
Chapter 18

CONSTRAINT-BASED DATA MINING

Jean-Francois Boulicaut
INS4 Lyon, LIRIS CNRS FRE 2672
69621 Villeurbanne ceder, France.
jean-francois.boulicautOinsa-lyon.fr

Baptiste Jeudy
University of Saint-Etienne, EURISE
42023 Saint-Etienne Ceder 2, France.
baptiste.jeudy@univ-st-etienne.fr

Abstract Knowledge Discovery in Databases (KDD) is a complex interactive process. The
promising theoretical framework of inductive databases considers this is essen-
tially a querying process. It is enabled by a query language which can deal either
with raw data or patterns which hold in the data. Mining patterns turns to be the
so-called inductive query evaluation process for which constraint-based Data
Mining techniques have to be designed. An inductive query specifies declara-
tively the desired constraints and algorithms are used to compute the patterns
satisfying the constraints in the data. We survey important results of this active
research domain. This chapter emphasizes a real breakthrough for hard prob-
lems concerning local pattern mining under various constraints and it points out
the current directions of research as well.

Keywords: Inductive querying, constraints, local patterns

1. Motivations
Knowledge Discovery in Databases (KDD) is a complex interactive and it-

erative process which involves many steps that must be done sequentially. Sup-
porting the whole KDD process has enjoyed great popularity in recent years,
with advances in both research and commercialization. We however still lack
of a generally accepted underlying framework and this hinders the further de-
velopment of the field. We believe that the quest for such a framework is a ma-

jfboulicaut
Zone de texte
The Data Mining and Knowledge Discovery Handbook, O. Maimon and L. Rokach (Eds.), Springer, 2005, pp. 399-416.

400 DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK

jor research priority and that the inductive database approach (IDB) (Imielin-
ski and Mannila, 1996; De Raedt, 2003) is one of the best candidates in this
direction. IDBs contain not only data, but also patterns. Patterns can be ei-
ther local patterns (e.g., itemsets, association rules, sequences) which are of
descriptive nature, or global patterns/models (e.g., classifiers) which are gen-
erally of predictive nature. In an IDB, ordinary queries can be used to access
and manipulate data, while inductive queries can be used to generate (mine),
manipulate, and apply patterns. KDD becomes an extended querying process
where the analyst can control the whole process since helshe specifies the data
andor patterns of interests.

The IDB framework is appealing because it employs declarative queries
instead of ad-hoc procedural constructs. As declarative inductive queries are
often formulated using constraints, inductive querying needs for constraint-
based Data Mining techniques and is concerned with defining the necessary
constraints.

It is useful to abstract the meaning of inductive queries. A simple model
has been introduced in (Mannila and Toivonen, 1997). Given a language L
of patterns (e.g., itemsets), the theory of a database V w.r.t. L and a selec-
tion predicate C is the set Th(D,L,C) = {cp E L I C(cp,V) = true). The
predicate selection or constraint C indicates whether a pattern cp is interesting
or not (e.g., cp is "frequent" in V). We say that computing Th(V, L, C) is the
evaluation for the inductive query C defined as a boolean expression over prim-
itive constraints. Some of them can refer to the "behavior" of a pattern in the
data (e.g., its "frequency" is above a threshold). Frequency is indeed the most
studied case of evaluationfunction. Some others define syntactical restrictions
(e.g., the "length" of the pattern is below a threshold) and checking them does
not need any access to the data. Preprocessing concerns the definition of a
mining context D, the mining phase is generally the computation of a theory
while post-processing is often considered as a querying activity on a material-
ized theory. To support the whole KDD process, it is important to support the
specification and the computation of many different but correlated theories.

According to this formalization, solving an inductive query needs for the
computation of every pattern which satisfies C. We emphasized that the model
is however quite general: beside the itemsets or sequences, L can denote, e.g.,
the language of partitions over a collection of objects or the language of de-
cision trees on a collection of attributes. In these cases, classical constraints
specify some function optimization. If the completeness assumption can be
satisfied for most of the local pattern discovery tasks, it is generally impossible
for optimization tasks like accuracy optimization during predictive model min-
ing. In this case, heuristics or incomplete techniques are needed, which, e.g.,
compute sub-optimal decision trees. Very few techniques for constraint-based
mining of models have been considered (see (Garofalakis and Rastogi, 2000)

Constraint-based Data Mining 40 1

for an exception) and we believe that studying constraint-based clustering or
constraint-based mining of classifiers will be a major topic for research in the
near future. Starting from now, we focus on local pattern mining tasks.

It is well known that a "generate and test" approach that would enumerate
the patterns of .C and then test the constraint C is generally impossible. A huge
effort has been made by data mining researchers to make an active use of the
primitive constraints occurring in C (solver design) such that useful mining
query evaluation is tractable. On one hand, researchers have designed solvers
for important primitive constraints. A famous example is the one of frequent
itemset mining (FIM) where the data is a set of transactions, the patterns are
itemsets and the primitive constraint is a minimal frequency constraint. A sec-
ond major line of research has been to consider specific, say ad-hoc, techniques
for conjunctions of some primitives constraints. Examples of seminal work are
(Srikant et al., 1997) for syntactic constraints on frequent itemsets, (Pasquier
et al., 1999) for frequent and closed set mining, or (Garofalakis et al., 1999) for
mining sequences that are both frequent and satisfy a given regular expression
in a sequence database. Last but not the least, a major progress has concerned
the design of generic algorithms for mining under conjunctions or arbitrary
boolean combination of primitive constraints. A pioneer contribution has been
(Ng et al., 1998) and this kind of work consists in a classification of constraint
properties and the design of solving strategies according to these properties
(e-g., anti-monotonicity, monotonicity, succinctness).

Along with constraint-based Data Mining, the concept of condensed repre-
sentation has emerged as a key concept for inductive querying. The idea is to
compute CR c Th(D, L, C) while deriving Th(D, L, C) from CR can be per-
formed efficiently. In the context of huge database mining, efficiently means
without any further access to D. Starting from (Mannila and Toivonen, 1996)
and its concrete application to frequency queries in (Boulicaut and Bykowski,
2000), many useful condensed representations have been designed the last 5
years. Interestingly, we can consider condensed representation mining as a
constraint-based Data Mining task (Jeudy and Boulicaut, 2002). It provides not
only nice examples of constraint-based mining techniques but also important
cross-fertilization possibilities (combining the both concepts) for optimizing
inductive queries in very hard contexts.

Section 2 provides the needed notations and concepts. It introduces the pat-
tern domains of itemsets and sequences for which most of the constraint-based
Data Mining techniques have been designed. Section 3 recalls the principal re-
sults for solving anti-monotonic constraints. Section 4 concerns the introduc-
tion of non anti-monotonic constraints and the various strategies which have
been proposed. Section 5 concludes and points out the actual directions of
research.

402 DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK

2. Background and Notations
Given a database V, a pattern language L and a constraint C, let us first

assume that we have to compute Th (V, L, C) = {cp E L I C(cp, 2)) = true).
Our examples concern local pattern discovery tasks based on itemsets and se-
quences.

Itemsets have been studied a lot. Let Z = {A, B, ...) be a set of items. A
transaction is a subset of Z and a database V is a multiset of transactions. An
itemset is a set of items and a transaction t is said to support an itemset S if
S 2 t. The frequency freq(S) of an itemset S is defined as the number of
transactions that support S. L is the collection of all itemsets, i.e., 2'. The
most studied primitive constraint is the minimum frequency constraint Ca-freq
which is satisfied by itemsets having a frequency greater than the threshold
(T. Many other constraints have been studied such as syntactical constraints,
e-g., B E X whose testing does not need any access to the data. (Ng et al.,
1998) is a rather systematic study of many primitive constraints on itemsets
(see also Section 4). (Boulicaut, 2004) surveys some new primitive constraints
based on the closure evaluation function. The closure of an itemset S in V,
f (S, V), is the maximal superset of S which has the same frequency than S in
V. Furthermore, a set S is closed in V if S = f(S, V) in which case we say
that it satisfies CcIo,. Freeness is one of the first proposals for constraint-based
mining of closed set generators: free itemsets (Boulicaut et al., 2000) (also
called key patterns in (Bastide et al., 2000B)) are itemsets whose frequencies
are different from the frequencies of all their subsets. We say that they satisfy
the Gree constraint. An important result is that {f(S, V) E 2' 1 Cfree(S, V) =
true) = {S E 2' 1 CcIo,(S, V) = true). For instance, in the toy data set of
Figure 18.1, {A,c) is a free set and {A, C, D), i.e., its closure, is a closed set.

Sequential pattern mining from sequence databases (i.e., V is a multiset
of sequences) has been studied as well. Many different types of sequential
patterns have been considered for which different subpattern relations can be
defined. For instance, we could say that bc is a subpattern (substring) of abca
but aa is not. In other proposals, aa would be considered as a subpattern of
abca. Discussing this in details is not relevant for this chapter. The key point
is that, a frequency evaluation function can be defined for sequential patterns
(number of sequences in V for which the pattern is a subpattern). The pattern
language L is then the infinite set of sequences which can be built on some
alphabet. Many primitive constraints can be defined, e.g., minimal frequency
or syntactical constraints specified by regular expressions. Interestingly, new
constraints can exploit the spatial or temporal order, e.g., the min-gap and
max-gap constraints (see, e.g., (Zaki, 2000) and (Pei et al., 2002) for a recent
survey).

Constraint-based Data Mining 403

Naive approaches that would compute Th(D, L, C) by enumerating every
pattern cp of the search space L and test the constraint C(p, 2)) afterwards can
not work. Even though checking C(p, D) can be cheap, this strategy fails be-
cause of the size of the search space. For instance, we have 21'1 itemsets and
we often have to cope with hundreds or thousands of items in practical appli-
cations. Moreover, for sequential pattern mining, the search space is infinite.

For a given constraint, the search space L is often structured by a special-
ization relation which provides a lattice structure. For important constraints,
the specialization relation has an anti-monotonicity property. For instance, set
inclusion for itemsets or substring for strings are anti-monotonic specializa-
tion relations w.r.t. a minimal frequency constraint. Anti-monotonicity means
that when a pattern does not satisfy C (e.g., an itemset is not frequent) then
none of its specializations can satisfy C (e.g., none of its supersets are fre-
quent). It becomes possible to prune huge parts of the search space which
can not contain interesting patterns. This has been studied within the "learn-
ing as search" framework (Mitchell, 1980) and the generic levelwise algorithm
from (Mannila and Toivonen, 1997) has inspired many algorithmic develop-
ments (see Section 3). In this context where we say that the constraint C is
anti-monotonic, the most specific patterns constitute the positive border of the
theory (denoted Bd+(C)) (Mannila and Toivonen, 1997) and Bd+(C) is a con-
densed representation of Th(D, L, C). It corresponds to the S set in the ter-
minology of versions spaces (Mitchell, 1980). For instance, the collection of
the maximal frequent patterns Bd+(Cu.freq) in D is generally several orders of
magnitude smaller than the complete collection of the frequent patterns in 23.
It is a condensed representation for Th(D, 2', c ~ - ~ ~ ~ ~) : deriving subsets (i.e.,
generalizations) of each maximal frequent set (i.e., each most specific pattern)
enables to regenerate the whole collection of the frequent sets (i.e., the whole
theory of interesting patterns w.r.t. the constraint).

In many applications, however, the user wants not only the collection of
the patterns satisfying C but also the results of some evaluation functions for
these patterns. This is quite typical for the frequent pattern discovery prob-
lem: these patterns are generally exploited in a post-processing step to de-
rive more useful statements about the data, e.g., the popular frequent asso-
ciation rules which have a high enough confidence (Agrawal et al., 1996).
This can be done efficiently if we compute not only the collection of fre-
quent itemsets but also their frequencies. In fact, the semantics of an inductive
query is better captured by the concept of extended theories. An extended
theory w.r.t. an evaluation function f on a domain V is Thx(D, L, C, f) =
{(q, f (9)) E L 63 V I C(9, D) = true). The classical FIM problem turns to
be the computation of Thx (D, 2*, C0-freq, freq). Another example concerns
the closure evaluation function.

404 DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK

For instance, {(cp, f (9)) E 2' 8 2' 1 Cu.freq(cp, 2)) = true) is the collec-
tion of the frequent sets and their closures, i.e., the frequent closed sets.

An alternative and useful specification for the frequent closed sets is
{(v, f (9)) E 2' 8 2' I G-treq(~, 2)) A Cfree(~, 2)) = true).

Condensed representations can be designed for extended theories as well.
Now, a condensed representation CR must enable to regenerate the patterns,
but also the values of the evaluation function f on each pattern without any fur-
ther access to the data. If the regenerated values for f are only approximated,
the condensed representation is called approximate. Moreover, if the error on
f can be bounded by E , the approximate condensed representation is called
an eadequate representation of the extended theory (Mannila and Toivonen,
1996). The idea is that we can trade off the precision on the evaluation function
values with computational feasibility.

Most of condensed representations studied so far are condensed represen-
tations of the frequent itemsets. We have the maximal frequent itemsets (see,
e.g., (Bayardo, 1998)), the frequent closed itemsets (see, e.g., (Pasquier et al.,
1999; Boulicaut and Bykowski, 2000)), the frequent free itemsets and the 6-
free itemsets (Boulicaut et al., 2000; Boulicaut et al., 2003), the disjunction-
free sets (Bykowski and Rigotti, 2003), the non-derivable itemsets (Calders
and Goethals, 2002), the frequent pattern bases (Pei et al., 2002), etc. Except
for the maximal frequent itemsets from which it is not possible to get a useful
approximation of the needed frequencies, these are condensed representations
of the extended theory Th,(D, 2', Cu-freq, freq) and 6-free itemsets and pattern
bases are approximate representations.

Condensed representations have three main advantages. First, they con-
tain (almost) the same information than the whole theory but are significantly
smaller (generally by several orders of magnitude), which means that they are
more easily stored or manipulated. Next, the computation of CR and the re-
generation of the theory Th from CR is often less expensive than the direct
computation of Th. One can even say that, as soon as a transactional data
set is dense, mining condensed representations of the frequent itemsets is the
only way to solve the FIM problem for practical applications. Last, many pro-
posals emphasize the use of condensed representations for deriving directly
useful patterns (i.e., skipping the regeneration phase). This is obvious for fea-
ture construction (see, e.g., (Kramer et al., 2001)) but has been considered also
for the generation of non redundant association rules (see, e.g., (Bastide et al.,
2000A)) or interesting classification rules (Cr6rnilleux and Boulicaut, 2002)).

3. Solving Anti-Monotonic Constraints
In this section, we consider efficient solutions to compute (extended) theo-

ries for anti-monotonic constraints. We still focus on constraint-based mining

Constraint-based Data Mining 405

of itemsets when the constraint is anti-monotonic. It is however straightfor-
wardly extended to many other pattern domains.

An anti-monotonic constraint on itemsets is a constraint denoted Cam such
that for all itemsets S, S E 2': (S' c S A S satisfies Cam) + S' satisfies
Cam. C,,-freq, Cfree, A # S , S c {A, B, C) and S n {A, B, C) = 0 are examples
of anti-monotonic constraints. Furthermore, it is clear that a disjunction or a
conjunction of anti-monotonic constraints is an anti-monotonic constraint.

Let us be more precise on the useful concept of border (Mannila and Toivo-
nen, 1997). If Cam denotes an anti-monotonic constraint and the goal is to
compute T = Th(D,2',cam), then Bd+(Cam) is the collection of the max-
imal (w.r.t. the set inclusion) itemsets of T that satisfy Cam and Bd-(Cam)
is the collection of the minimal (w.r.t. the set inclusion) itemsets that do not
satisfy Cam.

Some algorithms have been designed for computing directly the positive
borders, i.e., looking for the complete collection of the most specific pat-
terns. A famous one is the Max-Miner algorithm which uses a clever enumer-
ation technique for computing depth-first the maximal frequent sets (Bayardo,
1998). Other algorithms for computing maximal frequent sets are described in
(Lin and Kedem, 2002; Burdick et al., 2001; Goethals and Zaki, 2003). The
computation of positive borders with applications to not only itemset mining
but also dependency discovery, the generic "dualize and advance" framework,
is studied in (Gunopulos et al., 2003).

The levelwise algorithm by Mannila and Toivonen (Mannila and Toivonen,
1997) has influenced many research in data mining. It computes
Th(D, 2', Cam) levelwise in the lattice (L associated to its specialization re-
lation) by considering first the most general patterns (e.g., the singleton in the
FIM problem). Then, it alternates candidate evaluation (e.g., frequency count-
ing or other checks for anti-monotonic constraints) and candidate generation
(e.g., building larger itemsets from discovered interesting itemsets) phases.
Candidate generation can be considered as the computation of the negative
border of the previously computed collection. Candidate pruning is a major
issue and it can be performed partly during the generation phase or just after:
indeed, any candidate whose one generalization does not satisfy Cam can be
pruned safely (e-g., any itemset whose one of its subsets is not frequent can
be removed). The algorithm stops when it can not generate new candidates or,
in other terms, when the most specific patterns have been found (e.g., all the
maximal frequent itemsets).

The Apriori algorithm (Agrawal et al., 1996) is clearly the most famous
instance of this levelwise algorithm. It computes Th(D, 2', Cg-freq, freq) and
it uses a clever candidate generation technique. A lot of work has been done
for efficient implementations of Apriori-like algorithms.

406 DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK

Pruning based on anti-monotonic constraints has been proved efficient on
hard problems, i.e., huge volume and high dimensional data sets. The many
experimental results which are available nowadays prove that the minimal fre-
quency is often an extremely selective constraint in real data sets. Interestingly,
an algorithm like AcMiner (Boulicaut et al., 2000; Boulicaut et al., 2003)
which can compute frequent closed sets (closeness is not an anti-monotonic
constraint) via the frequent free sets exploits these pruning possibilities. In-
deed, the conjunction of freeness and minimal frequency is an anti-monotonic
constraint which enables an efficient pruning in dense andlor highly correlated
data sets.

The dual property of monotonicity is interesting as well. A monotonic
constraint on itemsets is a constraint denoted Cm such that for all itemsets
S, St E 2': (S C_ St A S satisfies Cm) +- St satisfies Cm. A constraint is
monotonic when its negation is anti-monotonic (and vice-versa). In the item-
set pattern domain, the maximal frequency constraint or a syntactic constraint
like A E S are examples of monotonic constraints.

The concept of border can be adapted to monotonic constraints. The pos-
itive border Bd+(Cm) of a monotonic constraint Cm is the collection of the
most general patterns that satisfy the constraint. The theory Th(V, L, Cm) is
then the set of patterns that are more specific than the patterns of the border
Bd+(cm). For instance, we have B ~ + (A E S) = {A) and the positive border
of the monotonic maximal frequency constraint is the collection of the small-
est itemsets which are not frequent in the data. In other terms, a monotonic
constraint defines also a border in the search space which corresponds to the G
set in the version space terminology (see Figure 18.1 for an example).

The recent work has indeed exploited this duality for solving conjunctions
of monotonic and anti-monotonic constraints (see Section 4.2).

4. Introducing non Anti-Monotonic Constraints
Pushing anti-monotonic constraints in the levelwise algorithm always leads

to less constraint checking. Of course, anti-monotonic constraints are exploited
into alternative frameworks, like depth-first algorithms.

However, this is no longer the case when pushing non anti-monotonic con-
straints. For instance, if an itemset does not satisfy an anti-monotonic con-
straint Cam, then its supersets can be pruned. But if this itemset does not satisfy
the non anti-monotonic constraint, then its supersets are not pruned since the
algorithm does not test Cam on it. Pushing non anti-monotonic constraint can
therefore lead to less efficient pruning (Boulicaut and Jeudy, 2000; Garofalakis
et al., 1999). Clearly, we have here a trade-off between anti-monotonic pruning
and monotonic pruning which can be decided if the selectivity of the various
constraints is known in advance, which is obviously not the case in most of

Constraint-based Data Mining 407

the applications. Nice contributions have considered boolean expressions over
monotonic and anti-monotonic constraints. The problem is still quite open for
optimization constraints.

4.1 The Seminal Work
4.1.1 MultipleJoins, Reorder and Direct. Srikant et al. (Srikant
et al., 1997) have been the first to address constraint-based mining of item-
sets when the constraint C is not reduced to the minimum frequency con-
straint Cu-freq. They consider syntactical constraints built on two kinds of
primitive constraints: Ci(S) = (i E S), and C+(S) = (i # S) where
i E Z. They also introduce new constraints if a taxonomy on items is avail-
able. A taxonomy (also called a is-a relation) is an acyclic relation r on
Z. For instance, if the items are products like Milk, Jackets.. .the relation
can state that Milk is-a Beverages, Jackets is-a Outer-wear, . . .The primi-
tive constraints related to a taxonomy are: Ca(i)(S) = (S n ancestor(i) # 0).
Cd(i)(S) = (S n descendant(i) # 0) , and their negations. Functions ancestor
and descendant are defined using the transitive closure r* of r: we have
ancestor(i) = {it E Z I r* (it, i)) and descendant(i) = {i' E Z I r* (i, it)).
These new constraints can be rewritten using the two primitive constraints Ci
and C+, e.g-* Cdesc(i)(S) = vjEdescendant(i) Cj(S)'

It is now possible to specify syntactical constraints Csynt as a boolean combi-
nation of the primitive constraints which is written in disjunctive normal form,
i.e., Cspt = DI V D2 V . . . V Dm where each DI, is Ckl A Ck2 A .. . A Cknh and
CI,~ is either Ci or C+ with i E Z.

Srikant et al. (Srikant et al., 1997) provide three algorithms to compute
Th,(V, 2=,C,freq) where C = Cu-freq A Cspt. The first two algorithms
(MultipleJoins and Reorder) use a relaxation of the syntactical constraint.
They show how to compute from Cspt an itemset T such that every itemset
S satisfying the Cspt also satisfies the constraint S n T # 0. This constraint
is pushed in an Apriori-like levelwise algorithm to obtain MultipleJoins and
Reorder (Reorder is a simplification of MultipleJoins). The third algorithm,
Direct, does not use a relaxation and pushes the whole syntactical constraint at
the extended cost of a more complex candidate generation phase. Experimen-
tal results confirm that the behavior of the algorithms depends clearly of the
selectivity of the constraints on the considered data sets.

4.1.2 CAP. The CAP algorithm (Ng et al., 1998) computes the ex-
tended theory Thx(V7 2', C, freq) for C = Cu-treg ACam ACsu, where Cam is an
anti-monotonic syntactical constraint and Csu, is a succinct constraint. A con-
straint C is succinct (Ng et al., 1998) if it is a syntactical constraint and if we
have itemsets 11, 12,. . . I k such that C(S) = S c I I A S 9 12A.. . A S II,. Ef-
ficient candidate generation techniques can be performed for such constraints

408 DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK

which can be considered as special cases of conjunctions of anti-monotonic
and monotonic syntactical constraints.

In (Ng et al., 1998), the syntactical constraints are conjunctions of primitive
constraints which are Ci, Cli and constraints based on aggregates. They indeed
assume that a value v is associated with each item i and denoted i.v such that
several aggregate functions can be used:

MAX(S) = max {i.v I i E S) , MIN(S) = min {i.v I i E S) ,

These aggregate functions enable to define new primitive constraints
AGG(S)Bn where AGG is an aggregation function, 8 is in {=, <, >) and n is
a number. In a market basket analysis application, v can be the price of each
item and we can define aggregate constraints to extract, e.g., itemsets whose
average price of items is above a given threshold (AVG(S) > 10). Among
these constraints, some are anti-monotonic (e.g., SUM(S) < 100 if all the
values are positive, MIN(S) > lo), some are succinct (e.g., MAX(S) > 10,
IS1 > 3) and others have no special properties and must be relaxed to be used
in the CAP algorithm (e.g., SUM(S) < 10, AVG(S) < 10).

The candidate generation function of CAP algorithm is an improvement
over Direct algorithm. However, it can not use all syntactical constraints like
Direct (only conjunction of anti-monotonic and succinct constraints can be
used by CAP). The CAP algorithm can also use aggregate constraints. These
constraints could also be used in Direct but they would need to be rewritten in
disjunctive normal form using Ci and Cli. This rewriting stage can be computa-
tionally expensive such that, in practice, we can not push aggregate constraints
into Direct.

4.1.3 SPIRIT. In (Garofalakis et al., 1999), the authors present several
version of the SPIRIT algorithm to extract frequent sequences satisfying a reg-
ular expression (such sequences are called valid w.r.t. the regular expression).
For instance, if the sequences consist of letters, the valid sequences with re-
spect to the regular expression a* (bb I cc) e are the sequences that start with
several a followed by either bbe or cce. In the general case, such a syntac-
tical constraint is not anti-monotonic. The different versions of SPIRIT use
more and more selective relaxations of this regular expression constraint. The
first algorithm, SPIRIT(N), uses an anti-monotonic relaxation of the syntacti-
cal constraint. This constraint CN is satisfied by sequences s such that all the
items appearing in s also appear in the regular expression. With our running
example, CN(s) is true if s is built on letters a, b, c, and e only. A constraint
CL is used by the second algorithm, SPIRIT(L). It is satisfied by a sequence
s if s is a legal sequence w.r.t. the regular expression. A sequence s is legal

Constraint-based Data Mining 409

if we can find a valid sequence st such that s is a suffix of sf. For instance,
cce is a legal sequence w.r.t. our running example. The SPIRIT(V) algorithm
uses the constraint Cv which is satisfied by all contiguous sub-sequences of a
valid sequence. Finally, the SPIRIT(R) algorithm uses the full constraint CR
which is satisfied only by valid sequences. For the three first algorithms, a final
post-processing step is necessary to filter out non-valid sequences. There is a
subset relationship between the theories computed by these four algorithms:
Th(D, L, CR A &req) G Th(D, L, CV A Cu-freq) G Th(v , L, CL A Cu-fres) G
Th(V, L,CN A Cu-freq). Clearly, the first two algorithms are based mostly on
minimal frequency pruning while the two last ones exploit further regular ex-
pression pruning. Here again, only a prior knowledge on constraint selectivity
enables to inform the choice of one of the algorithms, i.e., one of the pruning
strategies.

4.2 Generic Algorithms
We now sketch some important results for the evaluation of quite general

forms of inductive queries.

4.2.1 Conjunction of Monotonic and Anti-Monotonic Constraints.
Let us assume that we use constraints that are conjunctions of a monotonic
constraint and an anti-monotonic one denoted Cam A Cm. The structure of
Th(V, L,Cam A Cm) is well known. Given the positive borders Bd+(Cam)
and Bd+(Cm), the patterns belonging to Th(V, L,Cam A Cm) are exactly the
patterns that are more specific than a pattern of Bd+(Cm) and more general
than a pattern of Bd+(Cam). This kind of convex pattern collection is called a
Version Space and is illustrated on Fig. 18.1.

Several algorithms have been developed to deal with Cam A Cm. The generic
algorithm presented in (Boulicaut and Jeudy, 2000) computes the extended
theory for a conjunction Cam A Cm. It is a levelwise algorithm, but instead
of starting the exploration with the most general patterns (as it is done for
anti-monotonic constraints), it starts with the minimal itemsets (most general
patterns) satisfying Cm, i.e., the itemsets of the border Bd+(Cm). This is a
generalization of MultipleJoins, Reorder and CAP: the constraint T n S # 0
used in MultipleJoins and Reorder is indeed monotonic and succinct con-
straints used in CAP can be rewritten as the conjunction of a monotonic and
an anti-monotonic constraints.

Since Bd+(Cam) et Bd+(Cm) characterize the theory of Cam A Cm, these
borders are a condensed representation of this theory. The Molfea algorithm

410 DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK

2 ABCD
3 ABE
4 A m
5 0

Rgure 18.1. This figure shows the itemset lattice associated to D (the subscript number is
the frequency of each itemset in V). The itemsets above the black lime satisfy the mono-
tonic constraint Cm(S) = (B E S) V (CD s S) and the itemsets below the dashed line
satisfy the anti-monotonic constraint Cam = C2-freq. The black iternsets belong to the the-
ory Th(V, 2',Cam A em). They are exactly the itemsets that are subsets of an element of
Bd+(Cam) = {ABCD, ABE, CE) and supersets of an element of Bd' (Cm) = {A, CD).

and the Dualrniner algorithms extract these two borders. They are interesting
algorithms for feature extraction.

The Molfea algorithm presented in (Kramer et al., 2001; De Raedt and
Kramer, 2001) extract linear molecular fragments (i.e., strings) in a a par-
titioned database of molecules (say, active vs. inactive molecules). They
consider conjunctions of a minimum frequency constraint (say in the active
molecules), a maximum frequency constraint (say in the inactive ones) and
syntactical constraints. The two borders are constructed in an incremental
fashion, considering the constraints one after the other, using a level-wise algo-
rithm for the frequency constraints and Mellish algorithm (Mellish, 1992) for
the syntactical constraints. The Dualrniner algorithm (Bucila et al., 2003) uses
a depth-first exploration similar to the one of Max-Miner whereas Dualrniner
deals with Cam A Cm instead of just Cam.

In (Bonchi et al., 2003C), the authors consider the computation of not only
borders but also the extended theory for Cam A Cm. In this context, they show
that the most efficient approach is not to reason on the search space only but
both the search space and the transactions from the input data. They have a
clever approach to data reduction based on the monotonic part. Not only it
does not affect anti-monotonic pruning but also they demonstrate that the two
pruning opportunities are mutually enhanced.

4.22 Arbitrary Expression over Monotonic and Anti Monotonic Con-
straints. The algorithms presented so far cannot deal with an arbitrary
boolean expression consisting of monotonic and anti-monotonic constraints.
These more general constraints are studied in (De Raedt et al., 2002). Using

Constraint-based Data Mining 41 1

the basic properties of monotonic and anti-monotonic constraints, the authors
show that such a constraint can be rewritten as (Caml A Cml) V (Camz A Cmz) V
. . . V (Cam, A Cm,). The theory of each conjunction (Cami A Cmi) is a version
space and the theory w.r.t. the whole constraint is a union of version spaces.
The theory of each conjunction can be computed using any algorithm described
in the previous sections. Since there are several ways to express the constraint
as a disjunction of conjunctions, it is therefore desirable to find an expression
in which the number of conjunction is minimal.

4.2.3 Conjunction of Arbitrary Constraints. When constraints are
neither anti-monotonic nor monotonic, finding an efficient algorithm is dif-
ficult. The common approach is to design a specific strategy to deal with a
particular class of constraints. Such algorithms are presented in the next sec-
tion. A promising generic approach has been however presented recently. It is
the concept of witness presented in (Kifer et al., 2003) for itemset mining. This
paper does not describe a mining algorithm but rather a pruning technique for
non anti-monotonic and non monotonic constraints. Considering a sub-lattice
A of 2', the problem is to decide whether this sub-lattice can be pruned. A
sub-lattice is characterized by'its maximal element M and its minimal element
m, i.e., the sub-lattice is the collection of all itemsets S such that m G S g M.
To prune this sub-lattice, one must prove that none of its elements can satisfy
the constraint C. To check this, the authors introduce the concept of negative
witness: a negative witness for C in the sub-lattice A is an itemset W such that
+(W) + VX E A, lC(X). Therefore, if the constraint is not satisfied by
the negative witness, then the whole sub-lattice can be pruned. Finding wit-
nesses for anti-monotonic or monotonic constraints is easy : m is the witness
for all anti-monotonic constraints and M for all monotonic ones. The authors
then show how to compute efficiently witnesses for various tough constraints.
For instance, for AVG(S) > a, a witness is the set mU{i E M I i.v > a). The
authors also gives an algorithm (linear in the size of Z) to compute a witness
for the difficult constraint (VAR(S) > a) where VAR denotes the variance.

4.3 Ad-hoc Strategies
Apart from generic algorithms, many algorithms have been designed to cope

with specific classes of constraints. We select only two examples.
The FIC algorithm (Pei et al., 2001) does a depth-first exploration of the

itemset lattice. It is very efficient due to its clever data structure, a prefix-tree
used to store the database. This algorithm can compute the extended theory
for a conjunction Cam A Cm A C' where C' is convertible anti-monotonic or
monotonic. A constraint C' is convertible anti-monotonic if there exists an
order on the items such that, if itemsets are written using this order, every
prefix of an itemset satisfying C' satisfies C'. For instance, AVG(S) > a

412 DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK

is convertible anti-monotonic if the items i are ordered by decreasing value
i.v. The main problem with convertible constraints is that a conjunction of
convertible constraints is generally not convertible.

Another example of an ad-hoc strategy is used in the c-Spade algorithm
(Zaki, 2000). This algorithm is used to extract constrained sequences where
each event in the sequences is dated. One of the constraints, the max - gap
constraint, states that two consecutive events occurring in a pattern must not
be further apart than a given maximum gap. This constraint is neither anti-
monotonic nor monotonic and a specific algorithm has been designed for it.

4.4 Other Directions of Research
Among others, let us introduce here three important directions of research.

4.4.1 Adaptive Pruning Strategies. We mentioned the trade-off be-
tween anti-monotonic pruning which is known to be quite efficient and prun-
ing based on non anti-monotonic constraints. Since the selectivity of the var-
ious constraints is generally unknown, a quite exciting challenge is to look
for adaptive strategies which can decide of the pruning strategy dynamically.
(Bonchi et al., 2003A; Bonchi et al., 2003B) propose algorithms for fre-
quent itemsets under syntactical monotonic constraints. (Albert-Lorincz and
Boulicaut, 2003) considers frequent sequence mining under regular expres-
sion constraints. These are promising approaches to widen the applicability of
constraint-based mining techniques in real contexts.

4.4.2 Combining Constraints and Condensed Representations. A
few papers, e.g., (Boulicaut and Jeudy, 2000; Bonchi and Lucchese, 2004),
deal with the problem of extracting constrained condensed representation. In
these works, the aim is to compute a condensed representation of the extended
theory Thx(D, 2',Cam A Cm, freq). In (Boulicaut and Jeudy, 2000), the au-
thors use free itemsets, i.e., their algorithm computes the extended theory
Thz(V, 2',cam A Cm A Cfree, freq). In (Bonchi and Lucchese, 2004), the au-
thors use closed itemsets, i.e., their algorithm computes the extended theory
Thx(D, 2',Cam A Cm A Cclos, freq). However, in these two works, the defini-
tion of free sets and closed sets have been modified to be able to regenerate the
extended theory Thz(D, 2*, Cam A Cm, freq) from the extracted theories. This
kind of research combines the advantages of both condensed representations
and constrained mining which result in very efficient algorithms.

4.4.3 Constraint-based Mining of more Complex Pattern
Domains. Most of the recent results have concerned simple local pat-
tern discovery tasks like the ones based on itemsets or sequences. We believe
that inductive querying is much more general. Many open problems are how-

Constraint-based Data Mining 413

ever to be addressed. For instance, even constraint-based mining of association
rules is already much harder than constraint-based mining of itemsets (Laksh-
manan et al., 1999; Jeudy and Boulicaut, 2002). The recent work on the MINE
RULE query language (Meo et al., 1998) is also typical of the difficulty to op-
timize constraint-based association rule mining (Meo, 2003). When consider-
ing model mining under constraints (e.g., classifier design or clustering), only
very preliminary approaches are available (see, e.g., (Garofalakis and Rastogi,
2000)). We think that this will be a major issue for research in the next few
years. For instance, for clustering, it seems important to go further than the
classical similarity optimization constraints and enable to specify other con-
straints on clusters (e.g., enforcing that some objects are or are not within the
same clusters).

5. Conclusion
In this chapter, we have considered constraint-based mining approaches, i.e.,

the core techniques for inductive querying.
This domain has been studied a lot for simple pattern domains like itemsets

or sequences. Rather general forms of inductive queries on these domains (e.g.,
arbitrary boolean expressions over monotonic and anti-monotonic constraints)
have been considered. Beside the many ad-hoc algorithms, an interesting ef-
fort has concerned generic algorithms. Many open problems are still there:
how to solve tough constraints?, how to design relevant approximation or re-
laxation schemes? how to combine constraint-based mining with condensed
representations, not only for simple pattern domains but also more complex
ones?

Moreover, within the inductive database framework, the problem is to op-
timize sequences of queries and typically sequences of correlated inductive
queries. It is crucial to consider that the optimization of a query and thus
constraint-based mining must also take into account the previously solved
queries. Looking for the formal properties between inductive queries, espe-
cially containment, is thus a major priority. Here again, we believe that con-
densed representations might play a major role.

Last but not the least, a quite challenging problem is to consider from where
the constraints come. The analysts can think in terms of constraints or declara-
tive specifications which are not supported by the available solvers: an obvious
example could be unexpectedness or novelty w.ct. some explicit background
knowledge. To be able to derive appropriate inductive queries based on a lim-
ited number of primitives (and some associated solvers) from the constraints
expressed by the analysts is challenging.

414 DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK

References
R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast

discovery of association rules. In Advances in Knowledge Discovery and
Data Mining, pages 307-328. AAAI Press, 1996.

H. Albert-Lorincz and J.-F. Boulicaut. Mining frequent sequential patterns un-
der regular expressions: a highly adaptative strategy for pushing constraints.
In Proc. SIAM DM'03, pages 316-320,2003.

Y. Bastide, N. Pasquier, R. Taouil, G. Stumme, and L. Lakhal. Mining minimal
non-redundant association rules using frequent closed itemsets. In Proc. CL
2000, volume 1861 of LNCS, pages 972-986. Springer-Verlag, 2000.

Y. Bastide, R. Taouil, N. Pasquier, G. Stumrne, and L. Lakhal. Mining frequent
patterns with counting inference. SIGKDD Explorations, 2(2):66-75,2000.

R. J. Bayardo. Efficiently mining long patterns from databases. In Proc. ACM
SIGMOD'98, pages 85-93,1998.

F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. Adaptive constraint
pushing in frequent pattern mining. In Proc. PKDD'03, volume 2838 of
LNAI, pages 47-58. Springer-Verlag, 2003A.

F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. Examiner: Optimized
level-wise frequent pattern mining with monotone constraints. In Proc.
IEEE ICDM'03, pages 11-18,2003B.

F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. Exante: Anticipated
data reduction in constrained pattern mining. In Proc. PKDD'O3, volume
2838 of LNAI, pages 59-70. Springer-Verlag, 2003C.

F. Bonchi and C. Lucchese. On closed constrained frequent pattern mining. In
Proc. IEEE ICDM'04 (In Press), 2004.

J.-F. Boulicaut. Inductive databases and multiple uses of frequent itemsets:
the cInQ approach. In Database Technologies for Data Mining - Discover-
ing Knowledge with Inductive Queries, volume 2682 of LNCS, pages 1-23.
Springer-Verlag, 2004.

J.-F. Boulicaut and A, Bykowski. Frequent closures as a concise representation
for binary Data Mining. In Proc. PAKDD'OO, volume 1805 of LNAI, pages
62-73. Springer-Verlag, 2000.

J.-F. Boulicaut, A. Bykowski, and C. Rigotti. Approximation of frequency
queries by mean of free-sets. In Proc. PKDD'OO, volume 1910 of LNAI,
pages 75-85. Springer-Verlag, 2000.

J.-F. Boulicaut, A. Bykowski, and C. Rigotti. Free-sets : a condensed repre-
sentation of boolean data for the approximation of frequency queries. Data
Mining and Knowledge Discovery, 7(1):5-22,2003.

J.-F. Boulicaut and B. Jeudy. Using constraint for itemset mining: should we
prune or not? In Proc. BDA'OO, pages 221-237,2000.

Constraint-based Data Mining 415

J.-F. Boulicaut and B. Jeudy. Mining free-sets under constraints. In Proc. IEEE
IDEAS'OI, pages 322-329,2001.

C. Bucila, J. E. Gehrke, D. Kifer, and W. White. Dualminer: A dual-pruning
algorithm for itemsets with constraints. Data Mining and Knowledge Dis-
covery, 7(4):241-272,2003.

D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: A maximal frequent itemset
algorithm for transactional databases. In Proc. IEEE ICDE'O1, pages 443-
452,2001.

A. Bykowski and C. Rigotti. DBC: a condensed representation of frequent pat-
terns for efficient mining. Information Systems, 28(8):949-977,2003.

T. Calders and B. Goethals. Mining all non-derivable frequent itemsets. In
Proc. PKDD'02, volume 2431 of LNAI, pages 74-85. Springer-Verlag,
2002.

B. Cr6milleux and J.-F. Boulicaut. Simplest rules characterizing classes gen-
erated by delta-free sets. In Proc. ES 2002, pages 33-46. Springer-Verlag,
2002.

L. De Raedt. A perspective on inductive databases. SIGKDD Explorations,
4(2):69-77,2003.

L. De Raedt, M. Jaeger, S. Lee, and H. Mannila. A theory of inductive query
answering. In Proc. IEEE ICDM '02, pages 123-1 30,2002.

L. De Raedt and S. Krarner. The levelwise version space algorithm and its
application to molecular fragment finding. In Proc. IJCAI'OI, pages 853-
862,2001.

M. M. Garofalakis and R. Rastogi. Scalable Data Mining with model con-
straints. SIGKDD Explorations, 2(2):3948,2000.

M. M. Garofalakis, R. Rastogi, and K. Shim. SPIRIT: Sequential pattern min-
ing with regular expression constraints. In Proc. VLDBJ99, pages 223-234,
1999.

B. Goethals and M. J. Zaki, editors. Proc. of the IEEE ICDM 2003 Workshop
on Frequent Itemset Mining Implementations, volume 90 of CEUR Work-
shop Proceedings, 2003.

D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, H. Toivonen, and R. S.
Sharm. Discovering all most specific sentences. ACM Transactions on
Database Systems, 28(2): 140-174,2003.

T. Imielinski and H. Mannila. A database perspective on knowledge discovery.
Communications of the ACM, 39(11):58-64, 1996.

B. Jeudy and J.-F. Boulicaut. Optimization of association rule mining queries.
Intelligent Data Analysis, 6(4):341-357,2002.

D. Kifer, J. E. Gehrke, C. Bucila, and W. White. How to quickly find a witness.
In Proc. ACM PODS'03, pages 272-283,2003.

S. Kramer, L. De Raedt, and C. Helma. Molecular feature mining in HIV data.
In Proc. ACM SIGKDD'OI, pages 136-143,2001.

416 DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK

L. V. Lakshmanan, R. Ng, J. Han, and A. Pang. Optimization of constrained
frequent set queries with 2-variable constraints. In Proc. ACM SIGMOD'99,
pages 157-168, 1999.

D.-I. Lin and Z. M. Kedem. Pincer search: An efficient algorithm for discover-
ing the maximum frequent sets. IEEE Transactions on Knowledge and Data
Engineering, 14(3):553-566,2002.

H. Mannila and H. Toivonen. Multiple uses of frequent sets and condensed
representations. In Proc. KDD'96, pages 189-194. AAAI Press, 1996.

H. Mannila and H. Toivonen. Levelwise search and borders of theories in
knowledge discovery. Data Mining and Knowledge Discovery, 1(3):241-
258,1997.

C. Mellish. The description identification problem. Art$cial Intelligence,
52(2):151-168, 1992.

R. Meo. Optimization of a language for Data Mining. In Proc. ACM SAC'03 -
Data Mining Track, pages 437444,2003.

R. Meo, G. Psaila, and S. Ceri. An extension to SQL for mining association
rules. Data Mining and Knowledge Discovery, 2(2): 195-224, 1998.

T. Mitchell. Generalization as search. Art$cial Intelligence, 18(2):203-226,
1980.

R. Ng, L. V. Lakshmanan, J. Han, and A. Pang. Exploratory mining and
pruning optimizations of constrained associations rules. In Proc. ACM
SIGMOD'98, pages 13-24,1998.

N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient mining of associ-
ation rules using closed itemset lattices. Information Systems, 24(1):2546,
1999.

J. Pei, G. Dong, W. Zou, and J. Han. On computing condensed frequent pattern
bases. In Proc. IEEE ICDM'02, pages 378-385,2002.

J . Pei, J. Han, and L. V. S. Lakshmanan. Mining frequent itemsets with con-
vertible constraints. In Proc. IEEE ICDE'OI, pages 433442,2001.

R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item con-
straints. In Proc. ACM SIGKDD'97, pages 67-73, 1997.

M. J. Zaki. Sequence mining in categorical domains: incorporating constraints.
In Proc. ACM CIKM'OO, pages 422429,2000.

