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Abstract

This paper presents a new three-dimensional shape de-
scriptor, called 3D angular radial transform. This de-
scriptor is an extension of the 2D region base shape de-
scriptor proposed by MPEG-7, the Angular Radial Trans-
form (ART). We propose to generalize the ART in three-
dimensional to index 3D models.

1. Introduction

The technical 3D model databases always grow up since
a score of years and the start of the computed-aided design.
The engineering laboratories and the design offices always
increase the number of 3D solid objects and the current
industrial estimates point to the existence of over 30 bil-
lion of CAD models [7]. The number of models requires a
content-based mining with indexing and retrieval processes.
The communities have made great strides in image manage-
ment, but few works exist on 3D data. In the framework of
a partnership with the car manufacturer, Renault, we inves-
tigate the possibilities to make a fast 3D descriptor to index
a great technical database. The indexing of a huge 3D ob-
ject database requires a small descriptor size and a small
indexing and retrieval cost, to guarantee fast answers.

To index 3D objects, 3D moment approaches exist and
the spherical harmonic representation can be cited [3, 5].
On the 2D images, the MPEG-7 standard proposes to index
images using a region based shape descriptor, the Angular
Radial Transform (ART) [4, 6]. This shape descriptor has
many properties: compact size, robust to noise and scaling,
invariant to rotation, ability to describe complex objects.

This paper presents a new 3D shape descriptor, the 3D
Angular Radial Transform (3D ART). This descriptor is a
generalization of the ART to 3D objects and we would like
to save the 2D ART properties. The rest of the paper will be
organized as follows: first, a survey on 3D shape matching
is made, then, we present the 3D ART descriptor, finally,
experiments and results are presented.

2. Survey of recent methods

The moment approaches can be defined as projections
of the function defining the object onto a set of charac-
teristic functions to the given moment. These approaches
are used in 2D pattern recognition with several 2D mo-
ments: geometrical, Legendre, Fourier-Mellin, Zernike,
pseudo-Zernike moments [10]. Some of these moments
have been extending in 3D: 3D Fourier [2], 3D Wavelet
[8], 3D Zernike [1] and a spherical harmonic decomposi-
tion was used by Vranic and Saupe [11].

The spherical harmonic descriptor (SH) is an efficient
method and is used in last section to estimate the pro-
posed method. The SH descriptors were introduced by
Funkhouser et al. [3]. After a centering step, the spher-
ical harmonic descriptors decompose 3D shapes into irre-
ducible set of rotation independent components by sample
the three dimensional space as concentric shells, where the
shells are defined by equal radial intervals. The spherical
functions are decomposed as a sum of its first 16 harmonic
components [5], analogous to a Fourier decomposition into
different frequencies. Using the fact that rotations do not
change the norm of the harmonic components, the signa-
ture of each spherical function is defined as a list of these
16 norms. Finally, these different signatures are combined
to obtain a32 ∗ 16 signature for the 3D model. During the
search of a database, the similarity of objects is calculated
as the Euclidean distance between these vectors.

3. 3D Angular radial transform

In this section, we generalize the MPEG-7’s angular ra-
dial transform to 3D space.

3.1. 3D ART definition

To apply the 3D ART, the objects are represented in
spherical coordinates whereφ is the azimuthal angle in the
xy-plane from thex-axis, θ is the polar angle from thez-
axis andρ is the radius from a point to the origin. The 3D



ART is a complex-orthogonal unitary transform defined on
a unit sphere. The 3D ART coefficients are defined by:
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whereFnmθmφ

is an ART coefficient of ordern, mθ and
mφ, f(p, θ, φ) is a 3D object function in spherical coordi-
nates andVnmθmφ

(ρ, θ, φ) is a 3D ART basis function (BF).
The 3D BF are separable along the angular and the two ra-
dial directions:
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As in 2D, the radial basis function is defined by a cosine
function:
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{
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The angular basis functions are defined by exponential
functions to achieve rotation invariance:

Amθ
(θ) = 1

2π exp (2jmθθ)
Amφ

(φ) = 1
2π exp (jmφφ) (4)

Two angular basis functions are defined to keep the basis
functions continuity along bothθ andφ values. The val-
ues of the parametersn, mθ andmφ are trade-offs between
efficiency and accuracy.

The choice of the values of 3D ART parameters,n, mθ

andmφ, is made by the compute of the Recall values for
some different value of this parameters. On the technical
database presented in section 4, we finally choosen = 3,
mθ = 5 andmφ = 5.

The real parts of the 3D ART BF are shown in figures 1
and 2.

Figure 1. Real parts of 3D ART BF.

Figure 2. Real parts of 3D ART BF.

The similarity measure is computed using aL1 norm be-
tween two shapes described by the 3D ART descriptor:

d(Q, I) =
n·mθ·mφ∑

i=1

‖ART3DQ[i]−ARRT3DI [i]‖ (5)

whereQ andI represent a query object and object of the
database andART3D is the array of 3D ART descriptor
values.

3.2. Indexing process

An important property of the 2D ART is the rotational
invariance. The rotation representation in polar coordinates
can be express as the sum of angular components:

(ρ, θ) Rotα−→ (ρ, θ + α) (6)

Thus, that does not modify the function normAn(θ) and
the ART descriptor. In 3D, unspecified rotations can not
be expressed as the sum of constant values on the angular
components. The exponential functions ofAmi functions
and the object descriptor are changed. The only rotations
that are invariant by this description are the rotations around
the z axis. These rotations do not modify theθ-components
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of the object points. Hence, the rotations can be expressed
as a linear sum on theφ-components that is invariant.

To solve that problem, we align the objects according
to their principal axis. A Principal Components Analysis
(PCA) is applied to obtain the principal directions of the
objects and we align the objects along the z-axis. The align-
ment is made only along the z-axis. The Fig. 3 shows the
indexation process.

Hence, before we project the 3D image onto a BF, the
objects are pre-processed as follows: first, the objects are
discritized in a grid such that the voxels are separated into
interior and exterior elements of the object. The discretiza-
tion is used to compute the parameters of centering, scaling
and alignment to the z-axis. Then, the discretized object
is aligned according to these parameters: the 3D object is
centered onto the center of gravity and scale up the object
such that the object boundary touches the grid boundary.
The pre-processing step makes the 3D ART be robust to
translation and to scaling. Finally, the discretization is pro-
jected to the 3D ART BF to obtain the 3D ART coefficients.
These coefficients are normalized and define the 3D shape
descriptor.

Figure 3. Indexing process.

4. Experiments

Two set of experiments are made. First, we have to fix
the parameter values: the number and the size of the dis-
cretization. Then, we evaluate the robustness of the method.
Finally, the 3D ART is compared to the Spherical Harmonic
descriptor (SH) [3, 5]. The tests are made on two 3D model
databases: the Princeton Shape Benchmark [9] and a Re-
nault database (Fig. 4 shows examples of 3D models). The

Renault database is a technical database which contains me-
chanical models. Hence the shapes of difference models in
a given class are similar. The Princeton database contains
high level semantic classes where the objects in a same class
are more heterogeneous.

Figure 4. Example of 3D models: first row:
Renault database, second row: Princeton
Shape Benchmark.

To fix the parameter values, the recall values are com-
pared. Twelve values of the parametersn, mθ andmφ were
evaluated. The Fig. 5.a shows that the better results are
obtained forn = 3 andmθ = mφ = 5. The Fig. 5.b
shows the same experiment with different values of the size
of the discretizationS. The better result are obtained on the
technical database with the parameter valueS = 64. We
use this value in the rest of this work. This values is also
suggested in [5] for the SH computation.

To evaluate the robustness of the process, we distort a 3D
object according to scaling, rotation, translation and noise.
The table 1 shows the maximum and the mean distance ob-
tained for these four distortions. For each distortion, we cre-
ate a set of 3D objects and for all the objects we computed
the distance with the original objects. The translation has
no effect on the distance, because the pre-processing centers
and scales the objects. For the same reasons, the scale dis-
tortion has small effects due to digit artifacts, the maximum
distance between the scaled objects are0.016 when a mean
distance between two objects of the same class is around3.
The obtained distances are smaller than intra-class distances
and the classification will be the same one. The rotation dis-
tortion test is a set of rotations around the three axes with
random angles and gives a maximum distance of1.272 and
a mean distance of0.75. The noise distortion is a random
move of vertices of the object; each vertex is moved of a
random Gaussian vector. This distance is a percentage of
the object size. If this distance is higher than 10% the sur-
face of the object is very distort but the similarity measure is
1.6 and the object are still well classified. The Fig. 6 shows
distorted objects by the noise distortions.
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Figure 5. Recall values to set up parameters.

Figure 6. Example of noise distortions for
three distance values: 0%, 5% and 10%

A second experiment is set up to compare the 3D ART
to the Spherical Harmonic descriptor (SH). This experiment
was made on the two models database. The figures 7.a and
7.b show the recall values for SH and 3D ART descrip-
tors on the two databases. On the Princeton database (Fig.
7.a), the SH method gives a better description than the ART
method. The results on the Renault database are better with
ART (Fig. 7.b). This shows that description ART gives bet-
ter results when the objects of a same class are similar. The
cost of computation and the size of the descriptor are also
significant to compare the methods (Table 2). The 3D ART
indexing computation time is2.5 times less than a SH in-
dexing and the descriptor size and the cost of the similarity
measure is approximately7.8 times less. These differences
are due to the fact that the ART does not make a frequency
transformation and stays in a real space whereas the spheri-
cal harmonic descriptor makes a frequency transformation.

Distort Translation Scale Rotation Noise
Max dist. 0 0.016 1.272 2.217
Mean dist. 0 0.003 0.750 1.012

Table 1. Distance obtained for several distor-
tions.

Figure 7. Recall values on Princeton and Re-
nault databases.

5. Conclusion

This paper proposes a new 3D shape descriptor, the
3D ART. This 3D transformation and the indexing pro-
cess make robust 3D shape descriptors. The 3D shape de-
scriptor is robust to translation, scaling, multi representation
(remeshing, weak distortions), noise and 3D rotation. The
proposed shape descriptor fulfills the requirements induced
by technical model database analysis: robustness and accu-
racy of the indexing and retrieval processes and fast similar-
ity computation. As future work, we plan to investigate the
possibilities to make a 2D/3D retrieval with the 3D ART.
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