
Curvature tensor Based Triangle Mesh Segmentation with Boundary
Rectification

Lavoué Guillaume
LIRIS FRE 2672 CNRS
43, Bd du 11 novembre

69622 Villeurbanne Cedex,
France

glavoue@liris.cnrs.fr

Dupont Florent
LIRIS FRE 2672 CNRS
43, Bd du 11 novembre

69622 Villeurbanne Cedex,
France

fdupont@liris.cnrs.fr

Baskurt Atilla
LIRIS FRE 2672 CNRS
43, Bd du 11 novembre

69622 Villeurbanne Cedex,
France

abaskurt@liris.cnrs.fr

Abstract

This paper presents a new and efficient algorithm for
decomposition of 3D arbitrary triangle mesh into
surface patches. Our method is based on the
curvature tensor field analysis and presents two
distinct complementary steps: a region based
segmentation which decomposes the object into
known and near constant curvature patches, and a
boundary rectification based on curvature tensor
directions, which corrects boundaries by suppressing
their artefacts or discontinuities. Experiments were
conducted on various models including both CAD
and natural objects, results are satisfactory.
Resulting segmented patches, by virtue of their
properties (known curvature, clean boundaries) are
particularly adapted to computer graphics task like
parametric or subdivision surface fitting in an
adaptive compression objective.

Keywords: Segmentation, Curvature tensor,
Classification, Region growing, Region merging,
Boundaries, CAD.

1. Introduction

Recent advances in the field of computer graphics
(tools for acquisition, modelers, graphics hardware,
etc…) have contributed to an amazing growth in the
amount of 3d-models created and stored. With the
expansion of the Internet, the need for transmission
of these 3d-contents is more and more acute, this
problematic results in the research of adaptive and
multi-resolution compression methods, particularly
for 3d-meshes.
In this context, the decomposition of 3d-objects, into
surface patches, becomes attractive since it simplifies

compression complexity and because it brings
adaptiveness to algorithms. Within this framework,
we present a curvature tensor based triangle mesh
segmentation method, particularly adapted to
optimized triangulated CAD objects, which
decomposes a 3D-mesh into connected known and
near constant curvature regions with clean and
regular boundaries. Resulting patches are particularly
adapted to computer graphics tasks such as
subdivision or parametric surface fitting in an
adaptive compression objective.
Section 2 details the related work about mesh
segmentation, whereas the overview of our method is
presented in section 3. Sections 4 and 5 deal with the
two distinct steps of our method: the region
segmentation and the boundary rectification.

2. Related work

There has been a considerable research work relevant
to the problem of 3d-object segmentation. However
the majority of these methods concern range images
[1][2][3][4] or 3d point clouds [5][6]. Only few
studies concern triangle meshes which is nevertheless
the most widespread representation for 3d-objects.
Wu and Levine [7] present a physics-based original
method which uses the idea of electrical charge but
this approach is computationally expensive. The
other approaches generally use discrete curvature
analysis combined with the Watershed algorithm
described by Serra [8] in the 2D image segmentation
field. Mangan and Whitaker [9] generalize the
Watershed method to arbitrary meshes, using the
Gaussian curvature or the norm of covariance of
adjacent triangle normals at each mesh vertex as the
height field. Sun and al. [10] use the Watershed with
a new curvature measure based on the eigen analysis
of the surface normal vector field in a geodesic

window. More recently, Razdan and Bae [11]
proposed an hybrid method which combines
Watershed algorithm with the extraction of feature
boundaries by the analysis of dihedral angle between
polygon faces. Zhang et al. [12] use the sign of the
Gaussian curvature to mark boundaries, and process a
part decomposition.
We have distinguished two major shortcomings in
these existing methods. They are described below.
Firstly, many approaches are only vertex based [10]
[12], each vertex has its region information, therefore
triangles on boundaries have multi-regions
information, it results that boundaries are fuzzy; they
are not clearly identified in term of edges. Our
method is an hybrid approach vertex-triangle, which
combines a vertex classification with a triangle
region growing and merging. Boundaries between
regions are thus clearly distinguishable edges.
Moreover our boundary rectification method allows
extracting “real” regular boundaries of the object, by
suppressing artefacts or discontinuities.
Secondly, most of the approaches discussed above,
particularly those based on the Watershed algorithm,
extract regions surrounded by high curvature
boundaries [10] [11] [12] (see Fig.9.b) but fails to
distinguish simple curvature transition between
vertices (see Fig.9.a) without curvature pick. The K-
Means vertex classification that we use allows to
detect these transitions.

3. Method overview

We present a decomposition algorithm of arbitrary
triangle meshes into known and almost constant
curvature surface patches with clean and regular
boundaries. We address particularly the problem of
CAD parts, but natural objects are also considered.
Our approach is based on two steps (see Fig.1):
A curvature based region segmentation: firstly, a
pre-processing step identifies sharp edges and
vertices (see Section 4.1). This information is
necessary for the continuation of the algorithm,
particularly in the case of optimally triangulated
meshes. Then the curvature tensor is calculated for
each vertex according to the work of Cohen-Steiner
et al. [13]. Then vertices are classified into clusters
(see Section 4.2), according to their principal
curvatures values Kmin and Kmax. A region growing
algorithm is then processed (see Section 4.3)
assembling triangles into connected labelled regions
according to vertex clusters. Finally a region
adjacency graph is processed and reduced in order to
merge similar regions (see Section 4.4) according to

several criteria (curvature similarity, size and
common perimeter).
A boundary rectification: firstly, boundary edges
are extracted from the previous region segmentation
step. Then for each of them, a boundary score is
processed (see section 5.2) which notifies a degree of
correctness. According to this score, estimated
correct boundary edges are marked and are used in a
contour tracking algorithm (see section 5.3) to
complete the final correct boundaries of the object.

Figure 1. The two steps of the method. (a)
Constant curvature region segmentation. (b)
boundary rectification.

4. The region segmentation process

4.1. Sharp features detection.

Our segmentation algorithm is based on the analysis
of the curvature of each vertex. Prior to start the
algorithm we must detect and take into account sharp
edges, especially for CAD object. Indeed even if, in
practice, a curvature value is associated to sharp
edges, the curvature is not theoretically defined on
these features. We cannot consider a sharp edge like
any other high curvature edge; it defines only a
boundary and not a region. That is why we process a
sharp features detection. A sharp edge is defined as
follow: an edge shared by two triangles whose
normal vectors make an angle higher that a given
threshold. Vertices that belong to a sharp edge are
considered as sharp vertices (but an edge shared by
two sharp vertices is not necessarily a sharp edge).
This sharp features detection is useful within the
region growing process (see section 4.3) and as a pre-
processing step to process a mesh enrichment on bad
tessellated objects, particularly optimized
triangulated CAD objects with contain a very small
triangle number. For each triangle associated with
three sharp vertices, we could not reasonably
evaluate its curvature or associate it with a region; it
ties up with the “no hard boundary” problematic
raised by Razdan and Bae [11]. Therefore we
subdivide these sharp triangles by adding a new

Sharp
Edges

detection

Region growing
Region merging

Vertex
Curvature

classification

Triangle
 mesh

Segmented
 regions

Boundary
 edges

Boundary
score

processing

Contour
tracking

Correct
Boundary

edges

Rectified
Boundary

Boundary edges extraction

(a)

(b)

vertex at the center (see Fig.2). The region
segmentation is thus applied on this modified mesh
and added vertices are removed at the end of the
algorithm.

Figure 2. The mesh enrichment process. (a)
Triangle with three sharp vertices. (b) Associated
subdivided triangle.

4.2. Vertex classification

Vertices of the mesh are classified according to their
principal curvatures kmin and kmax. Moreover the
boundary rectification process (see section 5) needs
principal curvature directions dmin and dmax, thus
we have to calculate these information for each
vertex of the input mesh.

 0 77 0 24

Figure 3. Curvature fields for the 3D object
“Plane”. (a) Kmax, (b) Kmin (absolute value), (c)
dmax, (d) dmin.

4.2.1. Discrete curvature estimation. A triangle
mesh is a piecewise linear surface, thus the
calculation of its curvature is not trivial. Several
authors have proposed different evaluation
procedures for curvature tensor estimation
[13][14][15].
We have implemented the work of Cohen-Steiner et
al. [13], based on the Normal Cycle. This estimation
procedure relies on solid theoretical foundations and

convergence properties. Moreover the tensor can be
averaged over an arbitrary geodesic region, like in
[16], therefore it is independent of the sampling; thus
we have the possibility to filter noisy objects or
consider only a queried size of details extraction for
the segmentation method. For each vertex, the
curvature tensor is calculated and the principal
curvatures values kmin, kmax and directions dmin,
dmax are extracted. They correspond respectively to
the eigenvalues and eigenvectors of the curvature
tensor, with switched order (the eigenvector
associated with kmin is dmax and vice versa).
Fig.3 presents samples of these fields for the “Plane”
object. On the edges of the wings, we have a high
maximum curvature, whereas kmin is null, it is a
parabolic region. Kmin is positive on elliptic regions,
like at the end of the wings, and negative in
hyperbolic regions like at the joints between the
wings and the body of the plane. We have
represented the absolute value of kmin on the figure
because its sign has no importance in our algorithm.
The principal curvature directions have signification
only on anisotropic regions (elliptic, parabolic and
hyperbolic) where they represent lines of curvature of
the object. On isotropic regions (spherical, planar),
they do not carry any information.

4.2.2. Curvature classification. Vertices are
classified according to the values of their principal
curvatures Kmin and Kmax (see Fig.4), associated
with the Euclidian distance (in the curvature space).
This classification is independent of the spatial
disposition of the vertices. More complex and
complete comparative measures exist between two
tensors [17][18] but for our purpose we just need to
consider a basic curvature information and not
complex tensor features like shape or orientation.
Moreover Kmin and Kmax carry complementary
information. Kmin can be negative, but we consider
only its absolute value, it is not necessary to
differentiate positive and negative values in our
classification. The clustering is done via a K-Means
algorithm (a usual unsupervised fast classification
method) [19], completed by a cluster regularization
(merging of small or similar clusters).
At the end of the algorithm each vertex is associated
with a Cluster Ci and an associated classified
curvature value ci (ci is in fact a two scalars vector
which contains classified values for Kmin and Kmax).
The number of clusters K, in the curvature space, is
fixed by the user, but is not critical for the final
segmentation result because of the region growing
and merging steps. Fig.4 shows the vertex
classification process applied to the “Plane” object
(2506 vertices). The number of clusters in the

Sharp
vertices
New
vertices

 (a) (b)

(a) (b)

(c) (d)

Classification
5 clusters

Kmax

Kmin

curvature space was fixed to 5 for this example
(clusters colors are yellow, orange, blue, dark blue
and green).

Figure 4. Vertex classification of the Plane mesh in
5 curvature clusters.

4.3. The region growing process

Once vertices have been classified, we want to
recover triangle regions with similar curvature. This
transmission of the curvature information from
vertices to triangles is not a trivial operation. A
triangle growing and labeling operation is performed
as follows: for each triangle of which curvature is
completely defined (seed triangle), a new region is
created, labeled and extended. This process is
repeated for every other seed triangle not yet labeled.

4.3.1. The seed triangle determination. There exist
two situations where a triangle is considered as a seed
(see Fig.5):
• Its three vertices belong to the same cluster Ci,

thus the curvature value ci of this cluster is
assigned to the corresponding created region (see
Fig.5.a).

• It contains two sharp vertices, thus the curvature
cluster value ci of the third vertex is assigned to
the created region (see Fig.5.b).

Figure 5. The two seed triangle situations (a) (b)
and an undetermined triangle (c).

In every other cases (see Fig.5.c for example), we
cannot assign a curvature value to the triangle, thus
we cannot consider it as a seed to grow a region.

4.3.2. The growing mechanism. When a seed
triangle is encountered, a new region is created,
containing this triangle, associated to a new label L
and a curvature value cL.

Figure 6. Considered features for the region
growing process.

Then a recursive process extends this region (see
Fig.6): for each triangle tL belonging to the region, for
each non sharp edge ei of this triangle, we consider
the associated neighboring triangle ti and its opposite
vertex vi. If vi is a sharp vertex or if it has the cL
curvature value, thus the considered triangle is
integrated to the region. This process is repeated for
every other triangle marked as seed and not yet
labeled. With this process, it remains, sometimes, not
labeled triangles at the end of the algorithm. A simple
crack filling process fit these holes by integrate these
triangles to the most represented region of their
neighborhoods.

Figure 7. The region growing process for the
“Fandisk” mesh (Regions colors are randomly
chosen).

Fig.7 shows the region growing process for the
Fandisk object, starting from a 18 clusters vertex
classification. The region growing extracts 128
connected regions (regions colors are randomly
chosen).
The growing algorithm is very dependant of the
number of curvature clusters. Moreover, a fixed value
of K for the K-Means classification algorithm can
generate different sets of clusters because of the

Ci

Ci
 (a) (b) (c)

Cj Ck

ci ci ?

Ci Ci

Region
growing

Ci

Normal
vertices

Sharp
vertice
s

Region L

Growing
Mechanism

vi

ei tL ti

random choice of the K initial seeds. Thus for a given
K, the merging step can give different results in term
of number and localization of extracted regions.
Because of this uncertainty, and to suppress the
dependency to the number of curvature clusters, a
region merging process was developed, in order to
unify results.

4.4. The region merging process

The region merging process aims to:
• Reduce the over-segmentation resulting from the

growing step.
• Suppress the algorithm dependency to the

number of curvature clusters issued from the K-
Means vertex classification.

4.4.1. The region adjacency graph. The efficiency
of an algorithm depends on the data scheme used.
The purpose here is to merge adjacent similar
regions. Thus a good representation to operate is a
region adjacency graph (RAG), a data scheme used in
image segmentation [20][21]; this algebraic structure
contains a set of nodes and a set of edges. Each node
represents a connected region (i.e. a connected subset
of the mesh), and each edge represents an adjacency
between two regions. Edges are evaluated by a
curvature distance between the two corresponding
regions.

4.4.2. General algorithm. Once connected regions
have been extracted by the region growing algorithm,
the RAG is processed, and distances between
adjacent regions are calculated. Then the reduction of
the graph is processed: at each iteration the smallest
edge of the graph is eliminated, thus the
corresponding regions are merged; then the graph is
updated. When two regions are merged, their
curvatures are merged proportionally to their areas to
give the curvature of the resulting region. This graph
reduction stops when the number of regions reaches a
queried number chosen by the user, or when the
weight of the smallest edge is larger than a given
threshold.

4.4.3. Region distance measurement. The distance
Dij used in our method is equal to the curvature
distance DCij, between the two corresponding regions
Ri and Rj weighted by two coefficients: Nij, which
measures the nesting between the two corresponding
regions and Sij of which aim is to eliminate the
smallest regions.

ijijijij SNDCD ××=

Each coefficient is detailed in the following
paragraphs.
The curvature distance DCij is processed using the
curvature values ci and cj of the two corresponding
regions and the curvature value cij of their boundary.

ijjijiij ccccDC −+−=

ci and cj come from the region growing step. cij is the
average of the vertices curvatures on the boundary
between the two regions. Only vertices with two
incident edges separating these regions (real
boundary vertices) are taken into account (see Fig.8),
in order to consider only the real boundary between
them.

Figure 8. Representation of the vertices taken into
account for the calculation of the average
curvature of the boundary between Ri and Rj.

It is important for the calculation of the curvature
distance between Ri and Rj to consider not only their
respective curvatures ci and cj but also their boundary
one cij, because two situations may exist between
these regions. Either regions have different
curvatures and no precise boundary (see Fig.9.a), or
regions have almost the same curvature and a very
different boundary curvature (see Fig.9.b).

Figure 9. The two different situations between two
adjacent regions. (a) no boundary but a curvature
difference, (b) no curvature difference, but a
significant boundary.

The ijN coefficient measures the nesting between

the two corresponding regions.
(1)

Rj

Ri

Real boundary
vertices

Not boundary
vertices

ci

ci cj cj
Curvature

value

(2)

 (a) (b)

cij

cij

ij

ji
ij P

PP
N

),min(
=

with iP (resp. jP) the perimeter of the ith (resp. jth)

region and ijP the size of the common border

between the ith and jth regions. This coefficient was
introduced in image processing by Schettini [22] for
color image segmentation. The aim of the Nij factor is
to consider the spatial disposition of the regions in
the merging decision. Regions with a large common
border are more likely to belong to the same
‘meaningful’ part, thus their similarity distance is
reduced.

The Sij coefficient purpose is to accelerate the fusion
of the smallest regions.



 <<

=
else

AAorAAif
S ji

ij 1
)(minminε

where Ai (resp. Aj) is the area of the ith (resp. jth)
region, Amin is a minimum area fixed by the user and
ε is a positive value near 0. The Sij factor can be
considerate as a filtering factor. When a region’s area
is smaller than Amin, it is considered too small, thus
its distance with its adjacent regions is reduced by the
Sij coefficient, equal toε ; the considered region will
be more easily merged with another. This method
aims to eliminate the smallest regions. The value of
Amin depends on the queried size (or number) of final
regions. The value of ε is fixed to 1e-5. This value
accelerates the fusion of the smallest regions, while
keeping the merging order.

Figure 10. The region merging process for the
“Fandisk” mesh.

Fig.10 shows the merging process. The initial pre-
segmented object was obtained after the classification
step in the curvature space (18 curvature clusters),
and after the region growing step. It contains 128
connected spatial regions. After the merging process,
the final region number is 25. The merging threshold
was fixed to 5.

4.5. Experiments and results

Our segmentation method was tested on several
different objects. Examples are given for three
objects from different nature: a rather smooth object
(Pawn), a mechanical highly tesselated object
(Fandisk) and an optimized triangulated CAD object
(Swivel). Results are shown on Fig.11. For the
“Fandisk” object (see Fig.11.b) we obtain patches
with almost constant curvature as for the “Pawn” (see
Fig.11.a). Our method allows detecting curvature
transition or inflexion points and not only regions
separated by high curvature boundaries, or sharp
boundaries, like traditional watershed method. Even
for the bad tessellated “Swivel” object (see Fig.11.c),
we obtain good results after the enrichment of
detected sharp triangles.
We have studied the dependency of the algorithm on
the number of curvature clusters K which parameters
the K-means algorithm during the vertex
classification step. We have conducted tests with
several objects; results for Fandisk are shown in
Table 1. The vertex classification was processed with
different values for K (K’ is the cluster number after
regularization) and a unique threshold fixed to 50 was
chosen for the region merging process. Results show
that of course K influences the number of regions
created after the growing step (besides, this number
can vary for a same K, because of the random choice
of the K initial seeds for the K-Means algorithm) but
the final region number is regularized by the merging
algorithm and the resulting segmented regions are
almost identical. Thus we have suppressed the
algorithm dependency to the number of curvature
clusters; it does not have to be considered as a
parameter for the method.

Table 1. Influence of the cluster number K of the
classification algorithm, on the number of final
regions for a given threshold.

K K
regularized

NbReg after
growing

NbReg after
merging

5 5 46 15

10 7 62 15

10 9 99 15

15 9 76 15

20 11 84 15

20 17 116 15

Our purpose is to obtain clean patches with constant
curvature in a subdivision or parametric surface
fitting objective.

(3)

(4)

18 clusters
128 regions

 25 regions

Region
merging

Fandisk (6475 vertices) Results of the growing/merging Results of the growing/merging
 K’=10, threshold=5, NbReg=25 Other side

 Swivel (2743 vertices) Results of the mesh enrichment Results of the growing/merging
 K’=3, threshold=5, NbReg=20

Pawn (2434 vertices) Results of the growing Results of the merging
 K’=10, NbReg=50 threshold=35, NbReg=9

Figure 11. Segmentation of “Pawn”, “Fandisk” and “Swivel” objects. The region merging threshold is 5 for
“Fandisk” and “Swivel”, and 35 for “Pawn”.

Although our segmented regions are very correct in
terms of general shape, their boundaries present some
discontinuities (see Fig.12), particularly when we
consider a high number of curvature clusters; for
instance, in Fig.10 after the merging, we obtain good
surface patches in terms of disposition, and general
shape but a lot of small defects have appeared on the
boundaries.
There exists a main reason for the apparition of these
artefacts: the basis for our method is the curvature
field of the object. This information is based on the
vertices, whereas we finally consider triangles and
edges. This transition Vertex-Triangle (processed
during the region growing step) is very difficult to
manage thus we lost a part of the initial accuracy.

5. The boundary rectification process

5.1. Objective

Our region segmentation method extracts near
constant curvature, topologically simple patches from
the 3D-objects, and give good qualitative results in
terms of nature and disposition of the segmented
regions. Nevertheless, our method, like most of the
existing methods, does not extract perfect boundaries,
without discontinuities; generally, regions present
artefacts at the limits of their boundaries (see section
4.5). Fig.12 presents examples of this region
boundaries vagueness; in Fig.12.a blue and yellow

regions in the red ellipse are not correct, their
boundary is not straight; in Fig.12.b, green and pink
regions are not complete regarding to the original
object and the green one presents a discontinuity.
In this context, the objective of the boundary
rectification process is to suppress these artefacts, in
order to obtain clean boundaries corresponding to
real natural boundaries of the object.
The rectification method is composed of two
principal steps: firstly, segmented object boundary
edges are extracted and for each of them a
correctness score is processed. Then, starting from
the estimated correct boundary edges, the object final
boundaries are completed using a contour tracking
algorithm.

Figure 12. Zooms on artefacts (region boundary
precision mistake) for the segmented Fandisk
object.

5.2. The Boundary Score definition

The goal of this score is to define a notion of
correctness for each boundary edge extracted from
the previous region segmentation. For this purpose,
we consider the principal curvature directions dmin
and dmax (see section 4.2.1) which define the lines of
curvature of the object. Indeed, they represent pivotal
information in the geometry description [16]. The
curvature tensors at the natural boundaries of an
object tend to be very anisotropic with a maximum
direction following the curvature transition and
therefore orthogonal to the boundaries. Thus the
boundaries will tend to be parallel to the lines of
minimum curvature.

Fig.13.a shows a natural hand made segmentation of
a smooth cube object into constant curvature patches.
Fig.13.b shows maximum and minimum curvature
directions.

Figure 13. Natural constant curvature patches of
the Cube object (a) and its principal curvature
directions (b), dmin in red and dmax in blue.

Boundaries of the patches follow the minimum
directions, except around isotropic region (at the
corners of the cube). Therefore the angle between a
boundary edge and its vertices minimum curvature
directions can represent a good evaluation of its
“correctness”.

The boundary score S, calculated for an edge ie , is:

)()()(icii eSceSaeS ×+= ω (5)

cω is a weighting coefficient, which is fixed to 1 in
our examples (Sa and Sc are normalized).

The angle score Sa considers the angles i1minϑ and

i2minϑ (see Fig.14) between the edge ie and its
vertices minimum directions. The score also consider
the angles

i1maxϑ and
2imaxϑ between the edge

ie and its vertices maximum directions, weighted by
the values of the principal curvatures Kmin and Kmax
in order to take into account isotropic region, like the
corner of the cube for instance (see Fig.13). Thus the
angle score Sa is processed according to the
following equation (6):

()

()
i2i2

i2i2i2i2

i1i1

i1i1i1i1

i

KminKmax

KminmaxKmaxmin
KminKmax

KminmaxKmaxmin

eSa

+

×+×
+

×+×

+=
ϑϑ

ϑϑ

)(

with i1minϑ , i2minϑ and i1maxϑ , i2maxϑ the

respective angles of the considered edge ie with the
minimum curvature directions of its vertices and their
maximum curvature directions. i1Kmin , 2iKmin and

 (a) (b)

(a)

(b)

i1Kmax , 2iKmax are the respective values of
minimum curvatures and maximum curvatures of the
vertices of the edge ie .

Figure 14. Elements taken into account for the
calculation of the Boundary Score of the edge ie .

The curvature score Sc corresponds to a normalized
curvature difference between curvature values of the
two vertices of the edge. If curvatures of the edge’s
vertices are very different, thus the edge must not be
considered as a correct boundary. Sc is defined by the
following equation (7):

),max(),max(
)(

i1i2i1i2

i1i2i1i2
i KmaxKmaxKminKmin

KmaxKmaxKminKmin
eSc

+
−+−

=

5.3. Algorithm

The rectification algorithm is composed of two steps:
the marking of the correct boundary edges coming
from the region segmentation and the contour
tracking to complete final boundaries.

5.3.1. Correct boundary marking. For every
boundary edges coming from the region segmentation
step, the Boundary Score previously defined is
processed. Then, a threshold ST is fixed; for each
edge, if its Boundary Score is below ST, the edge is
considered as a correct boundary edge (CBE), else the
edge is no more considerate. Fig.16.c and Fig.17.c
show this marking process, starting from the region
segmentation (see Fig.16.a, Fig.17.b), CBEs are
represented in green, and others in red.

4.3.2. Contour tracking. The second step of the
rectification algorithm is the contour tracking. Once
CBEs have been extracted, they form pieces of
boundary contours; our purpose is to complete these
contours to obtain a set of closed contours
corresponding to final object patches boundaries. For
each not closed boundary contour, we extract the
edges potentially being able to complete it (we call
them “potential edges”). They are edges adjacent to
one CBE at the extremity of an open contour.

Fig.15.a shows a piece of contour formed by two
CBEs (in black), with associated potential edges (PE)
(in dotted black) which are candidates to complete
the open contour. Then, each potential edge is
associated with a weight P which will determine its
possibilities to be integrated to the contour; the
smallest is this weight, the more the edge has
possibilities to be considered as a CBE.
The weight P of a potential edge depends of its score

)(ieS but also of its angle),(CBEi eeϑ with its
neighboring CBE, because, we try to limit the
deviation of the boundary.

),()()(CBEiii eeeSeP ϑωϑ ×+= (8)

ϑω is a weighting coefficient, it is fixed to 1 in our
examples.

Figure 15. Three steps (a,b,c) of the boundary
tracking algorithm, with associated position of
correct boundary edges (CBE), potential edges
(PE) and smallest potential edge, at each iteration.

Once each potential edge has been valuated, we
organize them into a sorted list. Then the contour
tracking algorithm starts; its mechanism is the
following: once we have the potential boundary
edges (PE) sorted list, the PE associated with the
lowest weight P is extracted and integrated to the
considered boundary contour, and therefore this PE
becomes a CBE. Then the list is updated (the PEs are
redistributed) and the list reduction continues until
every boundary contour is closed. Fig.15 presents
three iterations of the contour tracking algorithm. In
Fig.15.a, there are two CBEs which form an open
contour (in black), thus there are six PEs candidates
to complete the contour (in dotted black). The PE
inside the red ellipse is considered as the one with the

Smallest
PE

(a)

(c)

Vertices

CBE

(b)

PE Other
edges

i1minϑ

i2minϑie

),(i1i1 KminKmax

),(i2i2 KminKmax

smallest weight P, thus at the next iteration it is
extracted and integrated to the contour (see Fig.15.b).
The position and number of the PEs is thus updated.
The process continues in Fig.15.c, with another PE
integrated to the contour.

5.4. Experiments and results

The rectification method is especially adapted to
CAD or mechanical objects, where there exist real
defined regular boundaries. On natural or organic
objects the fact of rectifying boundaries does not
have a real signification since even a human hand
could not trace precise and clear boundaries.

We have tested our rectification method on various
models issued from our region segmentation method.
Fig.16 presents results for “Fandisk”. Artefacts
coming from the region segmentation are all
suppressed; we obtain surface patches with very
clean and regular boundaries, adapted for tasks like
parametric or subdivision surface fitting. We have
also conducted tests on artificially bad segmented
objects, in order to see if the rectification method
could repair a bad segmentation and not only
suppress some small imperfections. Fig.17 shows
results on a bad segmented object.

 (a) (b) (c)

Figure 17. The different steps of the Boundary Rectification for an artificially bad segmented CAD object.
(a) Original object. (b) Bad segmented object. (c) Correct Boundary Edges extraction and marking. (d)
Corrected boundaries after the contour tracking.

(d)

(a) (b) (c) (d)

Figure 16. The different steps of the Boundary Rectification for the “Fandisk” object with a zoom on
an artifact correction. (a) Segmented object. (b) Minimum curvature directions. (c) Correct
Boundary Edges extraction and marking. (d) Corrected boundaries after the contour tracking.

We can observe that bad boundary edges are
eliminated whereas correct ones are correctly
extracted and completed to give a very correct set of
surface patches. Even with very few correct boundary
edges, final boundaries of the object are well
extracted. This rectification process is independent of
the region segmentation method presented in section
4; we can imagine using it as a contour tracking post
process to hard edges detection methods for example.

6. Conclusion

This paper presents an original segmentation method
to decompose a 3D-mesh into near curvature constant
surface patches with clean boundaries.
The simple and efficient curvature classification
detects any curvature transition and thus allows
segmenting the object into known and near constant
curvature regions and not just cutting the object along
its hard edges. The triangle growing process transmits
regions information from vertices to triangles, and
thus allows to obtain clearly distinguishable edges as
boundaries contrary to the traditional Watershed
based methods which consider only vertices.
Our original boundary rectification method based on
curvature tensor orientation, allows suppressing
boundaries defects commonly produced by most of
the segmentation algorithms, even if they are
important. We obtain, in the case of CAD or
mechanical objects, the real natural boundaries
corresponding to an intuitive hand made
segmentation of the object. This method is
independent of the previous region segmentation and
can be used as a post process of a hard edges
detection, for example to complete hard edges
contours of an object.
About perspectives, we plan to consider variance and
histogram distribution of curvature, in order to
improve the curvature classification method, and also
to be able to automatically process the region
merging threshold which remains a critical parameter
of our method. This work is part of a larger
compression process. The objective is to fit the
segmented sub-surfaces with subdivision or
parametric surfaces, in order to obtain the object in
the form of a set of ”light” patches, which will allows
adaptive and scalable compression and transmission.

7. Acknowledgments

This work is supported by the French Research
Ministry and the RNRT (Réseau National de
Recherche en Télécommunications) within the
framework of the Semantic-3D national project
(http://www.semantic-3d.net).

8. References

[1] R. Hoffman and Jain, AK., "Segmentation and
classification of range images", IEEE Transactions on

Pattern Analysis and Machine Intelligence, 1987, vol. 9,
no. 5, pp. 608-620.
[2] P. Besl, Surfaces in Range Image Understanding, New
York, USA, Springer-Verlag, 1988.
[3] H. Rom and G. Medioni, "Part decomposition and
description of 3d shapes.", International Conference on
Pattern Recognition, Jerusalem, Israel, 1994, vol. 1, pp.
629-632.
[4] A. Leonardis, A. Jaklic and F. Solina, "Superquadrics
for Segmenting and Modeling Range Data", IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 1997, vol. 19, no. 11, pp. 1289-1295.
[5] L. Chevalier, F. Jaillet and A. Baskurt, “A.
Segmentation and superquadric modelling of 3D objects”,
WSCG, Plzen - Bory, Czech Republic, 2003, vol .11, no. 2,
pp. 232-40.
[6] R. Chaine and S. Bouakaz, "Segmentation of 3-D
Surface Trace Points, Using a Hierarchical Tree-Based
Diffusion Scheme.", Fourth Asian Conference on
Computer Vision ACCV2000, Taiwan, 2000, vol. 2, pp.
995-1002.
[7] K. Wu and M. Levine, "3d part segmentation using
simulated electrical charge distributions.", IEEE
Transaction on Pattern Analysis and Machine Intelligence,
1997, vol. 19, pp. 1223-1235.
[8] J. Serra, Image Analysis and Mathematical
Morphology, Academic Press, London, 1982.
[9] A. Mangan and R. Whitaker, "Partitioning 3D Surface
Meshes Using Watershed Segmentation", IEEE
Visualization and Computer Graphics, 1999, vol. 5, no. 4,
pp. 308-321.
[10] Y. Sun, D. Page, J. PAIK, A. Koschan and M. Abidi,
"Triangle Mesh-Based Edge Detection And Its Application
To Surface Segmentation And Adaptive Surface
Smoothing", IEEE International Conference on Image
Processing, NY, USA, 2002, Vol. 3, 825-28.
[11] A. Razdan and M. Bae, "A hybrid approach to feature
segmentation of triangle meshes", Computer-Aided Design,
2003, vol. 35, no. 9, pp. 783-789.
[12] Y. Zhang, J. PAIK, A. Koschan, M. Abidi and D.
Gorsich, "A simple and efficient algorithm for part
decomposition of 3D triangulated models based on
curvature analysis", IEEE International Conference on
Image Processing, Rochester, NY, USA, 2002, vol. 3, pp.
273-76.
[13] D. Cohen-Steiner and J. Morvan, "Restricted delaunay
triangulations and normal cycle", 19th Annu. ACM Sympos.
Comput. Geom., 2003, pp. 237-246.
[14] M. Meyer, M. Desbrun, P. Schröder and H. Barr,
"Discrete Differential-Geometry Operators for Triangulated
2-Manifolds.", International Workshop on Visualization
and Mathematics, Berlin, Germany, 2002.
[15] G. Taubin, "Estimating the Tensor of Curvature of a
Surface from a Polyhedral Approximation", Fifth
International Conference on Computer Vision, 1995, pp.
902-907.
[16] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Levy and
M. Desbrun, "Anisotropic Polygonal Remeshing", ACM
Transactions on Graphics, SIGGRAPH '2003 Conference
Proceedings, 2003, vol. 22, no. 3, pp. 485-493.
[17] D. Alexander and J. Gee, "Elastic Matching of
Diffusion Tensor Images", Computer Vision and Image
Understanding, 2000, vol. 77, pp. 233-250.
[18] P. Basser and C. Pierpaoli, "Microstructural and
Physiological Features of Tissues Elucidated by
Quantitative Diffusion Tensor MRI", Journal of Magnetic
Resonance, 1996, vol. 111, pp. 209-219.

[19] A. Gersho and R. Gray , Vector Quantization and
Signal Compression, Boston, USA, Kluwer Academic
Publishers, 1992.
[20] K. Saarinen, "Color image segmentation by a
watershed algorithm and region adjacency graph
processing.", IEEE International Conference on Image
Processing, Austin, TX, USA, 1994, pp. 1021-1024.

[21] K. Idrissi, G. Lavoué, J. Ricard and A. Baskurt,
"Object of Interest based visual navigation, retrieval and
semantic content identification system", Computer Vision
and Image Understanding, Special issue on Color for
Image Indexing and Retrieval, 2003.
[22] R. Schettini, "A Segmentation Algorithm For Color
Images", Pattern Recognition Letters, 1993, vol. 14, pp.
499-506.

