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Abstract

Conformal radiotherapy requires accurate patient positioning according to a refer-
ence given by an initial 3D CT image. Patient setup is controlled with the help of
portal images (PI), acquired just before patient treatment. To date, the comparison
with the reference by physicians is mostly visual. Several automatic methods have
been proposed, generally based on segmentation procedures. However, PI are of very
low contrast, leading to segmentation inaccuracies. In the present study, we propose
an intensity-based method, with no segmentation, associating two portal images and
a 3D CT scan to estimate patient positioning. The process is a 3D optimization of
a similarity measure in the space of rigid transformations. To avoid time-consuming
DRRs (Digitally Reconstructed Radiographs) at each iteration, we used 2D transfor-
mations and sets of DRRs pre-generated from specific angles. Moreover, we propose
a method for computing intensity-based similarity measures obtained from several
couples of images. We used correlation coefficient, mutual information, pattern in-
tensity and correlation ratio. Preliminary experiments, performed with simulated
and real PIs, show good results with the correlation ratio and correlation coefficient
(lower than 0.5 mm median RMS for tests with simulated PI and 1.8 mm with real
PI).
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1 Introduction

For more than one century radiation therapy has used X-rays to treat cancer.
It has become one of the three main cancer treatment modalities, together with
surgery and chemotherapy. To be efficient, radiation therapy must deliver a
maximum dose of X-rays (now produced by linear accelerators) to the tumor
while sparing surrounding normal tissue.

Before the beginning of treatment, physicians and physicists have to establish
a Radiotherapy Treatment Planning (RTP). The RTP defines the number of
beams, their size, their shape, their tilt and the beam energy. This is now
done in 3D with the help of a computed tomography (CT) scan of the patient.
However, delivering X-ray doses is a fractionated process.

For instance, at least 35 daily fractions are necessary to treat prostate cancer.
But, installing the patient in exactly the same position every day is very
difficult. This position is defined by the CT-scan used for establishing the RTP.
Thus, the main difficulty is the day-to-day reproducibility of the patient setup.
To check the positioning of the patient on the treatment couch, radiation
therapists usually use only skin marks.

For many years, displacements have been related. Mean setup errors are be-
tween 5.5 mm and 8 mm [1, 2, 3] with a maximum, though rarely reported, of
18 mm [4] or 16 mm [5]. Even in recent series, using of immobilization devices,
displacements remain important: 22 % are between 5 and 10 mm [6] and 57
% are over 4 mm [7]. If setup errors have often been measured, their conse-
quences have rarely been evaluated. Three studies have reported a degradation
of the therapeutic ratio caused by discrepancies between the planned and the
delivered treatment positions [8, 9, 10].

The first solution proposed to reduce setup errors and their potential seri-
ous consequences is patient immobilization. Immobilization devices such as
polyurethan foam cast or thermoplastic mask have been developed. Numerous
studies have shown their usefulness in reducing setup error rates [2, 3, 11, 12].
However they do not eliminate all errors and several recent series failed to
show any improvement with the use of immobilization devices [13, 14].

The second solution to improve patient setup is called Portal Imaging, which
is generally used as a complement of immobilization systems. Films acquired
on the beam exit site of the patient allow the verification of patient position
by comparing them with a reference image. Recently developed Electronic
Portal Imaging Devices (EPID) have several advantages [15, 16, 17]. First,
images are obtained immediately, unlike films which need to be processed.
EPID thus allow on-line (immediate) setup error detection and correction.
Secondly, EPID provide digital imaging, with image processing abilities. Fig-
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ure 1 shows a schematic view of one type of EPID.
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Fig. 1. Electronic Portal Imaging Device (EPID).

Control images are used to detect and quantify setup errors relative to the
planned position defined by a reference image. To date this detection has only
consisted in a visual inspection by the physician. But this is inaccurate, labor
intensive and time-consuming. Hence, there is a real need for tools to help
physicians in this tedious task. Moreover, conformal radiotherapy adds re-
duced margins around the target volume. Therefore, acute patient positioning
becomes essential to make sure that no target is missed, and minimize the risk
of local recurrence. After setup error estimation, the aim of radiotherapists is
to correct patient position before each treatment session. To that end, remote-
controlled treatment couches [18] and a tables with six degrees of freedom [19]
can be used.

In this paper, we propose to develop a fully 3D, automatic method for detect-
ing setup errors in conformal radiotherapy. The paper is organized as follows.
Section 2 is an overview of image registration techniques used in the context of
patient positioning in radiation therapy. The general principles and notations
are described in section 3. Section 4 describes the fast digitally reconstructed
radiographs (DRR) generation. In section 5, we describe similarity measures
used to compare DRR and PI. Section 6 presents experimental results, analysis
and discussion. Finally, Section 7 concludes the paper.
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2 Background

For several years, image registration methods used to determine patient po-
sition have compared portal images, which represent the real position of the
patient on the treatment couch, and a reference image which represents the
expected position. In this paper we focus on rigid transformations, assum-
ing that the patient’s displacement is rigid. Methods are classified into two
categories: feature-based methods using a segmentation step, and intensity-
based with no segmentation step. Other criteria could be used, such as the
different types of reference images: either simulator films, initial portal image
validated by the physician, electronic portal images, or digitally reconstructed
radiographs (DRRs). DRRs are 2D projection images [20]. They are computed
with a specific volume-rendering from a CT-scan of the patient acquired be-
fore treatment which defines the reference position. Methods may either be
2D (three parameters to be determined: 2 translations and one rotation) or
3D (six parameters: 3 translations and 3 rotations). See also [21] for a review
of setup verification in clinical practice.

2.1 Feature-based methods

Feature-based methods, using a segmentation step, are the most frequent
methods used. Segmentation can be manual or automatic. In 1991, Bijhold et
al. [22] presented one of the first methods of setup error measurement us-
ing portal images and a film as reference image. Image segmentation is done
manually by delineating the bony outlines visible on both portal and refer-
ence images. Then, only the extracted, identical features are registered. Other
methods use anatomical landmarks: three [23, 7] or five [24] homologous points
determined in both images are matched. The main difficulty is the accurate
definition of homologous points in the two images. The main drawback of
these methods is that they generally only consider in-plane (2D) information,
which is now known to be inaccurate in case of out-of-plane rotation or large
translation [22, 25, 26, 27].

3D methods were then developed. The first one uses several portal images
taken from different projections [28, 23]. In this case, the registration is still
2D; it is performed independently with each PI, so it has the same drawbacks
related beforehand. Marker-based methods of registration have also been de-
veloped [29, 30]. Radio-opaque markers are implanted in the body of the pa-
tient to overcome the problems induced by tumor movements. However the
markers have to be fixed in the tumor volume itself, which is an important
restriction for implantation. The second impediment of this method is the un-
easy detection of these markers on very low contrast portal images. A fully 3D
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method is proposed in [31, 32]. It is based on the registration of a 3D surface
extracted from the CT scan with several image contours, segmented from the
PI. Registration uses a least square optimization of the energy necessary to
bring a set of projection lines (from camera to contour) tangent to the surface.
Once structures have been extracted, the registration process is very quick.
However it has never been experimented with real PI, which segmentation is
much less accurate than with kilo-voltage radiographies.

Fully 3D techniques could also require DRRs. One difficulty in this context
is the computational time. Two methods are proposed. DRRs could either be
computed at each step of the optimization process (on-line), but this must be
very quick because the patient is awaiting on the treatment couch, or before
the registration step (off-line), when there is no time constraint, each DRR
corresponding to a known position of the patient. In 1996, Gilhuijs et al.
[33, 34] developed a 3D method with partial DRR (computed with several
selected points in the scanner) in order to speed-up the process. Murphy [35]
also use partial DRR. The method was further evaluated by Remeijer et al.
[27] in 2000: it is quick but limited by a high failure rate of the segmentation
step in the portal images. It consequently requires human manual correction.

To date, the segmentation step remains very difficult in PI because of their
very low contrast, due to the high energy (5 - 20 Megavolt) of the X-rays used
to acquire control images.

2.2 Intensity-based methods

A second class of methods uses the gray-level values of all the pixels in the im-
ages that must be compared. These methods assume that there is a statistical
link between the pixel values of the images to be compared and that this link
is maximum when the images are registered. For instance, Dong et al. [36] and
Hristov et al. [37] used the linear correlation coefficient in a 2D method. They
applied such measure to register portal images to modified DRRs (DRRs that
have been filtered to resemble megavoltage images).

Recently, a method using mutual information (MI) was proposed by Maes et
al. [38] and Wells et al. [39]. It obtained interesting results in the context
of multimodality image registration between PET, MRI and CT-scan. Other
intensity-based similarity measures have been studied, such as the correlation
ratio [40]. Preliminary studies on image registration using MI in the context
of patient setup in radiotherapy have been published [41, 42, 43].
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3 Overview of the 2D/3D registration method

Considering published data and our preliminary works [41, 44], we decide to
based our method on the following points:

• No segmentation. PI are noisy images with low contrast for which accurate,
robust and automatic segmentation is uneasy [27]. Intensity-based meth-
ods seems to be more suitable to compare DRR and PI, because, in this
case, the accuracy of the final estimation is not related to the precision of
the PI segmentation. Such methods are based on a similarity measure (see
section 5), denoted S.

• Use of several PI. Some patient displacements cannot be accurately evalu-
ated from a single PI (typically, a translation along the viewing direction
leads to very small image scaling). Thus, several PI must be acquired from
different projections. We denote n the number of PI used simultaneously,
I i the ith PI and P i the projection matrix associated with I i. Matrix P i

is given by a calibration procedure. In practice, the number of PI is limited
by the acquisition time and by the amount of radiation received by the pa-
tient, and two PI (n = 2), acquired from orthogonal projections, are used.
However, our approach can be used with any n.

• DRR. The 3D CT scan is denoted V . We denote Di
U a DRR acquired ac-

cording to the projection P i, for a given patient displacement denoted U :
Di

U = P iU (V). U is a rigid transformation matrix with 6 parameters (3
translations, 3 rotations).

• 3D estimation. It has been shown that out-of-plane rotations lead to inac-
curate or false estimations [26]. Thus, 3D methods are required. Hence, our
approach consists in performing a 3D optimization over the search space
defined by the type of the transformation (here only rigid transformations
are studied). We denoted I the vector of n PI, and DU the vector of the n
corresponding DRR. The similarity criterion is defined as a global similarity
measure S in each pair of PI-DRR.

Û = arg max
U

S(DU , I ) (1)

The optimization of eq. (1) is done with the Powell-Brent procedure de-
scribed in [45].

• Combination of similarity. We propose in section 5.3 a way to define simi-
larity between several pairs of images.

• DRR pre-computation. At each iteration of eq. (1), there are n DRR gen-
erations and one evaluation of the similarity measure between n pairs of
PI-DRR. However, DRR computation is a heavy task. Until now, most of
the studies performing 3D estimation with DRR have focused on speeding
up DRR generation [46, 33], but were detrimental to DRR quality (and thus
to the quality of the similarity criterion). We propose here to replace the ex-
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pensive DRR generation by another two-pass approach: pre-computed DRR
and in-plane transformation. Such approach was also investigated in [47],
but we propose here a mathematically justified decomposition.

4 Fast DRR generation

In order to overcome the expensive computational time of volume rendering,
some authors [33] suggest that it is possible to generate a set of DRR computed
according to a sampling of the search space before patient treatment. Such
a step is only done once, before patient treatment (offline) and therefore
does not have time constraints. However, the search space has six degrees-
of-freedom, and even with as few as ten points along each axis, it leads to a
database of 106 DRR, which is not tractable in practice. However, we see in
the next section that pre-computing DRR can be very useful.

4.1 Principle

The procedure relies on a precomputed set of DRR. During the optimization
(eq. (1)), the generation of a DRR according to a given projection P1 is done in
two steps: first, an adequate DRR is chosen in the set and then it is deformed
according to a 2D affine transformation L. The next paragraphs shows how
to choose the adequate out-of-plane DRR and how to compute L.

Each image in the set of precomputed DRR is the projection of a rotation of
the scanner, and this rotation is out-of-plane according to the optical axis of
the initial projection, denoted P0 (the initial projection correspond to the pro-
jection of the portal image). Hence, such rotation has two degrees of freedom
(see appendix F). The set of DRR is build by sampling the two parameters
α, β. Out-of-plane rotations are bounded to a set of plausible rotations (±6◦)
and sampled with a sampling step which allow sufficient accuracy (see exper-
iments section 6).

4.2 Geometrical decomposition

Let P0 be the initial projection known by calibration process. Let P1 be the
objective projection, corresponding to the DRR we want to generate. Param-
eterization is given in appendix A. Our goal is to find a projection Ph which
is out-of-plane according to P0, and a matrix L such that P1 ≈ LPh. To do
this, we consider two intermediate projections P2 and P3 such that we know
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how to build P2 from P1, P3 from P2 and Ph from P3. The figure 4.2 depicts
the intermediate projections and their relationship in 2D (the optical center
of projection Pi is denoted ci).

F

H

K

c1 = c2

c3

c0

P2

iso-center
P1

P0

P3

Fig. 2. Illustration in 2D of the projections (P0,P1,P2,P3) and their optical centers
(c0, c1 = c2, c3). Some 2D transformations (the rectification F and the scaling
matrix K) are also depicted.

• We first consider the corrective rotation R and the projection P2 build as
described in appendix B. The optical center c2 of P2 is the same that the
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optical center c1 of P1. Thus it exists a rectification matrix F such that
FP2 = P1 (see appendix C).

• Now, we consider the projection P3 (see appendix D), which has the same
orientation than P2. The difference between P2 and P3 is the distance be-
tween the optical center and the isocenter. We build a scaling matrix K (see
appendix E), such that KP3 ≈ P2. Note that if c1 is located on a sphere
centered on the isocenter s, with radius ‖d‖, we have c1 = c2 = c3, K is
the identity matrix and P3 = P2.

• The last step consists in using the out-of-plane/in-plane rotation decompo-
sition described in appendix F in order to write P3 according to an out-
of-plane rotation of the initial P0. We thus obtain P3 = C ′Ph, with Ph an
out-of-plane projection and C ′ an in-plane rotation matrix.

Finally, we have:

• Intermediate projection P2 is build from P1 by an in-plane rectification
matrix F : P1 = FP2

• Intermediate projection P3 is build from P2 by an in-plane scaling matrix
K : P2 ≈ KP3

• Out-of-plane projection Ph is build from P3 by the decomposition : P3 =
C ′Ph

• Thus, we can write the objective projection as an in-plane affine transfor-
mation L of an out-of-plane projection Ph:

P1 ≈ FKC ′ Ph = LPh (2)

The computation of L and Ph only requires some vectors and matrices ma-
nipulations and has thus a negligible computational cost according to the
remaining of the procedure. Moreover, applying the affine transformation L
on a 2D image is straightforward and very fast. Finally, DRR generation (com-
putation of L and Ph and application of L on a previously computed DRR)
takes less than 20 milliseconds on a common 1.7Ghz PC.

5 Similarity measures

In the previous sections, we have advocated the use of intensity-based similar-
ity measures to compare DRR and PIs. Such measures compare the relative
position of two images. One image is the template image, denoted It, and the
other one is the floating image If . In this paper, an intensity-based similarity
measure S : It × If 7→ R is a criterion which quantifies some type of depen-
dence between the intensity distributions of the images. It does not require
any segmentation. The most widely known similarity measures are the corre-
lation coefficient, entropy or mutual information [38, 39, 46]. In this section,
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we describe the bases of these measures and discuss the choices that we have
made.

5.1 Joint histograms

Joint histograms [38] are the underlying common base of most similarity mea-
sures used in image registration [48] (even if some measures do not require
it, they can all be computed from joint histograms). This is a 2D histogram
computed given a transformation U : we denote it HU . It is defined on the
intensity distribution of the images (called Dt and Df ): HU : Dt ×Df → R+.
HU (i, j) = nij is the number of points such as If (x) = j and It(T (x)) = i.
Because of the discrete nature of images, T (x) does not generally coincide
with a point of If , and an interpolation procedure must be applied.

Probabilities pij must be estimated from quantities nij. Like most authors,
we use a frequential estimation of the distributions: pij = nij

n
(where n is the

number of points in the overlapping part of the images). Joint histogram is thus
a contingency table and criterion S measures some type of dependence between
the two intensity distributions. According to the type of the dependence (e.g.
linear, functional), the considered type of intensities (numerical or categorical),
and the different diversity measures used (variance, entropy), several measures
can be defined [48].

5.2 Choice of the similarity measure

Four measures have been studied: correlation coefficient and mutual infor-
mation have already been used in the PI-DRR comparison; Pattern intensity
was proposed by Penney et al. [46] for the registration of a 3D CT with a 2D
fluoroscopy image; finally correlation ratio was proposed by Roche et al. [49].

The correlation coefficient (denoted SCC) [36, 37], assumes that a linear rela-
tion exists between the images intensities and measures the strength of this
relation. The mutual information (SMI) [38, 50, 39] computes a distance to
the independence case, by way of the relative Shannon’s entropy. SMI is max-
imal when a functional dependence exists between the intensities. The pat-
tern intensity (SPI) [46] measure the “smoothness” of the image difference
Idiff = I−sJ for each pixel in a small neighborhood. It requires three param-
eters: σ (see eq.(6)), r which define the size of the neighborhood and s which
is a scaling factor used to build Idiff . The goal of this measure is to enhance
bony structure correspondence, but it was designed for DRR/fluoroscopy reg-
istration and not for DRR/PI. The correlation ratio [40] (denoted by SCR) as-
sumes a functional relation between the intensity distributions and measures
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its strength by the way of a proportional reduction of variance. Eq. (3), (4), (5)
and (6) express the three measures (with the mean mI =

∑
i ipi, the variance

σ2
I =

∑
i(i−mI)

2pi, and the conditional variance σ2
I|j = 1

pj

∑
i(i−mI|j)

2pij):

SCC(I, J) =
∑

i

∑
j

(i−mI)(j −mJ)

σI σJ

pij (3)

SMI(I, J) =
∑

i

∑
j

pij log
pij

pipj

(4)

SCR(I|J) = 1− 1

σ2
I

∑
j

pjσ
2
I|j (5)

SPI(I, J) =
∑
x,y

∑
(k−x)2+(l−y)2)<r

σ2

σ2 + (Idiff (x, y)− Idiff (k, l))2
(6)

SCR is not a symmetric criterion (whereas the others are), an image (I) must
be chosen for estimating the other (J). Optimization (1) compares the same
PI with several DRR and SCR is normalized according to I, so we decided to
define I = DRR and J = PI.

5.3 Similarity of several pairs of images

The main optimization eq. (1) consists in optimizing a combination of simi-
larity measures between several pairs of PI/DRR images (a pair for each PI
acquisition). A simple procedure would consist in a linear combination of the
similarity values

∑n
i αiS(PIi,Di). However, it is not clear how to determine

the weights αi. In this study, we advocate the following method:

• For measures explicitely based on joint histogram (mutual information):
instead of computing a similarity value for each pair and aggregating the
obtained value, we update the same identical joint histogram for all the
PI/DRR pairs. Then, we compute a single similarity measure from this
unique histogram. This is a general method which makes possible to use
any histogram-based similarity measure (it was also used in [51]). More-
over, such a method forces the criterion (whatever its nature) to measure
the same type of intensity dependence for each pair of images. On the op-
posite, if similarities were computed for each pairs independently and then
aggregated, each one would measure different kinds of relations between PI
and the DRR intensities.

• For the correlation ratio and the correlation coefficient: the computation
of the joint histogram is not needed. However, the same idea is applied,
intensities probabilities are computed with all the PI/DRR pairs.
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• For the pattern intensity, the measures are added.

6 Experimental tests

6.1 Methods

Several tests were performed to progressively verify the validity of our as-
sumptions. In all these experiments, error between two rigid transformations
is evaluated with the RMS error (Root Mean Square). It is computed as the
average distance (in millimeters) between a set of 3D points transformed by
the two compared transformations. We used 1000 points spread inside a sphere
of 150 mm diameter centered at the target point (the tumor) in order to ob-
tain a realistic error; a RMS error of x mm means that the average distance
between each point and its desired position is x mm.

• Test 1 aims to evaluate the accuracy of the matrix decomposition described
section 4 according to the objective projection matrix. We generate 1000
random rigid transformations Ui, with translations lower than 20mm and
rotation lower than 6◦ (uniformly distributed). Such transformations lead
to RMS errors between 10mm and 30mm. It corresponds to observed dis-
placements (see section 2). For each position Ui, we compare P0Ui and LPh

with the RMS error (where L and Ph are computed as described section 4).
• Test 2 aims at quantify of the error due to the scaling matrix. In appendix E,

we explain that we approximate the projection by using a scaling matrix.
We generate 1000 other random rigid transformations Ui, with translations
lower than 100mm. We measure the RMS error according to the scaling
factor κ.

• Test 3 compares volume-rendering computed DRR with the correspond-
ing approximated DRR. For test 3,5 and 6, we use a CT scan of a pelvis
(52 5 mm-thick slices, composed of 512 × 512 0.93mm2 pixels). In order
to evaluate the quality of the approximated DRR, we generate 1000 ref-
erence DRR (with 1000 random Ui). Then, for each Ui, we generate an
approximated DRR by applying L to an out-of-plane DRR, corresponding
to the exact Ph. We do not consider sampling here (see test 4). We compare
the reference DRR to the approximation with the mean intensity absolute
difference (MIAD) computed by averaging the intensity difference between
corresponding pixels. We also compute the maximum intensity difference
between pixels. When applying the 2D affine transformation L, we test
nearest neighbor and bilinear interpolations.

• Test 4 quantifies the influence of the sampling step of the precomputed
set of DRR (section 4). Test 1 has been repeated by changing out-of-plane
rotations sampling, from 0◦ to 3◦ every 0.25◦ (for both out-of-plane angles).
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• Test 5 evaluates the accuracy of the method without the multimodality
registration difficulty (very low contrast in PI). For 100 random rigid trans-
formations Ui, we generate two DRR corresponding to the front and lateral
view (with orthogonal projections P 1 and P 2), which play the role of the
portal images. The procedure is then run in order to retrieve the correct
Ui. The starting point is vector null, the similarity measure is correlation
ratio, the interpolation is nearest neighbor, the sampling step of the set of
out-of-plane DRR is 1◦, this set contains (for each view) 225 DRR (from
−7◦ to 7◦). For each run, RMS error is computed between the correct Ui

and the estimation found.
• Test 6 evaluates the complete procedure with real PI and compares several

similarity measures. The last test uses PI acquired on a patient correspond-
ing to the previously described CT scan (see figure 3). PI are acquired
with the iView GT (aSi) from Elekta. Irradiation field is 117 × 130 mm
(490× 540 pixels). We first manually register these images according to the
scanner and denote the resulting position Uref . The manual registration is
performed by a radiation oncologist with the help of interactively generated
DRR (computed with the presented method) and manual delineation of
anatomical structures projected in both portal images and DRR. We sim-
ulate 30 known patient displacements by performing the procedure with a
random starting point corresponding to a rigid transformation Ui. For each
position estimation we compute the RMS error according to Uref . The four
presented similarity measures are tested. Nearest neighbor interpolation is
used (linear or partial volume interpolation increases computational time
and does not clearly improve the results). Parameters for pattern intensity
was r = 3 pixels and σ = 10 [46].

6.2 Results

• Test 1. The mean RMS error for this 1000 experiments is 0.04 mm.
• Test 2. The figure 4 depicts the RMS error according to κ (see appendix E).

Each point shows the RMS error for a given Ui. Note that the RMS error
is quasi linear according to κ (the asymptotic standard error is lower than
0.006).

• Test 3. The quality of approximated DRR (with 256 grey levels) is sum-
marized in table 1. Linear interpolation seems to gives better results than
nearest neighbor interpolation. The mean error is very low: visually, the
images are indistinguishable.

• Test 4. Figure 5 shows the RMS error according to the sampling step of the
out-of-plane rotations. Error lower than 1mm can be achieved even with a
sampling step lower than 1.5◦.

• Test 5. 6% of the tests failed to achieve an correct position estimation that
is to say led to a RMS greater than 3 mm. Such failures are due to local
optimum in the optimization procedure. The remaining estimations (94%)

13



Fig. 3. Portal images (front and lateral view). Note the very poor contrast of the
lateral view.
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Fig. 4. Scaling ratio according to RMS error.

MIAD Max

Linear interpolation 0.44 17

Nearest neighbor 0.75 27
Table 1
Quality of approximated DRR. Results are mean of 1000 DRR comparisons (unity
is grey level among 256).

have RMS error lower than 1.8mm, 89% lower than 1mm and 56% lower
than 0.5mm (median is 0.45mm).

• Results of Test 6 are summarized in table 2. It shows mean and median
RMS error, the number of RMS error greater than 3 mm and the number
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Fig. 5. Each point is the mean RMS error of 1000 random transformations according
to different sampling (from 0◦ to 3◦ every 0.25◦)

of registration which improve the RMS error of the starting position. We
also indicate the mean number of iteration needed to converge. SMI and
SPI are not suited for PI/DRR registration. SCC and SCR gives interesting
results: RMS error close to 2 mm. The computational time depends on the
time needed by one iteration and by the number of iteration. Time needed to
compute SCC is taken as reference (T = 1). Similarity evaluation is faster for
SCC and SCR (no joint histogram is build) than for SMI (1.8 times slower)
and for SPI (3.8 times slower). SCR takes generally less iterations than SCC

to converge.
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Measure Mean Median #F #I Iter. T

SCC 2.1 1.7 7 30 715 1

SMI 23 20 30 2 482 1.8

SCR 2.1 1.8 7 29 530 1

SPI 40 33 30 0 698 3.8
Table 2
Registration results of test 6, with different similarity measures for 30 tests. Column
Mean is mean RMS, Median is median RMS, #F is the number of registration with
RMS greater than 3 mm, #I is number of registration which improve the starting
position. Iter is the mean number of iterations needed to converge and T represents
the time needed for one iteration.

6.3 Comments

Tests 1, 2, 3 and 4 show that DRR generation by application of a 2D affine
transformation on a precomputed DRR is accurate (RMS error is lower than
0.5mm for a sampling step of 1◦, less than 1/256 grey level difference) and
fast (lower than 20 milliseconds). This allows us to perform optimization of
eq. (1) with a sufficient number of iterations to be accurate within clinically
acceptable time constraints (entire procedure takes about 30 seconds with
SCR).

Test 5 shows that 2D/3D registration can be accurately performed and that
all the 6 parameters of the rigid transformation are accurately retrieved (RMS
lower than 1mm in 89% of the tests) with two 2D images.

Test 6 shows that patient pose estimation with portal images and CT scan is
feasible: with correlation ratio or correlation coefficient, median RMS error is
close to 1.7mm.

7 Conclusion

This paper introduce an original method for patient pose estimation, using
2D portal images and a 3D CT scan. The method we proposed is based on
the following points: it is fully 3D, it avoids segmentation, it uses several PI
and pre-generated DRR, and it is an intensity-based registration procedure.
The main contributions are (1) a geometrical transformation decomposition
allowing the generation of any full resolution DRR without the usual time-
consuming volume-rendering, (2) the use of the correlation ratio as similarity
measure for PI/DRR images, and (3) the combination of several similarities
between pairs of images. Experimental tests yield to good position estimations
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both for simulated and real PI (median RMS are lower 0.5 mm for simulated
images and 1.7 mm for real PI).

One drawback of the method is the optimization procedure used for eq. (1):
algorithm is sometimes trapped in local maxima. Another drawback could
be the need for DRR (temporary) storage. However, with (compressed) DRR
of 140KB, for 100 patients, we need about 225 × 2 × 100 × 140 = 6.3GB,
which is easily tractable nowadays. Another difficulty could be the additional
computational time required by the DRR pre-computation. However, DRR
have to be generated only once and it can be done overnight.

This approach has many advantages. First, the geometrical transformation
decomposition allows to use high quality DRR without increasing the compu-
tational time. The sets of DRR have to be computed only once before patient
treatment. The quality of the DRR is also important, other methods usually
require lower DRR quality in order to decrease the computational time. Poor
quality PIs need to be compensated by high quality DRR so that the similarity
measure indicates a higher value at the optimal point in the transformation
space.

Our approach can be used with any number of PI (thanks to the unique joint
histogram, updated for each pair of images) and with any type of portal image
(by using different similarity measures). The overall procedure is fast, since
it takes less than 30 seconds to complete on a common 1.7Ghz PC, without
fine-tuning optimization.

The method is fully automatic, it requires no user intervention, but several
initial parameters still need to be tuned. First, the choice of the similarity
measure depends on the type of images. In our experiments, we used mega-
voltage portal images and observed that SCC and SCR lead to better results.
In case of other types of control images, such as ultra-sounds [52], experiments
conducted in different contexts [48] suggested that SMI or χ2 could be used.
The discretization of the set of pre-computed projections also plays a role in
the accuracy of the estimation. Experimental results show that 1◦ is a good
tradeoff between precision and volume storage.

Further works are ongoing to improve the optimization procedure. The pre-
sented method is only valid for rigid body transformations, but we plan to
include non-rigid deformations and organ displacements using the same prin-
ciples (DRR generation and 2D transformations).
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A Notations

A.1 Projections

Perspective projections are parameterized by an image plane and an optical
center. It is a affine transformation which projects a 3D point into the image
plane, such that the image point is the intersection between the image plane
and the line containing the initial 3D point and the optical center. Let P be
a 3 × 4 perspective projection matrix, and x = {x1, x2, x3} ∈ R3. We denote
ẋ = {x1, x2, x3, 1} its homogeneous coordinates. The application of P leads to
an image point ẏ such that ẏ = P ẋ = {y1, y2, w}. The final 2D image point
is given by y = {y1

w
, y2

w
} = {u, v}. If w = 0, it means that x is in the focal

plane and is projected to infinity.

In the following, we will use the notation [A|a] with A a 3× 3 matrix and a
a column vector, where [A|a][B|b] = [AB|Ab + a]. A perspective projection
matrix P is decomposed into the following matrices:

P = A[G|d] (A.1)

A =


fκu 0 u0

0 fκv v0

0 0 1

 (A.2)

A is the intrinsic parameters matrix, f is the focal length, (κu, κv) is the
pixels size, (u0, v0) is the coordinate of the principal point. The 3 × 4 matrix
[G|d] is a rigid transformation matrix composed of a 3× 3 rotation matrix G
(orthogonal and det(G) = 1) and a translation vector d. The optical center c
of P is c = −G−1A−1d.
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A.2 Rotations

Rotations are parameterized using the rotation vector paradigm. A rotation
matrix R is characterized with a vector r, such that R is the rotation of angle
θ = ‖r‖ around the unitary axis n = r

‖r‖ .

A.3 Initial and objective projections

The initial projection is denoted P0. We parameterize projections according to
the isocenter s because this is the reference point used by most of radiotherapy
devices: the center of the tumor is assumed to be the isocenter. The optical
center is denoted c0 (Id is the identity matrix). We define P0 such that :

P0 = A[G|d][Id| − s] = A[G|d−Gs] (A.3)

c0 =−G−1d + s (A.4)

The objective projection corresponds to the initial projection of a displaced
scene. The scene displacement is a rigid transformation matrix U = [T |t]
composed of a 3D rotation T and a translation t. The rotation T is parame-
terized as a rotation around the isocenter. The objective projection is denoted
P1, the optical center c1. Thus, we define P1 = P0U :

P1 = P0 [T | − Ts + s + t] (A.5)

P1 = A [G|d−Gs] [T | − Ts + s + t] (A.6)

P1 = A [GT |d−Gs−GTs + Gs + Gt] (A.7)

P1 = A [GT |d−GTs + Gt] (A.8)

c1 =−T−1G−1d + T−1s− T−1t (A.9)

B Corrective rotation

Consider the rotation R of center c1 which bring the optical axis of P1 into the
line (c1, s). We can compute this rotation by using the spherical coordinates
(in P1 frame) of b = [GT |d + Gt]s = d + Gt. It is then possible to define a
projection P2 = A [R|0] [GT |d−GTs+Gt]. We show that c2 = c1 (0 is the
nul vector):
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P2 = A [R|0] [GT |d−GTs + Gt] (B.1)

P2 = A [RGT |Rd−RGTs + RGt] (B.2)

c2 =−T−1G−1R−1Rd + T−1G−1R−1RGs− T−1G−1R−1RGt (B.3)

c2 =−T−1G−1d + T−1s− T−1t (B.4)

c2 = c1 (B.5)

C Rectification matrix

It is known that if two projections Pa = [A|a] and Pb = [B|b] have the same
optical center and the same intrinsic parameters, it exists a 3× 3 rectification
matrix F = BA−1, such that F map the image plane of Pa onto the image
plane of Pb, see [53]. Thus, we can compute the rectification matrix F between
P2 = [ARGT |ARd−ARGs+ARGt] and P1 = [AGT |Ad−AGs+AGt]:

F = (AGT )−1(ARGT )−1 (C.1)

Thus, we have: P1 = FP2.

D Projection P3

Now, we consider the projection P3 defined such that:

• P3 has the same orientation as P2 (rotation is RGT ),
• the distance between the optical center c3 and the isocenter s is equal to

the distance between c0 and s.

Thus, we can define κ such that:

(c3 − s) = κ(c2 − s) κ =
‖c0 − s‖
‖c2 − s‖

(D.1)

By definition ‖c0−s‖ = ‖c3−s‖ thus there exists a rotation Q of center s such
that c3 = Q(c0−s)+s. Hence, projection P3 is P3 = A[RGT |−RGT (c3)].
Thus, we have :
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P3 = A[RGT | −RGT (c3)] (D.2)

P3 = A[RGT | −RGT (Q(c0 − s) + s)] (D.3)

P3 = A[RGT | −RGT (Q(−G−1d + s− s) + s)] (D.4)

P3 = A[RGT |RGTQG−1d−RGTs] (D.5)

E Scaling matrix

Let Pa = A[M |a] and Pb = A[M |b] be two projections with the same
orientation matrix M , the same intrinsic parameters A and different optical
centers (ca = −M−1a and cb = −M−1b). It is not possible to find a matrix
which map the image plane of Pa onto the image plane of Pb because of the
perspective projection: in-plane movements depend on the distance between
the scene and the optical center. Hence, because the distances (‖s− ca‖ and
‖s− cb‖) are larger than the distance between the two optical centers (‖ca −
cb‖), we assume that the apparent motion look like a scaling (when the scene
move closer to the optical center, it looks bigger and conversely). Thus, we
build a 3 × 3 scaling matrix K of center the principal point l = (u0, v0) and
where the scaling factor κ is the ratio of the distances between optical centers
and the isocenter s:

K = −Sκl + l Sκ =

κ 0

0 κ

 κ =
‖cb − s‖
‖ca − s‖

(E.1)

Hence, KPb ≈ Pa. Numerical experimentations in section 6 show that this
approximation is sufficient for our purpose.

F In-plane/out-of-plane rotation decomposition

Let M be a rotation matrix. We want to decompose M into two rotation
matrices M = CH such that H is a rotation around an axe which is included
in the plane Oxy and C is a rotation around Oz axe. Such decomposition
can be done by expressing the rotation with quaternions. The rotation M
corresponds to the rotation vector r0 = θ0n0 (n0 is an unit vector) and the
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following quaternion q0 = {q0
0, q

1
0, q

2
0, q

3
0}:

M = q0 =


θ

r0 = θn0

→



q0
0 = cos(θ/2)

q1
0 = sin(θ/2) n1

0

q2
0 = sin(θ/2) n2

0

q3
0 = sin(θ/2) n3

0

(F.1)

where vi denote the ith component of a vector v. We denote q0
0, q

1
0, q

2
0, q

3
0 by

w, x, y, z.

Our goal is to write q0 = q2q1 or M = CH , where C is a rotation matrix
around the Oz axis and H is out-of-plane according to Oz. We have:

q1 =



φ

r1 = φn1 =


α

β

0


→



q0
1 = cos(φ/2)

q1
1 = sin(φ/2) α

q2
1 = sin(φ/2) β

q3
1 = 0

(F.2)

We denote q0
1, q

1
1, q

2
1 by a, b, c. Then, we define q2:

q2 =



γ

r2 = γn2 =


0

0

γ


→



q0
2 = cos(γ/2)

q1
2 = 0

q2
2 = 0

q3
2 = sin(γ/2) γ

(F.3)

We denote q0
2, q

3
2 by d, e. So, the equality q0 = q2q1 may be written:



q0
0 = q0

2q
0
1

q1
0 = q0

2q
1
1 − q3

2q
2
1

q2
0 = q0

2q
2
1 + q3

2q
0
1

q3
0 = q3

2q
0
1

or



w = da

x = db− ec

y = dc + eb

z = ea

(F.4)

In (F.4), q0 is given, the parameters we want to compute in q1 and q2 are α, β
and γ. By considering the first and the last equalities, we have:
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a =
w

cos(γ/2)
so z = sin(γ/2)

w

cos(γ/2)
(F.5)

we get γ = 2 arctan(z/w) (F.6)

Then, we can derive the other unknowns:

b =
(xw + yz)w

(w2 + z2)d
c = −(xz − yw)w

(w2 + z2)d
(F.7)

φ = 2 arccos (w/d) α = b
φ

sin(φ/2)
β = c

φ

sin(φ/2)
(F.8)

Then, by using equations (F.1)(F.2)(F.3) and α, β, γ given by equa-
tions (F.6)(F.8), we compute the quaternions q1 and q2, and thus the rotation
matrices H and C which decompose M in a out-of-plane and a in-plane part.

Now, we apply this decomposition to the projection P3 previously defined. We
consider RGT the rotation part of P3, and write RGTG−1 = CH . Thus, we
have RGT = CHG and P3 can be written P3 = A[CHG|Cd − CHGs],
with H an out-of-plane rotation and C an in-plane rotation. By construction,
C is a rotation of angle γ around the optical axis of P0. Thus, it is possible
to write P3 = C ′Ph, with Ph = A[HG|d−HGs] and C ′ being the in-plane
rotation matrix of center the principal point l = (u0, v0) and with the same
angle γ than C.
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