t. the inclusion) levelwise, starting from the empty set and stopping at the
level of the largest frequent δ-free-set. More precisely, the collection of candidates
is initialized with the empty set as single member (the only set of size 0) and then
the algorithm iterates on candidate evaluation (i.e., checking both δ-freeness and
minimal frequency) and larger candidate generation. At iteration i, it scans the
data to find out which candidates of size i are frequent δ-free-sets and it computes
their δ-closure as well. Then it generates candidates for the next iteration, taking
every set of size i + 1 such that all their proper subsets are frequent δ-free-
sets. The algorithm stops when there is no more candidate. The needed δ-free
sets can thus be extracted by setting the frequency threshold to 1. Also, our
implementation outputs each supporting set of lines for each discovered δ-free
set of columns.

3 Experiments on Data Plus Noise

First, we study the relevancy of δ-bi-sets w.r.t. formal concepts when considering
the addition of noise to a synthetical data set and to a benchmark data set from
UCI Macine Learning Repository [17]. Let us first discuss the evaluation method.

Hereafter, r denotes a reference data set, i.e., a data set which is assumed to
be noise-free. We use it to generate noisy data sets by adding a given quantity of
uniform random noise (for a X% noise level, each value is randomly changed with
a probability of X%). Then, we compare the collection of formal concepts which
are “built-in” within r with various collections of bi-sets (i.e., formal concepts
and δ-bi-sets) extracted from the noised matrices. To measure the relevancy of
each extracted collection w.r.t the reference one, we look for a subset of the
reference collection in each of them. Since the objectset and the itemset of each
formal concept can be changed when adding noise to the data, we identify those
having the largest area in common with the original ones, and we compute a
measure called σ which takes into account the common area:

σ(Cr, Ca) =
1

Nr

Nr∑

i=1

maxj

(
|(Ti, Gi)r ∩ (Tj , Gj)a|
|(Ti, Gi)r ∪ (Tj , Gj)a|

)

where Cr is the collection of concepts computed on the reference r, Ca is a noised
collection of bi-sets, (Ti, Gi)r and (Tj , Gj)a are bi-sets belonging to Cr and Ca

respectively, and Nr is the size of the reference collection of formal concepts.
When σ(Cr, Ca) = 1, all the bi-sets belonging to Cr have identical instances in
the collection Ca.

In the experiment, r has 30 objects and 15 properties and it contains 3 formal
concepts of the same size which are pair-wise disjoints. In other terms, the for-
mal concepts are ({o1, . . . , o10}, {p1, . . . , p5}), ({o11, . . . , o20}, {p6, . . . , p10}), and
({o21, . . . , o30}, {p11, . . . , p15}). We generated 40 different data sets by adding in-
creasing quantities of noise (from 1% to 40% of the matrix). The idea is that
a robust technique should be able to capture the three associations despite the
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a)

b)

Fig. 1. Size of collections of bi-sets (a) and related values of σ (b) w.r.t. noise level

introduced noise. Therefore, for each data set, we have extracted a collection of
formal concepts and different collections of δ-bi-sets with increasing values of δ
(from 1 to 6). Then, we looked for the occurrence of the three concepts in each of
these extracted collections by using our σ measure. Results are collected in Fig. 1b.

The σ measure obviously decreases when the noise level increases. Interest-
ingly, its values for δ-bi-set collections are always greater or similar to the values
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for the collection of formal concepts. In particular, for δ = 1, the collections of
1-bi-sets behave better than the collection of formal concepts until noise level is
greater than 5%. When δ = 2, this noise threshold is 10%. Finally, for higher
values of δ (3,4 and 5), the noise threshold for which δ-bi-sets perform better is
quite high (30%). Then, we computed the number of extracted patterns in each
collection (Fig. 1a). The collections of δ-bi-sets contain always less patterns than
the collection of formal concepts (for a noise level greater than 7%). For δ = 2,
the size is halved. For greater values of δ, noise does not influence the size of the
collections of δ-bi-sets.

This experiment confirms that δ-bi-sets are more robust to noise than formal
concepts. Furthermore, we can reduce significantly the size of the extracted col-
lections and this is crucial to support the interpretation process by data owners.

We applied the same experimental methodology to the voting-records data
set from UCI Machine Learning repository. We generated the reference boolean
matrix by encoding each variable-modality pair (except the class variable) into a
single Boolean attribute. We obtained a matrix with 435 objects and 48 proper-
ties. Then, we generated 40 data sets by adding increasing quantities of uniform
random noise (from 1% to 40% of the matrix). δ-bi-sets have been extracted
with three values of δ (5, 7 and 10), and with a minimal frequency constraint of
7% (i.e., the minimal δ-free-set support size is greater than 30 objects).

The collections of formal concepts have been extracted from the noised ma-
trices with a minimal objectset size constraints set to 30 by using DMiner [9].
The reference collection is the set of all formal concepts with at least 30 objects
and 10 attributes in the original matrix. This is motivated by our goal which is
to look for rather large associations because too small formal concepts are not
relevant in noisy data sets. Using these constraints, we obtained a collection of
4114 formal concepts.

We have computed the values of σ for the different collections of bi-sets and
we obtained the results collected in Fig. 3a. The advantages of using δ-bi-sets
are visible as soon as the noise level reaches about 5%. It is even more obvious
when looking at another reference collection of formal concepts with a minimal
itemset size constraint set to 13. In this case, we obtained 24 rather large formal
concepts and the benefit of δ-bi-sets starts with a noise level of about 2%. More-
over, if we look at the number of extracted bi-sets (see Fig. 2), we see that the
collection of formal concepts is huge w.r.t. any δ-bi-set collection. Notice also
that starting from a noise level of 20%, all the sizes are almost the same. Again,
mining dense bi-sets as δ-bi-sets enable to get a significantly smaller collection
of more relevant patterns.

Until now, we added some noise to a priori noise-free data sets. We tried
to identify a subset of the formal concepts which holds in these reference data
sets within various collections of bi-set extracted from the matrices after noise
introduction. Let us now consider a comparison between formal concepts and δ-
bi-sets in three “real world” intrinsically noisy data sets. Two of them (drodophila
[18] and malaria [19]) are gene expression data sets. The last one (meningitis) is
a medical data set. For the gene expression data sets, the techniques used for
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Fig. 2. Size of collections of bi-sets w.r.t. noise level in voting-record

Table 2. Sizes of different bi-set collections for three “real world” data sets

dataset lines columns concepts 1-bisets 2-bisets 3-bisets
drosophila 81 3030 2,288,850 1,801,369 778,526 443,668
malaria 46 3719 3,768,135 844,245 377,739 215,821
meningitis 329 60 689,943 329,834 132,703 69,494

measuring the expression level of genes are unlikely to be fault-free. Moreover,
encoding Boolean expression properties from continuous values introduces noise
in the data as well. We used the encoding technique described in [10]. For the
medical data set, both the discretization of continuous measures and the missing
values lead to noisy data. This data set has been preprocessed and provided by
Bruno Crémilleux from the University of Caen (France).

For each of these data sets, we extracted a collection of formal concepts and
three collections of δ-bi-sets, with rather low values of δ (from 1 to 3), and we
compared the number of extracted patterns. Results are collected in Table 2.

For the drosophila and meningitis data sets, the number of pattern is approxi-
matively halved at each incrementation of the δ value. A quite interesting result
is the important reduction of the pattern collection size when shifting from for-
mal concept to 1-bi-set mining within malaria (see Table 2). Then, we tried to
identify in this malaria data set a group of 135 genes which are known to take
part in the same biological function (i.e., cytoplasmic translation machinery)
in association with the group of 17 samples in which these genes are known to
be active (see [19] for details). We used our σ measure, that, in this case, is
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a)

b)

Fig. 3. Values of σ w.r.t. noise level for two reference collections in voting-record

equal to the normalized intersection of the previously described bi-set with the
extracted bi-set which better matches it. We found that, for the collection of for-
mal concepts, the value of σ is 0.142, while, for the 1-bi-set collection, its value
is 0.146. This enforces our conviction that mining fault-tolerant formal concepts
in intrinsically noisy data is a relevant method to reduce the workload for the
interpretation by data owners and to provide more relevant patterns.
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4 Conclusion

Looking for strong associations between sets of objects and sets of properties in
eventually large and noisy Boolean data sets, we have discussed a fundamental
limitation of formal concept mining. Computing fault-tolerant formal concepts,
e.g., with a bounded number of exceptions on both dimensions is known to
be computationally very hard. We proposed a solution based on an efficient
technique for mining association rules with few exceptions. The δ-bi-set mining
task has been experimentally evaluated on both noised data sets and real data
sets. The results are quite promising because we get smaller collections of more
relevant patterns. This is crucial for the needed post-processing phases like, e.g.,
the tedious process of bi-set interpretation by molecular biologists when they are
looking for putative transcription modules within Boolean gene expression data
sets. The relationship to other fault-tolerant formal concepts must be studied. If
δ-bi-sets can indeed be extracted efficiently, it would be much more relevant to
ensure a bounded number of exceptions on both lines and columns like in [11]. It
means that other classes of fault-tolerant formal concepts might be more relevant
than δ-bi-sets but also probably much harder to extract. Another related work
in artificial intelligence concern the fuzzy concept analysis framework (see, e.g.,
[20]). It is an attempt to manage uncertainty and it is clearly related to noisy
data analysis. Further investigation is needed in this direction. An interesting
perspective on which we are currently working is to use collections of fault-
tolerant formal concepts for building relevant bi-partitions from noisy data. The
challenge here is to enable a user-driven control for bi-cluster overlapping and
to look at the opportunities for constraint-based mining of such models.
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