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Abstract. Clustering or bi-clustering techniques have been proved quite
useful in many application domains. A weakness of these techniques re-
mains the poor support for grouping characterization. We consider even-
tually large Boolean data sets which record properties of objects and we
assume that a bi-partition is available. We introduce a generic cluster
characterization technique which is based on collections of bi-sets (i.e.,
sets of objects associated to sets of properties) which satisfy some user-
defined constraints, and a measure of the accuracy of a given bi-set as
a bi-cluster characterization pattern. The method is illustrated on both
formal concepts (i.e., “maximal rectangles of true values”) and the new
type of δ-bi-sets (i.e., “rectangles of true values with a bounded number
of exceptions per column”). The added-value is illustrated on benchmark
data and two real data sets which are intrinsically noisy: a medical data
about meningitis and Plasmodium falciparum gene expression data.

1 Introduction

Clustering has been proved extremely useful for exploratory data analysis. Its
main goal is to identify a partition of objects and/or properties such that an
objective function which specifies its quality is optimized (e.g., maximizing intra-
cluster similarity and inter-cluster dissimilarity). Looking for optimal solutions
is intractable such that heuristic local search optimizations are performed [1].
Many efficient algorithms can provide good partitions but suffer from the lack of
explicit cluster characterization. For example, considering gene expression data
analysis, clustering is used to look for sets of co-expressed genes and/or sets
of biological situations or experiments which seem to trigger this co-expression
(see, e.g., [2]). In this context, an explicit characterization would be a symbolic
statement which “explains” why genes and/or situations are within the same
groups. Once such characterizations are available, it supports the understanding
of gene regulation mechanisms. Our running example r (see Table 1) concerns a
toy Boolean data set. For instance, it encodes gene expression properties (e.g.,
over-expression) in various biological situations and, genes denoted by p1, p3, p4
are considered over-expressed in situation o1.

The crucial need for characterization has motivated the research on con-
ceptual clustering [3]. Among others, it has been studied in the context of co-
clustering or bi-clustering [4,5,6,7], including for the special case of categorial
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Table 1. A Boolean context r

p1 p2 p3 p4 p5

o1 1 0 1 1 0
o2 0 1 0 0 1
o3 1 0 1 1 0
o4 0 0 1 1 0
o5 1 1 0 0 1
o6 0 1 0 0 1
o7 0 0 0 0 1

or Boolean data. The goal is to identify bi-clusters or bi-partitions in the data,
i.e., a mapping between a partition of situations (more generally objects) and
a partition of gene expression properties (more generally, Boolean properties of
objects). For instance, an algorithm like Cocluster [6] can compute the inter-
esting bi-partition {{{o1, o3, o4}, {p1, p3, p4}}, {{o2, o5, o6, o7}, {p2, p5}}} from r.
The first bi-cluster indicates that the characterization of objects from {o1, o3, o4}
is that they almost always share properties from {p1, p3, p4}. Also, properties in
{p2, p5} are characteristics for objects in {o2, o5, o6, o7}. Unfortunately, this first
step towards characterization is not sufficient to support the needed interac-
tivity with the end-users who have to interpret the resulting (bi-)partitions.
Our thesis is that it is useful to look for bi-sets, i.e., sets of objects associ-
ated to sets of properties, that exhibit strong and characteristic relations be-
tween bi-cluster elements. For instance, once a bi-partition of a Boolean gene
expression data set has been found, one can be interested in studying all the
interactions between genes involved in a “cancer” bi-cluster, and these inter-
actions might imply genes which are involved in “non cancerous” processes
as well.

Given a bi-partition on a Boolean data set, our goal is to provide character-
izing patterns for each bi-cluster and our contribution is twofold. First, we intro-
duce an original and generic cluster characterization technique which is based on
constraint-based bi-set mining, i.e., mining bi-sets whose set components satisfy
some constraints, and a measure of the accuracy of a given extracted bi-set as
a characterization pattern for a given bi-cluster (see Section 2). We also discuss
the opportunity to shift from the characterization by bi-sets towards a char-
acterization based on association rules. The method is then illustrated on two
kinds of bi-sets, the well-known formal concepts (i.e., associated closed sets [8]
or, intuitively, “maximal rectangle of true values”) and a new class, the so-called
δ-bi-sets. This later pattern type is new and it is based on a previous work about
approximate condensed representations for frequent patterns [9]. Intuitively, a
δ-bi-set is a “rectangle of true values with a bounded number of exceptions per
column” (see Section 3). We illustrate the added-value of our characterizing
method not only on a benchmark data set but also on two real-life data sets.
The obtained characterizations are consistent with the available knowledge (see
Section 4).
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2 Bi-cluster Characterization Using Bi-sets

Let us consider a set of objects O = {o1, . . . , om} and a set of Boolean properties
P = {p1, . . . , pn}. The Boolean context to be mined is r ⊆ O × P , where rij =
1 if the property pj is true for object oi. Formally, a bi-set is an element of
2O ×2P . We assume that a bi-clustering algorithm, e.g., [6], provides a mapping
between k clusters of objects (say {Co

1 . . . Co
k}) and k clusters of properties (say

{Cp
1 . . . Cp

k}). A first characterization comes from this mapping.
Our goal is to support each bi-cluster interpretation by collections of bi-sets

which are locally pointing out interesting associations between groups of objects
and groups of properties. Therefore, we assume that a collection of N bi-sets
C = c1, . . . , cN has been extracted from the data. First, we associate each of them
to one the k bi-clusters to obtain a collection of k groups of bi-sets {C1, . . . , Ck},
where Ci ⊆ C. Each bi-set ∈ Ci characterizes the bi-cluster (Co

i , Cp
i ) with some

degree of accuracy.
Let us first define the signature in r of each bi-cluster (Co, Cp) denoted

µ(Co, Cp) = (τ , γ) where τ = {oi ∈ Co} and γ = {pi ∈ Cp}. We can now define
a similarity measure between a bi-set c = (T, G) and a bi-cluster signature:

sim(c, µ(Co, Cp)) =
|(T, G) ∩ (τ , γ)|
|(T, G) ∪ (τ , γ)| =

|T ∩ τ | · |G ∩ γ|
|T | · |G| + |τ | · |γ| − |T ∩ τ | · |G ∩ γ|

Intuitively, bi-sets (T, G) and (τ , γ) denote rectangles in the matrix (modulo
permutations over the lines and the columns) and we measure the area of the
intersection of the two rectangles normalized by the area of their union.

Each bi-set c which is a candidate characterization pattern can now be as-
signed to the bi-cluster (Co, Cp) for which sim(c, µ(Co, Cp)) is maximal. Doing
so, we get k groups of potentially characterizing bi-sets. Finally, we can use an
accuracy measure to select the most relevant ones. For that purpose, we propose
to measure the exception ratios for the two set components of the bi-sets.

Given a bi-set (T, G) and a bi-cluster (Co, Cp), it can be computed as follows:

εo =
|{oi ∈ T | oi �∈ Co}|

|T | , εp =
|{pi ∈ G| pi �∈ Cp}|

|G|
It is then possible to consider thresholds to select only the bi-sets that have little
exception ratios, i.e., εo < εo and εp < εp where εo, εp ∈ [0, 1]. There are several
possible interpretations for these measures. If we are interested in characterizing
a cluster of objects (resp. properties), we can look for all the sets of properties
(resp. objects) for which the εo (resp. εp) values of the related bi-sets are less
than a threshold εo (resp. εp). Alternatively, we can consider the whole bi-cluster
and characterize it with all the bi-sets for which the two exception ratios εo and
εp are less than two threshold εo and εp.

3 Looking for Candidate Characterizing Bi-sets

We now discuss the type of bi-sets which will be post-processed for bi-cluster
characterization. It is clear that bi-clusters are, by construction, interesting char-
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acterizing bi-sets but they only support a global interpretation. We are interested
in strong associations between sets of objects and sets of properties that can lo-
cally explain the global behavior. Clearly, formal concepts can be used [8].

Definition 1 (formal concept). If T ⊆ O and G ⊆ P, assume φ(T, r) = {g ∈
P | ∀t ∈ T, (t, g) ∈ r} and ψ(G, r) = {t ∈ O | ∀g ∈ G, (t, g) ∈ r}. A bi-set (T, G)
is a formal concept in r when T = ψ(G, r) and G = φ(T, r). By construction,
G and T are closed sets, i.e., G = φ ◦ ψ(G, r) and T = ψ ◦ φ(T, r). Intuitively,
(T, G) is a maximal rectangle of true values.

({o1, o3}, {p1, p3, p4}), ({o1, o3, o4}, {p3, p4}), and ({o5, o6}, {p2, p5}) are exam-
ples of formal concepts among the 8 ones which hold in r (see Table 1). Efficient
algorithms have been developed to extract complete collections of formal con-
cepts which satisfy also user-defined constraints, e.g., [10,11]. A fundamental
problem with formal concepts is that the Galois connection (φ, ψ) is, in some
sense, a too strong one: we have to capture every maximal set of objects and its
maximal set of associated properties. As a result, the number of formal concepts
even in small matrices can be huge. A solution is to look for “dense” rectangles in
the matrix, i.e., bi-sets with mainly true values but also a bounded (and small)
number of false values or exceptions. Well-defined collections of dense bi-sets can
be obtained by merging formal concepts [12], i.e., a post-processing over collec-
tions of formal concepts. This turns to be intractable when the number of formal
concepts is too large. We propose a new type of bi-set which can be efficiently
extracted, including in noisy data in which it is common to have several millions
of formal concepts.

3.1 Mining δ-Bi-sets

We want to compute efficiently smaller collections of bi-sets which still capture
strong associations. We recall some definitions about the association rule mining
task [13] since it is used for both the definition of the δ-bi-set pattern type and
for bi-cluster characterization.

Definition 2 (association rule, frequency, confidence). An association
rule R in r is an expression of the form X ⇒ Y , where X, Y ⊆ P, Y �= ∅
and X ∩ Y = ∅. Its absolute frequency is |ψ(X ∪ Y, r)| and its confidence is
|ψ(X ∪ Y, r)|/|ψ(X, r)|.

In an association rule X ⇒ Y with high confidence, the properties in Y are
almost always true for an object when the properties in X are true. Intuitively,
X ∪ Y associated to ψ(X, r) is then a dense bi-set: it contains a few false val-
ues. We now consider our technique for computing association rules with high
confidence, the so-called δ-strong rules [14,9].

Definition 3 (δ-strong rule). Given an integer δ, a δ-strong rule in r is an
association rule X ⇒ Y (X, Y ⊂ P) s.t. |ψ(X, r)| − |ψ(X ∪ Y, r)| ≤ δ, i.e., the
rule is violated in no more than δ objects.
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Interesting collections of δ-strong rules with minimal left-hand side can be com-
puted efficiently from the so-called δ-free-sets [14,9,15] and their δ-closures.

Definition 4 (δ-free set, δ-closure). Let δ be an integer and X ⊂ P, X is
a δ-free-set in r iff there is no δ-strong rule which holds between two of its own
and proper subsets. The δ-closure of X in r, hδ(X, r), is the maximal superset Y
of X s.t. ∀p ∈ Y \X, |ψ(X ∪{p})| ≥ |ψ(X, r)|− δ. In other terms, the frequency
of the δ-closure of X in r is almost the same than the frequency of X when
δ << |O|. Moreover, ∀p ∈ hδ(X) \ X, X ⇒ p is a δ-strong rule.

For example, in Table 1, the 1-free itemsets are {p1}, {p2}, {p3}, {p4}, {p5},
{p1, p2}, and {p1, p5}. An example of 1-closure for {p1} is {p3, p4}. The associa-
tion rules {p1} ⇒ {p3} and {p1} ⇒ {p4} have only one exception.

δ-freeness is an anti-monotonic property such that it is possible to compute
δ-free sets (eventually combined with a minimal frequency constraint) in very
large data sets. Notice that h0 ≡ φ◦ψ, i.e., the classical closure operator. Looking
for a 0-free-set, say X , and its 0-closure, say Y , provides the closed set X ∪ Y
and thus the formal concept (ψ(X ∪ Y, r), X ∪ Y ).

Definition 5 (δ-bi-set). A δ-bi-set (T, G) in r is built on each δ-free-set X ⊂ P
with T = ψ(X, r) and G = hδ(X, r).

In Table 1, the 1-bi-sets derived from the 1-free-sets {p3} and {p5} are
({o1, o3, o4}, {p1, p3, p4}) and ({o2, o5, o6, o7}, {p2, p5}). When δ << |T |, δ-bi-
sets are dense bi-sets with a small number of exceptions per column. In order to
experiment, we implemented a straightforward extension of AcMiner [9] which
provides the supporting set for each extracted δ-free-set.

3.2 Concepts vs. δ-Bi-sets

To study the relevancy of δ-bi-sets w.r.t. formal concepts, we have considered
the addition of noise to a synthetical data set. Hereafter, r denotes a reference
data set from which we generate noisy data sets by adding a given quantity
of uniform random noise. Then, we compare the collection of formal concepts
which are “built-in” within r with various collections of formal concepts and
δ-bi-sets extracted from the noised matrices. To measure the relevancy of each
extracted collection w.r.t the reference one, we look for subsets of the reference
collection in each of them. Since both set components of each formal concept
can be changed when adding noise, we identify those having the largest area in
common with the reference ones, and we compute the σ measure which takes
into account the common area:

σ(Cr, Ca) =
1

Nr

Nr∑

i=1

maxj

(
|(Ti, Gi)r ∩ (Tj , Gj)a|
|(Ti, Gi)r ∪ (Tj , Gj)a|

)

where Cr is the collection of formal concepts in reference r, Nr = |Cr|, Ca is a
noised collection of bi-sets, (Ti, Gi)r ∈ Cr and (Tj , Gj)a ∈Ca. When σ(Cr, Ca) = 1,
all the bi-sets ∈ Cr have identical instances in Ca.
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Fig. 1. Size of different collections of bi-sets (left) and related values of σ (right) de-
pending on noise level

In the experiment, r has 30 objects and 15 properties and it contains 3 formal
concepts of the same size which are pair-wise disjoints. In other terms, the for-
mal concepts are ({o1, . . . , o10}, {p1, . . . , p5}), ({o11, . . . , o20}, {p6, . . . , p10}), and
({o21, . . . , o30}, {p11, . . . , p15}). We generated 40 different data sets by adding to
r increasing quantities of noise (from 1% to 40% of the matrix). Then, for each
data set, we have extracted a collection of formal concepts and different collec-
tions of δ-bi-sets with increasing values of δ (from 1 to 6). Finally, we looked for
the occurrence of the 3 formal concepts in each of these extracted collections by
using our σ measure. Results are in Fig. 1.

The σ measure decreases when the noise level increases. Interestingly, its
values for δ-bi-set collections are always greater or similar to the values for the
collection of formal concepts. The collections of δ-bi-sets contain always less
patterns than the collection of formal concepts (for a noise level greater than
7%). For δ = 2, the size is halved. For greater values of δ, noise does not influence
the size of the collections of δ-bi-sets. This experiment confirms that δ-bi-sets
are more robust to noise than formal concepts. Furthermore, it enables to reduce
significantly the size of the extracted collections and this is important to support
the interpretation process.

3.3 Using Association Rules

Association rules can be derived from extracted bi-sets and used for bi-cluster
characterization. For characterization but also classification, heuristics have been
studied which select relevant association rules based on their frequency and
confidence values [16,17,18]. In our case, we propose to use exception ratios
on the extracted bi-sets to provide characterization rules. They have the form
X ⇒ v where X is a set of properties (resp. objects if the transposed matrix
is used) and v is a variable denoting a cluster of objects (resp. properties).
When considering formal concepts, deriving characterization rules from them is
straightforward.
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Property 1. Given a bi-cluster (Co, Cp), if (T, G) is a formal concept, then G ⇒
Co (resp. T ⇒ Cp) is a rule with frequency equal to |T |·(1−εo) (resp. |G|·(1−εp))
and confidence equal to 1 − εo (resp. 1 − εp).

When we use δ-bi-sets instead of formal concepts, Property 1 does not hold
because |ψ(G, r)| < |T |. However, if we are interested in characterizing a cluster
of objects, we can use the following property:

Property 2. Given a cluster Co, if (T, G) is a δ-bi-set, and X ⊆ G is a δ-free-set
then X ⇒ Co is a rule with frequency equal to |T | · (1− εo) and confidence equal
to 1 − εo.

Such rules are interesting in practice because X is often a rather small set
such that its interpretation is easier. However, this approach can not be applied
to data sets with large numbers of properties (e.g., for gene expression data sets
where thousands of properties are common). In such cases, we propose to use
the εo and εp measures.

3.4 Examples of Characterizing Queries

So far, we have a methodology for characterizing (bi-)clusters by using different
kinds of bi-sets or association rules which can be derived from them. Proposed
accuracy measures can be used for a direct selection of characterizing patterns
by means of queries:

– Select all the bi-sets which characterize bi-cluster (Co, Cp) with a maximum
exception ratio of ε for both objects and properties;

– Select all the rules with minimal body characterizing bi-cluster (Co, Cp) with
a minimal frequency f , a minimal confidence c, and a maximal exception
ratio ε for the set of properties;

– Select all the rules with minimal body characterizing bi-cluster (Co, Cp) with
a minimal frequency f , a minimal confidence c, and a minimal exception ratio
ε for the set of properties.

The last example is interesting since it returns bi-sets (or rules) that are ex-
ceptions, i.e., they concern objects belonging to bi-cluster (Co, Cp) that are
characterized by some properties from other bi-clusters.

4 Experimental Validation

First, we applied our characterization method to the well-known benchmark
voting-records [19]. It contains 435 objects and 48 Boolean attributes (removing
class variables). We used Cocluster [6] to get 2 bi-clusters:

bi-cluster |τ | rep. dem. |γ|
bi-cluster1 193 153 40 16
bi-cluster2 242 15 227 32
total 435 168 267 48
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Fig. 2. Characterizing patterns for bi-cluster1 in voting-records w.r.t. different values
of minimal frequency and confidence

To characterize each bi-cluster, we used D-Miner [11] to extract all formal
concepts, and our slight extension of AcMiner to extract two collections δ-
bi-sets (δ=1,2). We obtained 227 031 formal concepts, 130 313 1-bi-sets and
66 908 2-bi-sets. The collections have been post-processed by looking for rules
with increasing values of the relative minimal frequency (15% up to 40%) and
confidence (90% up to 100%). Results for the first bi-cluster are in Fig. 2. Results
for the second one look similar. The number of characterizing rules decreases
when we increase the frequency and confidence thresholds. When we use δ-
bi-sets, we have to process significantly smaller collections. Two examples of
characterizing rules which are consistent with the domain knowledge associated
to voting-records are now given. The first one (resp. the second) has a 42% relative
frequency (resp. 31%) and both have a 100% confidence, i.e., we have εo = 0.

el-salvador-aid = yes ∧ anti-satellite-test-ban = yes
∧ aid-to-nicaraguan-contras = yes ⇒ bi-cluster2

handicapped-infants = no ∧ physician-fee-freeze = yes
∧ el-salvador-aid = yes ⇒ bi-cluster1

Then, we applied the method to the real world medical data set meningitis
already used in [18]. It has been gathered from children hospitalized for acute
meningitis. The pre-processed Boolean data set is composed of 329 examples
described by 60 Boolean attributes encoding clinical signs (hemodynamic trou-
bles, consciousness troubles, . . . ), cytochemical analysis of the cerebrospinal fluid
(C.S.F proteins, C.S.F glucose, . . . ), and blood analysis (sedimentation rate,
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Fig. 3. Characterizing patterns for the bi-cluster2 in meningitis w.r.t. different values
of minimal frequency and confidence

white blood cell count, . . . ). In meningitis, the majority of the cases are known
to be viral infections whereas about one quarter are are known to be caused
by bacteria. Furthermore, medical knowledge is available which can be used to
assess characterization relevancy. Using Cocluster, we got two bi-clusters:

bi-cluster |τ | bact. vir. |γ|
bi-cluster1 100 81 19 21
bi-cluster2 229 3 226 39
total 329 84 245 60

The first bi-cluster contains a majority of bacterial cases while the second one
contains almost only viral cases. We selected characterization rules based on a
collection of formal concepts and 2 collections of δ-bi-sets (δ=1,2). We obtained
the results in Fig. 3. Here again, using δ-bi-sets leads to smaller collections of
candidate characterization patterns. The number of characterization rules for
the first bi-cluster is always very low and it does not significantly change when
using δ-bi-sets instead of formal concepts. If we select the rules with a minimal
body, a 10% frequency threshold, a 98% confidence threshold, and for which the
property exception ratio εp is zero, we obtain only 9 rules which are consistent
with the medical knowledge (see [18] for details). Examples of rules are:

presence of bacteria in C.S.F. analysis = yes ⇒ bi-cluster1
polynuclear percent > 80 ∧ C.S.F. proteins > 0.8 ⇒ bi-cluster1
C.S.F. proteins > 0.8 ∧ C.S.F. glucose < 1.5 ⇒ bi-cluster1
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Fig. 4. Characterizing bi-sets for bi-cluster1 in plasmodium w.r.t. different values of
minimal size and maximal exception ratio

Finally, our last experiment concerns the analysis of plasmodium, a public
gene expression data set concerning Plamodium falciparum (i.e., a causative
agent of human malaria) described in [20]. It records the expression profile of
3 719 genes in 46 biological samples. Each sample corresponds to a time point
of the developmental cycle. It is divided into 3 phases: the ring, the trophozoite
and the schizont stages. The numerical expression data have been preprocessed
by using one of the property encoding methods described in [21]. We used Co-

cluster to get the following bi-clusters.

bi-cluster |τ | ring troph schiz. |γ|
bi-cluster1 20 15 5 0 558
bi-cluster2 16 0 5 11 1699
bi-cluster3 10 6 0 4 1462
total 46 21 10 15 3719

We extracted collections of bi-sets to characterize clusters of samples by means
of sets of genes. In this case however, the number of properties (columns) was
too large to be processed and we extracted the collections of δ-bi-sets on the
transposed matrix. Obviously, the frequency and confidence measure do not
make sense any more because they are computed on sets of samples and we
are looking for sets of genes. Therefore, we have used the size of the bi-sets |T |
and |G|, and their exception ratios εo and εp. Results for a minimal size from
10% up to 25% of O and for maximal values of εo from 0% up to 10% are in
Fig. 4.
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Considering bi-cluster1, we analyzed the characterizing 2-bi-sets whose the
minimal size for their sets of objects was 25% of O and for a maximal exception
ratio εo = 0. Among the 442 bi-sets characterizing bi-cluster1, only 4 of them
concern genes that belong to the same bi-cluster. In each of them, we found at
least one gene belonging to the cytoplasmic translation machinery group which
is known to be active in the ring stage (see [20] for details), i.e., the majority
developmental stage within bi-cluster1.

5 Conclusion

We presented a new (bi-)cluster characterization method based on extracted
local patterns, more precisely formal concepts and δ-bi-sets. One motivation is
that it is now possible to use quite efficient constraint-based mining techniques
for various local patterns and it makes sense to consider their multiple uses.
While a bi-partition provides a global and generally expected characterization,
selected collections of characterizing bi-sets point out local association which
might lead to unexpected but relevant information. We strongly believe in the
complementarity between global pattern and local pattern mining techniques
when considering the whole knowledge discovery process. Our perspective is
now to consider the somehow convergent techniques developed for (conceptual)
clustering, subgroup discovery [22], summarization by association rules in order
to support real-life knowledge discovery processes in functional genomics.
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