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Abstract 

 
This paper presents a new and efficient algorithm for 
decomposition of 3D arbitrary triangle mesh into 
surface patches. Our method is based on the 
curvature tensor field analysis and presents two 
distinct complementary steps: a region based 
segmentation which decomposes the object into 
known and near constant curvature patches, and a 
boundary rectification based on curvature tensor 
directions, which corrects boundaries by suppressing 
their artefacts or discontinuities. Experiments were 
conducted on various models including both CAD 
and natural objects, results are satisfactory. 
Resulting segmented patches, by virtue of their 
properties (known curvature, clean boundaries) are 
particularly adapted to computer graphics task like 
parametric or subdivision surface fitting in an 
adaptive compression objective.  
 
Keywords: Segmentation, Curvature tensor, 
Classification, Region growing, Region merging, 
Boundaries, CAD. 
 
1. Introduction 
 
Recent advances in the field of computer graphics 
(tools for acquisition, modelers, graphics hardware, 
etc…) have contributed to an amazing growth in the 
amount of 3d-models created and stored. With the 
expansion of the Internet, the need for transmission 
of these 3d-contents is more and more acute, this 
problematic results in the research of adaptive and 
multi-resolution compression methods, particularly 
for 3d-meshes. 
In this context, the decomposition of 3d-objects, into 
surface patches, becomes attractive since it simplifies 

compression complexity and because it brings 
adaptiveness to algorithms. Within this framework, 
we present a curvature tensor based triangle mesh 
segmentation method, particularly adapted to 
optimized triangulated CAD objects, which 
decomposes a 3D-mesh into connected known and 
near constant curvature regions with clean and 
regular boundaries. Resulting patches are particularly 
adapted to computer graphics tasks such as 
subdivision or parametric surface fitting in an 
adaptive compression objective.  
Section 2 details the related work about mesh 
segmentation, whereas the overview of our method is 
presented in section 3. Sections 4 and 5 deal with the 
two distinct steps of our method: the region 
segmentation and the boundary rectification. 
 
2. Related work 
 
There has been a considerable research work relevant 
to the problem of 3d-object segmentation. However 
the majority of these methods concern range images 
[1][2][3][4] or 3d point clouds [5][6]. Only few 
studies concern triangle meshes which is nevertheless 
the most widespread representation for 3d-objects. 
Wu and Levine [7] present a physics-based original 
method which uses the idea of electrical charge but 
this approach is computationally expensive. The 
other approaches generally use discrete curvature 
analysis combined with the Watershed algorithm 
described by Serra [8] in the 2D image segmentation 
field. Mangan and Whitaker [9] generalize the 
Watershed method to arbitrary meshes, using the 
Gaussian curvature or the norm of covariance of 
adjacent triangle normals at each mesh vertex as the 
height field. Sun and al. [10] use the Watershed with 
a new curvature measure based on the eigen analysis 
of the surface normal vector field in a geodesic 



window. More recently, Razdan and Bae [11] 
proposed an hybrid method which combines 
Watershed algorithm with the extraction of feature 
boundaries by the analysis of dihedral angle between 
polygon faces. Zhang et al. [12] use the sign of the 
Gaussian curvature to mark boundaries, and process a 
part decomposition.  
We have distinguished two major shortcomings in 
these existing methods. They are described below. 
Firstly, many approaches are only vertex based [10] 
[12], each vertex has its region information, therefore 
triangles on boundaries have multi-regions 
information, it results that boundaries are fuzzy; they 
are not clearly identified in term of edges. Our 
method is an hybrid approach vertex-triangle, which 
combines a vertex classification with a triangle 
region growing and merging. Boundaries between 
regions are thus clearly distinguishable edges. 
Moreover our boundary rectification method allows 
extracting “real” regular boundaries of the object, by 
suppressing artefacts or discontinuities. 
Secondly, most of the approaches discussed above, 
particularly those based on the Watershed algorithm, 
extract regions surrounded by high curvature 
boundaries [10] [11] [12] (see Fig.9.b) but fails to 
distinguish simple curvature transition between 
vertices (see Fig.9.a) without curvature pick. The K-
Means vertex classification that we use allows to 
detect these transitions. 

 
3. Method overview 
 

We present a decomposition algorithm of arbitrary 
triangle meshes into known and almost constant 
curvature surface patches with clean and regular 
boundaries. We address particularly the problem of 
CAD parts, but natural objects are also considered. 
Our approach is based on two steps (see Fig.1):  
A curvature based region segmentation: firstly, a 
pre-processing step identifies sharp edges and 
vertices (see Section 4.1). This information is 
necessary for the continuation of the algorithm, 
particularly in the case of optimally triangulated 
meshes. Then the curvature tensor is calculated for 
each vertex according to the work of Cohen-Steiner 
et al. [13]. Then vertices are classified into clusters 
(see Section 4.2), according to their principal 
curvatures values Kmin and Kmax. A region growing 
algorithm is then processed (see Section 4.3) 
assembling triangles into connected labelled regions 
according to vertex clusters. Finally a region 
adjacency graph is processed and reduced in order to 
merge similar regions (see Section 4.4) according to 

several criteria (curvature similarity, size and 
common perimeter). 
A boundary rectification: firstly, boundary edges 
are extracted from the previous region segmentation 
step. Then for each of them, a boundary score is 
processed (see section 5.2) which notifies a degree of 
correctness. According to this score, estimated 
correct boundary edges are marked and are used in a 
contour tracking algorithm (see section 5.3) to 
complete the final correct boundaries of the object. 

 

Figure 1. The two steps of the method. (a) 
Constant curvature region segmentation. (b) 
boundary rectification. 
 
4. The region segmentation process 
 
4.1. Sharp features detection. 
 
Our segmentation algorithm is based on the analysis 
of the curvature of each vertex. Prior to start the 
algorithm we must detect and take into account sharp 
edges, especially for CAD object. Indeed even if, in 
practice, a curvature value is associated to sharp 
edges, the curvature is not theoretically defined on 
these features. We cannot consider a sharp edge like 
any other high curvature edge; it defines only a 
boundary and not a region. That is why we process a 
sharp features detection. A sharp edge is defined as 
follow: an edge shared by two triangles whose 
normal vectors make an angle higher that a given 
threshold. Vertices that belong to a sharp edge are 
considered as sharp vertices (but an edge shared by 
two sharp vertices is not necessarily a sharp edge). 
This sharp features detection is useful within the 
region growing process (see section 4.3) and as a pre-
processing step to process a mesh enrichment on bad 
tessellated objects, particularly optimized 
triangulated CAD objects with contain a very small 
triangle number. For each triangle associated with 
three sharp vertices, we could not reasonably 
evaluate its curvature or associate it with a region; it 
ties up with the “no hard boundary” problematic 
raised by Razdan and Bae [11]. Therefore we 
subdivide these sharp triangles by adding a new 
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vertex at the center (see Fig.2). The region 
segmentation is thus applied on this modified mesh 
and added vertices are removed at the end of the 
algorithm. 

 
Figure 2. The mesh enrichment process. (a) 
Triangle with three sharp vertices. (b) Associated 
subdivided triangle. 
 
4.2. Vertex classification 
 
Vertices of the mesh are classified according to their 
principal curvatures kmin and kmax. Moreover the 
boundary rectification process (see section 5) needs 
principal curvature directions dmin and dmax, thus 
we have to calculate these information for each 
vertex of the input mesh.  
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Figure 3. Curvature fields for the 3D object 
“Plane”. (a) Kmax, (b) Kmin  (absolute value), (c) 
dmax, (d) dmin. 

4.2.1. Discrete curvature estimation. A triangle 
mesh is a piecewise linear surface, thus the 
calculation of its curvature is not trivial. Several 
authors have proposed different evaluation 
procedures for curvature tensor estimation 
[13][14][15]. 
We have implemented the work of Cohen-Steiner et 
al. [13], based on the Normal Cycle. This estimation 
procedure relies on solid theoretical foundations and 

convergence properties. Moreover the tensor can be 
averaged over an arbitrary geodesic region, like in 
[16], therefore it is independent of the sampling; thus 
we have the possibility to filter noisy objects or 
consider only a queried size of details extraction for 
the segmentation method. For each vertex, the 
curvature tensor is calculated and the principal 
curvatures values kmin, kmax and directions dmin, 
dmax are extracted. They correspond respectively to 
the eigenvalues and eigenvectors of the curvature 
tensor, with switched order (the eigenvector 
associated with kmin is dmax and vice versa).  
Fig.3 presents samples of these fields for the “Plane” 
object. On the edges of the wings, we have a high 
maximum curvature, whereas kmin is null, it is a 
parabolic region. Kmin is positive on elliptic regions, 
like at the end of the wings, and negative in 
hyperbolic regions like at the joints between the 
wings and the body of the plane. We have 
represented the absolute value of kmin on the figure 
because its sign has no importance in our algorithm. 
The principal curvature directions have signification 
only on anisotropic regions (elliptic, parabolic and 
hyperbolic) where they represent lines of curvature of 
the object. On isotropic regions (spherical, planar), 
they do not carry any information. 
 
4.2.2. Curvature classification. Vertices are 
classified according to the values of their principal 
curvatures Kmin and Kmax (see Fig.4), associated 
with the Euclidian distance (in the curvature space). 
This classification is independent of the spatial 
disposition of the vertices. More complex and 
complete comparative measures exist between two 
tensors [17][18] but for our purpose we just need to 
consider a basic curvature information and not 
complex tensor features like shape or orientation. 
Moreover Kmin and Kmax carry complementary 
information. Kmin can be negative, but we consider 
only its absolute value, it is not necessary to 
differentiate positive and negative values in our 
classification. The clustering is done via a K-Means 
algorithm (a usual unsupervised fast classification 
method) [19], completed by a cluster regularization 
(merging of small or similar clusters). 
At the end of the algorithm each vertex is associated 
with a Cluster Ci and an associated classified 
curvature value ci (ci is in fact a two scalars vector 
which contains classified values for Kmin and Kmax). 
The number of clusters K, in the curvature space, is 
fixed by the user, but is not critical for the final 
segmentation result because of the region growing 
and merging steps. Fig.4 shows the vertex 
classification process applied to the “Plane” object 
(2506 vertices). The number of clusters in the 
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curvature space was fixed to 5 for this example 
(clusters colors are yellow, orange, blue, dark blue 
and green). 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 4. Vertex classification of the Plane mesh in 
5 curvature clusters. 

 
4.3. The region growing process 
 
Once vertices have been classified, we want to 
recover triangle regions with similar curvature. This 
transmission of the curvature information from 
vertices to triangles is not a trivial operation. A 
triangle growing and labeling operation is performed 
as follows: for each triangle of which curvature is 
completely defined (seed triangle), a new region is 
created, labeled and extended. This process is 
repeated for every other seed triangle not yet labeled. 
 
4.3.1. The seed triangle determination. There exist 
two situations where a triangle is considered as a seed 
(see Fig.5): 
• Its three vertices belong to the same cluster Ci, 

thus the curvature value ci of this cluster is 
assigned to the corresponding created region (see 
Fig.5.a). 

• It contains two sharp vertices, thus the curvature 
cluster value ci of the third vertex is assigned to 
the created region (see Fig.5.b). 

Figure 5. The two seed triangle situations (a) (b) 
and an undetermined triangle (c). 

In every other cases (see Fig.5.c for example), we 
cannot assign a curvature value to the triangle, thus 
we cannot consider it as a seed to grow a region. 
 
4.3.2. The growing mechanism. When a seed 
triangle is encountered, a new region is created, 
containing this triangle, associated to a new label L 
and a curvature value cL.  

 

Figure 6. Considered features for the region 
growing process.  

Then a recursive process extends this region (see 
Fig.6): for each triangle tL belonging to the region, for 
each non sharp edge ei of this triangle, we consider 
the associated neighboring triangle ti and its opposite 
vertex vi. If vi is a sharp vertex or if it has the cL 
curvature value, thus the considered triangle is 
integrated to the region. This process is repeated for 
every other triangle marked as seed and not yet 
labeled. With this process, it remains, sometimes, not 
labeled triangles at the end of the algorithm. A simple 
crack filling process fit these holes by integrate these 
triangles to the most represented region of their 
neighborhoods.  

Figure 7. The region growing process for the 
“Fandisk” mesh (Regions colors are randomly 
chosen). 

Fig.7 shows the region growing process for the 
Fandisk object, starting from a 18 clusters vertex 
classification. The region growing extracts 128 
connected regions (regions colors are randomly 
chosen). 
The growing algorithm is very dependant of the 
number of curvature clusters. Moreover, a fixed value 
of K for the K-Means classification algorithm can 
generate different sets of clusters because of the 

Ci 

Ci 
    (a)   (b)          (c) 

Cj Ck 

ci ci ? 

Ci            Ci 

Region 
growing 

Ci 

Normal 
vertices 

Sharp 
vertice
s 

Region L 

Growing 
Mechanism 

vi 

ei tL ti 



random choice of the K initial seeds. Thus for a given 
K, the merging step can give different results in term 
of number and localization of extracted regions. 
Because of this uncertainty, and to suppress the 
dependency to the number of curvature clusters, a 
region merging process was developed, in order to 
unify results.  
 
4.4. The region merging process 
 
The region merging process aims to: 
• Reduce the over-segmentation resulting from the 

growing step. 
• Suppress the algorithm dependency to the 

number of curvature clusters issued from the K-
Means vertex classification.  

4.4.1. The region adjacency graph. The efficiency 
of an algorithm depends on the data scheme used. 
The purpose here is to merge adjacent similar 
regions. Thus a good representation to operate is a 
region adjacency graph (RAG), a data scheme used in 
image segmentation [20][21]; this algebraic structure 
contains a set of nodes and a set of edges. Each node 
represents a connected region (i.e. a connected subset 
of the mesh), and each edge represents an adjacency 
between two regions. Edges are evaluated by a 
curvature distance between the two corresponding 
regions. 

4.4.2. General algorithm. Once connected regions 
have been extracted by the region growing algorithm, 
the RAG is processed, and distances between 
adjacent regions are calculated. Then the reduction of 
the graph is processed: at each iteration the smallest 
edge of the graph is eliminated, thus the 
corresponding regions are merged; then the graph is 
updated. When two regions are merged, their 
curvatures are merged proportionally to their areas to 
give the curvature of the resulting region. This graph 
reduction stops when the number of regions reaches a 
queried number chosen by the user, or when the 
weight of the smallest edge is larger than a given 
threshold. 
 
4.4.3. Region distance measurement. The distance 
Dij used in our method is equal to the curvature 
distance DCij, between the two corresponding regions 
Ri and Rj weighted by two coefficients: Nij, which 
measures the nesting between the two corresponding 
regions and Sij of which aim is to eliminate the 
smallest regions. 

ijijijij SNDCD ××=  

Each coefficient is detailed in the following 
paragraphs.  
The curvature distance DCij is processed using the 
curvature values ci and cj of the two corresponding 
regions and the curvature value cij of their boundary.  

ijjijiij ccccDC −+−=  

ci and cj come from the region growing step. cij is the 
average of the vertices curvatures on the boundary 
between the two regions. Only vertices with two 
incident edges separating these regions (real 
boundary vertices) are taken into account (see Fig.8), 
in order to consider only the real boundary between 
them. 
 
 
 
 
 
 
 

Figure 8. Representation of the vertices taken into 
account for the calculation of the average 
curvature of the boundary between Ri and Rj. 

It is important for the calculation of the curvature 
distance between Ri and Rj to consider not only their 
respective curvatures ci and cj but also their boundary 
one cij, because two situations may exist between 
these regions. Either regions have different 
curvatures and no precise boundary (see Fig.9.a), or 
regions have almost the same curvature and a very 
different boundary curvature (see Fig.9.b).  

  
 
 
 
  

Figure 9. The two different situations between two 
adjacent regions. (a) no boundary but a curvature 
difference, (b) no curvature difference, but a 
significant boundary. 
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with iP (resp. jP ) the perimeter of the ith (resp. jth) 

region and ijP  the size of the common border 

between the ith and jth regions. This coefficient was 
introduced in image processing by Schettini [22] for 
color image segmentation. The aim of the Nij factor is 
to consider the spatial disposition of the regions in 
the merging decision. Regions with a large common 
border are more likely to belong to the same 
‘meaningful’ part, thus their similarity distance is 
reduced. 

The Sij coefficient purpose is to accelerate the fusion 
of the smallest regions. 
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where Ai (resp. Aj ) is the area of the ith (resp. jth) 
region, Amin is a minimum area fixed by the user and 
ε  is a positive value near 0. The Sij factor can be 
considerate as a filtering factor. When a region’s area 
is smaller than Amin, it is considered too small, thus 
its distance with its adjacent regions is reduced by the 
Sij coefficient, equal toε ; the considered region will 
be more easily merged with another. This method 
aims to eliminate the smallest regions. The value of 
Amin depends on the queried size (or number) of final 
regions. The value of ε  is fixed to 1e-5. This value 
accelerates the fusion of the smallest regions, while 
keeping the merging order. 

          
 
 

Figure 10. The region merging process for the 
“Fandisk” mesh.  

Fig.10 shows the merging process. The initial pre-
segmented object was obtained after the classification 
step in the curvature space (18 curvature clusters), 
and after the region growing step. It contains 128 
connected spatial regions. After the merging process, 
the final region number is 25. The merging threshold 
was fixed to 5. 

4.5. Experiments and results 
 
Our segmentation method was tested on several 
different objects. Examples are given for three 
objects from different nature: a rather smooth object 
(Pawn), a mechanical highly tesselated object 
(Fandisk) and an optimized triangulated CAD object 
(Swivel). Results are shown on Fig.11. For the 
“Fandisk” object (see Fig.11.b) we obtain patches 
with almost constant curvature as for the “Pawn” (see 
Fig.11.a). Our method allows detecting curvature 
transition or inflexion points and not only regions 
separated by high curvature boundaries, or sharp 
boundaries, like traditional watershed method. Even 
for the bad tessellated “Swivel” object (see Fig.11.c), 
we obtain good results after the enrichment of 
detected sharp triangles. 
We have studied the dependency of the algorithm on 
the number of curvature clusters K which parameters 
the K-means algorithm during the vertex 
classification step. We have conducted tests with 
several objects; results for Fandisk are shown in 
Table 1. The vertex classification was processed with 
different values for K (K’ is the cluster number after 
regularization) and a unique threshold fixed to 50 was 
chosen for the region merging process. Results show 
that of course K influences the number of regions 
created after the growing step (besides, this number 
can vary for a same K, because of the random choice 
of the K initial seeds for the K-Means algorithm) but 
the final region number is regularized by the merging 
algorithm and the resulting segmented regions are 
almost identical. Thus we have suppressed the 
algorithm dependency to the number of curvature 
clusters; it does not have to be considered as a 
parameter for the method. 

Table 1. Influence of the cluster number K of the 
classification algorithm, on the number of final 
regions for a given threshold. 

K K 
regularized 

NbReg after 
growing 

NbReg after 
merging 

5 5 46 15 

10 7 62 15 

10 9 99 15 

15 9 76 15 

20 11 84 15 

20 17 116 15 

Our purpose is to obtain clean patches with constant 
curvature in a subdivision or parametric surface 
fitting objective.  
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Fandisk (6475 vertices)  Results of the growing/merging             Results of the growing/merging 
    K’=10,  threshold=5, NbReg=25      Other side                         

 Swivel (2743 vertices)   Results of the mesh enrichment           Results of the growing/merging 
                  K’=3,  threshold=5, NbReg=20 
 

Pawn (2434 vertices)        Results of the growing    Results of the merging 
             K’=10, NbReg=50   threshold=35, NbReg=9 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Segmentation of “Pawn”, “Fandisk” and “Swivel” objects. The region merging threshold is 5 for 
“Fandisk” and “Swivel”, and 35 for “Pawn”. 
 
Although our segmented regions are very correct in 
terms of general shape, their boundaries present some 
discontinuities (see Fig.12), particularly when we 
consider a high number of curvature clusters; for 
instance, in Fig.10 after the merging, we obtain good 
surface patches in terms of disposition, and general 
shape but a lot of small defects have appeared on the 
boundaries. 
There exists a main reason for the apparition of these 
artefacts: the basis for our method is the curvature 
field of the object. This information is based on the 
vertices, whereas we finally consider triangles and 
edges. This transition Vertex-Triangle (processed 
during the region growing step) is very difficult to 
manage thus we lost a part of the initial accuracy. 

5. The boundary rectification process 
 
5.1. Objective 
 
Our region segmentation method extracts near 
constant curvature, topologically simple patches from 
the 3D-objects, and give good qualitative results in 
terms of nature and disposition of the segmented 
regions. Nevertheless, our method, like most of the 
existing methods, does not extract perfect boundaries, 
without discontinuities; generally, regions present 
artefacts at the limits of their boundaries (see section 
4.5). Fig.12 presents examples of this region 
boundaries vagueness; in Fig.12.a blue and yellow 



regions in the red ellipse are not correct, their 
boundary is not straight; in Fig.12.b, green and pink 
regions are not complete regarding to the original 
object and the green one presents a discontinuity. 
In this context, the objective of the boundary 
rectification process is to suppress these artefacts, in 
order to obtain clean boundaries corresponding to 
real natural boundaries of the object.  
The rectification method is composed of two 
principal steps: firstly, segmented object boundary 
edges are extracted and for each of them a 
correctness score is processed. Then, starting from 
the estimated correct boundary edges, the object final 
boundaries are completed using a contour tracking 
algorithm. 
 

 
Figure 12. Zooms on artefacts (region boundary 
precision mistake) for the segmented Fandisk 
object. 
 
5.2. The Boundary Score definition 
 
The goal of this score is to define a notion of 
correctness for each boundary edge extracted from 
the previous region segmentation. For this purpose, 
we consider the principal curvature directions dmin 
and dmax (see section 4.2.1) which define the lines of 
curvature of the object. Indeed, they represent pivotal 
information in the geometry description [16]. The 
curvature tensors at the natural boundaries of an 
object tend to be very anisotropic with a maximum 
direction following the curvature transition and 
therefore orthogonal to the boundaries. Thus the 
boundaries will tend to be parallel to the lines of 
minimum curvature.  

Fig.13.a shows a natural hand made segmentation of 
a smooth cube object into constant curvature patches. 
Fig.13.b shows maximum and minimum curvature 
directions. 

 
Figure 13. Natural constant curvature patches of 
the Cube object (a) and its principal curvature 
directions (b), dmin in red and dmax in blue.  

Boundaries of the patches follow the minimum 
directions, except around isotropic region (at the 
corners of the cube). Therefore the angle between a 
boundary edge and its vertices minimum curvature 
directions can represent a good evaluation of its 
“correctness”. 
 
The boundary score S, calculated for an edge ie , is: 

)()()( icii eSceSaeS ×+= ω   (5) 

cω is a weighting coefficient, which is fixed to 1 in 
our examples (Sa and Sc are normalized). 

The angle score Sa considers the angles i1minϑ  and 

i2minϑ  (see Fig.14) between the edge ie and its 
vertices minimum directions. The score also consider 
the angles

i1maxϑ  and 
2imaxϑ  between the edge 

ie and its vertices maximum directions, weighted by 
the values of the principal curvatures Kmin and Kmax 
in order to take into account isotropic region, like the 
corner of the cube for instance (see Fig.13). Thus the 
angle score Sa  is processed according to the 
following equation (6): 
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with i1minϑ , i2minϑ  and i1maxϑ , i2maxϑ  the 

respective angles of the considered edge ie  with the 
minimum curvature directions of its vertices and their 
maximum curvature directions. i1Kmin , 2iKmin  and 

     (a)         (b) 

(a) 

(b) 



i1Kmax , 2iKmax  are the respective values of 
minimum curvatures and maximum curvatures of the 
vertices of the edge ie . 

 
Figure 14. Elements taken into account for the 
calculation of the Boundary Score of the edge ie . 

The curvature score Sc corresponds to a normalized 
curvature difference between curvature values of the 
two vertices of the edge. If curvatures of the edge’s 
vertices are very different, thus the edge must not be 
considered as a correct boundary. Sc is defined by the 
following equation (7): 

),max(),max(
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5.3. Algorithm 
 
The rectification algorithm is composed of two steps: 
the marking of the correct boundary edges coming 
from the region segmentation and the contour 
tracking to complete final boundaries. 
 
5.3.1. Correct boundary marking. For every 
boundary edges coming from the region segmentation 
step, the Boundary Score previously defined is 
processed. Then, a threshold ST is fixed; for each 
edge, if its Boundary Score is below ST, the edge is 
considered as a correct boundary edge (CBE), else the 
edge is no more considerate. Fig.16.c and Fig.17.c 
show this marking process, starting from the region 
segmentation (see Fig.16.a, Fig.17.b), CBEs are 
represented in green, and others in red.  
 
4.3.2. Contour tracking. The second step of the 
rectification algorithm is the contour tracking. Once 
CBEs have been extracted, they form pieces of 
boundary contours; our purpose is to complete these 
contours to obtain a set of closed contours 
corresponding to final object patches boundaries. For 
each not closed boundary contour, we extract the 
edges potentially being able to complete it (we call 
them “potential edges”). They are edges adjacent to 
one CBE at the extremity of an open contour. 

Fig.15.a shows a piece of contour formed by two 
CBEs (in black), with associated potential edges (PE) 
(in dotted black) which are candidates to complete 
the open contour. Then, each potential edge is 
associated with a weight P which will determine its 
possibilities to be integrated to the contour; the 
smallest is this weight, the more the edge has 
possibilities to be considered as a CBE.  
The weight P of a potential edge depends of its score 

)( ieS but also of its angle ),( CBEi eeϑ with its 
neighboring CBE, because, we try to limit the 
deviation of the boundary.  

),()()( CBEiii eeeSeP ϑωϑ ×+=  (8) 

ϑω is a weighting coefficient, it is fixed to 1 in our 
examples. 

 

Figure 15. Three steps (a,b,c) of the boundary 
tracking algorithm, with associated position of 
correct boundary edges (CBE), potential edges 
(PE) and smallest potential edge, at each iteration. 

Once each potential edge has been valuated, we 
organize them into a sorted list. Then the contour 
tracking algorithm starts; its mechanism is the 
following: once we have the potential boundary 
edges (PE) sorted list, the PE associated with the 
lowest weight P is extracted and integrated to the 
considered boundary contour, and therefore this PE 
becomes a CBE. Then the list is updated (the PEs are 
redistributed) and the list reduction continues until 
every boundary contour is closed. Fig.15 presents 
three iterations of the contour tracking algorithm. In 
Fig.15.a, there are two CBEs which form an open 
contour (in black), thus there are six PEs candidates 
to complete the contour (in dotted black). The PE 
inside the red ellipse is considered as the one with the 
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smallest weight P, thus at the next iteration it is 
extracted and integrated to the contour (see Fig.15.b). 
The position and number of the PEs is thus updated. 
The process continues in Fig.15.c, with another PE 
integrated to the contour. 
 
5.4. Experiments and results 
 
The rectification method is especially adapted to 
CAD or mechanical objects, where there exist real 
defined regular boundaries. On natural or organic 
objects the fact of rectifying boundaries does not 
have a real signification since even a human hand 
could not trace precise and clear boundaries. 
 

We have tested our rectification method on various 
models issued from our region segmentation method. 
Fig.16 presents results for “Fandisk”. Artefacts 
coming from the region segmentation are all 
suppressed; we obtain surface patches with very 
clean and regular boundaries, adapted for tasks like 
parametric or subdivision surface fitting. We have 
also conducted tests on artificially bad segmented 
objects, in order to see if the rectification method 
could repair a bad segmentation and not only 
suppress some small imperfections. Fig.17 shows 
results on a bad segmented object.  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (a) (b) (c) 

Figure 17. The different steps of the Boundary Rectification for an artificially bad segmented CAD object. 
(a) Original object. (b) Bad segmented object. (c) Correct Boundary Edges extraction and marking. (d) 
Corrected boundaries after the contour tracking. 

(d) 

(a) (b) (c) (d) 

Figure 16. The different steps of the Boundary Rectification for the “Fandisk” object with a zoom on 
an artifact correction. (a) Segmented object. (b) Minimum curvature directions. (c) Correct 
Boundary Edges extraction and marking.   (d) Corrected boundaries after the contour tracking. 



We can observe that bad boundary edges are 
eliminated whereas correct ones are correctly 
extracted and completed to give a very correct set of 
surface patches. Even with very few correct boundary 
edges, final boundaries of the object are well 
extracted. This rectification process is independent of 
the region segmentation method presented in section 
4; we can imagine using it as a contour tracking post 
process to hard edges detection methods for example. 
 
6. Conclusion 
 
This paper presents an original segmentation method 
to decompose a 3D-mesh into near curvature constant 
surface patches with clean boundaries.  
The simple and efficient curvature classification 
detects any curvature transition and thus allows 
segmenting the object into known and near constant 
curvature regions and not just cutting the object along 
its hard edges. The triangle growing process transmits 
regions information from vertices to triangles, and 
thus allows to obtain clearly distinguishable edges as 
boundaries contrary to the traditional Watershed 
based methods which consider only vertices. 
Our original boundary rectification method based on 
curvature tensor orientation, allows suppressing 
boundaries defects commonly produced by most of 
the segmentation algorithms, even if they are 
important. We obtain, in the case of CAD or 
mechanical objects, the real natural boundaries 
corresponding to an intuitive hand made 
segmentation of the object. This method is 
independent of the previous region segmentation and 
can be used as a post process of a hard edges 
detection, for example to complete hard edges 
contours of an object. 
About perspectives, we plan to consider variance and 
histogram distribution of curvature, in order to 
improve the curvature classification method, and also 
to be able to automatically process the region 
merging threshold which remains a critical parameter 
of our method. This work is part of a larger 
compression process. The objective is to fit the 
segmented sub-surfaces with subdivision or 
parametric surfaces, in order to obtain the object in 
the form of a set of ”light” patches, which will allows 
adaptive and scalable compression and transmission. 
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