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Abstract Knowledge Discovery in Databases (KDD) is a complex interactive process. The 
promising theoretical framework of inductive databases considers this is essen- 
tially a querying process. It is enabled by a query language which can deal either 
with raw data or patterns which hold in the data. Mining patterns turns to be the 
so-called inductive query evaluation process for which constraint-based Data 
Mining techniques have to be designed. An inductive query specifies declara- 
tively the desired constraints and algorithms are used to compute the patterns 
satisfying the constraints in the data. We survey important results of this active 
research domain. This chapter emphasizes a real breakthrough for hard prob- 
lems concerning local pattern mining under various constraints and it points out 
the current directions of research as well. 
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1. Motivations 
Knowledge Discovery in Databases (KDD) is a complex interactive and it- 

erative process which involves many steps that must be done sequentially. Sup- 
porting the whole KDD process has enjoyed great popularity in recent years, 
with advances in both research and commercialization. We however still lack 
of a generally accepted underlying framework and this hinders the further de- 
velopment of the field. We believe that the quest for such a framework is a ma- 
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jor research priority and that the inductive database approach (IDB) (Imielin- 
ski and Mannila, 1996; De Raedt, 2003) is one of the best candidates in this 
direction. IDBs contain not only data, but also patterns. Patterns can be ei- 
ther local patterns (e.g., itemsets, association rules, sequences) which are of 
descriptive nature, or global patterns/models (e.g., classifiers) which are gen- 
erally of predictive nature. In an IDB, ordinary queries can be used to access 
and manipulate data, while inductive queries can be used to generate (mine), 
manipulate, and apply patterns. KDD becomes an extended querying process 
where the analyst can control the whole process since helshe specifies the data 
andor patterns of interests. 

The IDB framework is appealing because it employs declarative queries 
instead of ad-hoc procedural constructs. As declarative inductive queries are 
often formulated using constraints, inductive querying needs for constraint- 
based Data Mining techniques and is concerned with defining the necessary 
constraints. 

It is useful to abstract the meaning of inductive queries. A simple model 
has been introduced in (Mannila and Toivonen, 1997). Given a language L 
of patterns (e.g., itemsets), the theory of a database V w.r.t. L and a selec- 
tion predicate C is the set Th(D,L,C) = {cp E L I C(cp,V) = true). The 
predicate selection or constraint C indicates whether a pattern cp is interesting 
or not (e.g., cp is "frequent" in V). We say that computing Th(V, L, C) is the 
evaluation for the inductive query C defined as a boolean expression over prim- 
itive constraints. Some of them can refer to the "behavior" of a pattern in the 
data (e.g., its "frequency" is above a threshold). Frequency is indeed the most 
studied case of evaluationfunction. Some others define syntactical restrictions 
(e.g., the "length" of the pattern is below a threshold) and checking them does 
not need any access to the data. Preprocessing concerns the definition of a 
mining context D, the mining phase is generally the computation of a theory 
while post-processing is often considered as a querying activity on a material- 
ized theory. To support the whole KDD process, it is important to support the 
specification and the computation of many different but correlated theories. 

According to this formalization, solving an inductive query needs for the 
computation of every pattern which satisfies C. We emphasized that the model 
is however quite general: beside the itemsets or sequences, L can denote, e.g., 
the language of partitions over a collection of objects or the language of de- 
cision trees on a collection of attributes. In these cases, classical constraints 
specify some function optimization. If the completeness assumption can be 
satisfied for most of the local pattern discovery tasks, it is generally impossible 
for optimization tasks like accuracy optimization during predictive model min- 
ing. In this case, heuristics or incomplete techniques are needed, which, e.g., 
compute sub-optimal decision trees. Very few techniques for constraint-based 
mining of models have been considered (see (Garofalakis and Rastogi, 2000) 
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for an exception) and we believe that studying constraint-based clustering or 
constraint-based mining of classifiers will be a major topic for research in the 
near future. Starting from now, we focus on local pattern mining tasks. 

It is well known that a "generate and test" approach that would enumerate 
the patterns of .C and then test the constraint C is generally impossible. A huge 
effort has been made by data mining researchers to make an active use of the 
primitive constraints occurring in C (solver design) such that useful mining 
query evaluation is tractable. On one hand, researchers have designed solvers 
for important primitive constraints. A famous example is the one of frequent 
itemset mining (FIM) where the data is a set of transactions, the patterns are 
itemsets and the primitive constraint is a minimal frequency constraint. A sec- 
ond major line of research has been to consider specific, say ad-hoc, techniques 
for conjunctions of some primitives constraints. Examples of seminal work are 
(Srikant et al., 1997) for syntactic constraints on frequent itemsets, (Pasquier 
et al., 1999) for frequent and closed set mining, or (Garofalakis et al., 1999) for 
mining sequences that are both frequent and satisfy a given regular expression 
in a sequence database. Last but not the least, a major progress has concerned 
the design of generic algorithms for mining under conjunctions or arbitrary 
boolean combination of primitive constraints. A pioneer contribution has been 
(Ng et al., 1998) and this kind of work consists in a classification of constraint 
properties and the design of solving strategies according to these properties 
(e-g., anti-monotonicity, monotonicity, succinctness). 

Along with constraint-based Data Mining, the concept of condensed repre- 
sentation has emerged as a key concept for inductive querying. The idea is to 
compute CR c Th(D, L, C) while deriving Th(D, L, C) from CR can be per- 
formed efficiently. In the context of huge database mining, efficiently means 
without any further access to D. Starting from (Mannila and Toivonen, 1996) 
and its concrete application to frequency queries in (Boulicaut and Bykowski, 
2000), many useful condensed representations have been designed the last 5 
years. Interestingly, we can consider condensed representation mining as a 
constraint-based Data Mining task (Jeudy and Boulicaut, 2002). It provides not 
only nice examples of constraint-based mining techniques but also important 
cross-fertilization possibilities (combining the both concepts) for optimizing 
inductive queries in very hard contexts. 

Section 2 provides the needed notations and concepts. It introduces the pat- 
tern domains of itemsets and sequences for which most of the constraint-based 
Data Mining techniques have been designed. Section 3 recalls the principal re- 
sults for solving anti-monotonic constraints. Section 4 concerns the introduc- 
tion of non anti-monotonic constraints and the various strategies which have 
been proposed. Section 5 concludes and points out the actual directions of 
research. 
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2. Background and Notations 
Given a database V, a pattern language L and a constraint C, let us first 

assume that we have to compute Th (V, L, C) = {cp E L I C(cp, 2)) = true). 
Our examples concern local pattern discovery tasks based on itemsets and se- 
quences. 

Itemsets have been studied a lot. Let Z = {A, B, ...) be a set of items. A 
transaction is a subset of Z and a database V is a multiset of transactions. An 
itemset is a set of items and a transaction t is said to support an itemset S if 
S 2 t. The frequency freq(S) of an itemset S is defined as the number of 
transactions that support S. L is the collection of all itemsets, i.e., 2'. The 
most studied primitive constraint is the minimum frequency constraint Ca-freq 
which is satisfied by itemsets having a frequency greater than the threshold 
(T. Many other constraints have been studied such as syntactical constraints, 
e-g., B E X whose testing does not need any access to the data. (Ng et al., 
1998) is a rather systematic study of many primitive constraints on itemsets 
(see also Section 4). (Boulicaut, 2004) surveys some new primitive constraints 
based on the closure evaluation function. The closure of an itemset S in V, 
f (S, V), is the maximal superset of S which has the same frequency than S in 
V. Furthermore, a set S is closed in V if S = f(S, V) in which case we say 
that it satisfies CcIo,. Freeness is one of the first proposals for constraint-based 
mining of closed set generators: free itemsets (Boulicaut et al., 2000) (also 
called key patterns in (Bastide et al., 2000B)) are itemsets whose frequencies 
are different from the frequencies of all their subsets. We say that they satisfy 
the Gree constraint. An important result is that {f(S, V) E 2' 1 Cfree(S, V) = 
true) = {S E 2' 1 CcIo,(S, V) = true). For instance, in the toy data set of 
Figure 18.1, {A,c) is a free set and {A, C, D), i.e., its closure, is a closed set. 

Sequential pattern mining from sequence databases (i.e., V is a multiset 
of sequences) has been studied as well. Many different types of sequential 
patterns have been considered for which different subpattern relations can be 
defined. For instance, we could say that bc is a subpattern (substring) of abca 
but aa is not. In other proposals, aa would be considered as a subpattern of 
abca. Discussing this in details is not relevant for this chapter. The key point 
is that, a frequency evaluation function can be defined for sequential patterns 
(number of sequences in V for which the pattern is a subpattern). The pattern 
language L is then the infinite set of sequences which can be built on some 
alphabet. Many primitive constraints can be defined, e.g., minimal frequency 
or syntactical constraints specified by regular expressions. Interestingly, new 
constraints can exploit the spatial or temporal order, e.g., the min-gap and 
max-gap constraints (see, e.g., (Zaki, 2000) and (Pei et al., 2002) for a recent 
survey). 



Constraint-based Data Mining 403 

Naive approaches that would compute Th(D, L, C) by enumerating every 
pattern cp of the search space L and test the constraint C(p, 2)) afterwards can 
not work. Even though checking C(p, D) can be cheap, this strategy fails be- 
cause of the size of the search space. For instance, we have 21'1 itemsets and 
we often have to cope with hundreds or thousands of items in practical appli- 
cations. Moreover, for sequential pattern mining, the search space is infinite. 

For a given constraint, the search space L is often structured by a special- 
ization relation which provides a lattice structure. For important constraints, 
the specialization relation has an anti-monotonicity property. For instance, set 
inclusion for itemsets or substring for strings are anti-monotonic specializa- 
tion relations w.r.t. a minimal frequency constraint. Anti-monotonicity means 
that when a pattern does not satisfy C (e.g., an itemset is not frequent) then 
none of its specializations can satisfy C (e.g., none of its supersets are fre- 
quent). It becomes possible to prune huge parts of the search space which 
can not contain interesting patterns. This has been studied within the "learn- 
ing as search" framework (Mitchell, 1980) and the generic levelwise algorithm 
from (Mannila and Toivonen, 1997) has inspired many algorithmic develop- 
ments (see Section 3). In this context where we say that the constraint C is 
anti-monotonic, the most specific patterns constitute the positive border of the 
theory (denoted Bd+(C)) (Mannila and Toivonen, 1997) and Bd+(C) is a con- 
densed representation of Th(D, L, C). It corresponds to the S set in the ter- 
minology of versions spaces (Mitchell, 1980). For instance, the collection of 
the maximal frequent patterns Bd+(Cu.freq) in D is generally several orders of 
magnitude smaller than the complete collection of the frequent patterns in 23. 
It is a condensed representation for Th(D, 2', c ~ - ~ ~ ~ ~ ) :  deriving subsets (i.e., 
generalizations) of each maximal frequent set (i.e., each most specific pattern) 
enables to regenerate the whole collection of the frequent sets (i.e., the whole 
theory of interesting patterns w.r.t. the constraint). 

In many applications, however, the user wants not only the collection of 
the patterns satisfying C but also the results of some evaluation functions for 
these patterns. This is quite typical for the frequent pattern discovery prob- 
lem: these patterns are generally exploited in a post-processing step to de- 
rive more useful statements about the data, e.g., the popular frequent asso- 
ciation rules which have a high enough confidence (Agrawal et al., 1996). 
This can be done efficiently if we compute not only the collection of fre- 
quent itemsets but also their frequencies. In fact, the semantics of an inductive 
query is better captured by the concept of extended theories. An extended 
theory w.r.t. an evaluation function f on a domain V is Thx(D, L, C, f )  = 
{(q, f (9)) E L 63 V I C(9, D) = true). The classical FIM problem turns to 
be the computation of Thx (D, 2*, C0-freq, freq). Another example concerns 
the closure evaluation function. 
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For instance, {(cp, f (9)) E 2' 8 2' 1 Cu.freq(cp, 2)) = true) is the collec- 
tion of the frequent sets and their closures, i.e., the frequent closed sets. 

An alternative and useful specification for the frequent closed sets is 
{(v, f (9)) E 2' 8 2' I G-treq(~, 2)) A Cfree(~, 2)) = true). 

Condensed representations can be designed for extended theories as well. 
Now, a condensed representation CR must enable to regenerate the patterns, 
but also the values of the evaluation function f on each pattern without any fur- 
ther access to the data. If the regenerated values for f are only approximated, 
the condensed representation is called approximate. Moreover, if the error on 
f can be bounded by E ,  the approximate condensed representation is called 
an eadequate representation of the extended theory (Mannila and Toivonen, 
1996). The idea is that we can trade off the precision on the evaluation function 
values with computational feasibility. 

Most of condensed representations studied so far are condensed represen- 
tations of the frequent itemsets. We have the maximal frequent itemsets (see, 
e.g., (Bayardo, 1998)), the frequent closed itemsets (see, e.g., (Pasquier et al., 
1999; Boulicaut and Bykowski, 2000)), the frequent free itemsets and the 6- 
free itemsets (Boulicaut et al., 2000; Boulicaut et al., 2003), the disjunction- 
free sets (Bykowski and Rigotti, 2003), the non-derivable itemsets (Calders 
and Goethals, 2002), the frequent pattern bases (Pei et al., 2002), etc. Except 
for the maximal frequent itemsets from which it is not possible to get a useful 
approximation of the needed frequencies, these are condensed representations 
of the extended theory Th,(D, 2', Cu-freq, freq) and 6-free itemsets and pattern 
bases are approximate representations. 

Condensed representations have three main advantages. First, they con- 
tain (almost) the same information than the whole theory but are significantly 
smaller (generally by several orders of magnitude), which means that they are 
more easily stored or manipulated. Next, the computation of CR and the re- 
generation of the theory Th from CR is often less expensive than the direct 
computation of Th. One can even say that, as soon as a transactional data 
set is dense, mining condensed representations of the frequent itemsets is the 
only way to solve the FIM problem for practical applications. Last, many pro- 
posals emphasize the use of condensed representations for deriving directly 
useful patterns (i.e., skipping the regeneration phase). This is obvious for fea- 
ture construction (see, e.g., (Kramer et al., 2001)) but has been considered also 
for the generation of non redundant association rules (see, e.g., (Bastide et al., 
2000A)) or interesting classification rules (Cr6rnilleux and Boulicaut, 2002)). 

3. Solving Anti-Monotonic Constraints 
In this section, we consider efficient solutions to compute (extended) theo- 

ries for anti-monotonic constraints. We still focus on constraint-based mining 
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of itemsets when the constraint is anti-monotonic. It is however straightfor- 
wardly extended to many other pattern domains. 

An anti-monotonic constraint on itemsets is a constraint denoted Cam such 
that for all itemsets S, S E 2': (S' c S A S satisfies Cam) + S' satisfies 
Cam. C,,-freq, Cfree, A # S ,  S c {A, B, C) and S n {A, B, C) = 0 are examples 
of anti-monotonic constraints. Furthermore, it is clear that a disjunction or a 
conjunction of anti-monotonic constraints is an anti-monotonic constraint. 

Let us be more precise on the useful concept of border (Mannila and Toivo- 
nen, 1997). If Cam denotes an anti-monotonic constraint and the goal is to 
compute T = Th(D,2',cam), then Bd+(Cam) is the collection of the max- 
imal (w.r.t. the set inclusion) itemsets of T that satisfy Cam and Bd-(Cam) 
is the collection of the minimal (w.r.t. the set inclusion) itemsets that do not 
satisfy Cam. 

Some algorithms have been designed for computing directly the positive 
borders, i.e., looking for the complete collection of the most specific pat- 
terns. A famous one is the Max-Miner algorithm which uses a clever enumer- 
ation technique for computing depth-first the maximal frequent sets (Bayardo, 
1998). Other algorithms for computing maximal frequent sets are described in 
(Lin and Kedem, 2002; Burdick et al., 2001; Goethals and Zaki, 2003). The 
computation of positive borders with applications to not only itemset mining 
but also dependency discovery, the generic "dualize and advance" framework, 
is studied in (Gunopulos et al., 2003). 

The levelwise algorithm by Mannila and Toivonen (Mannila and Toivonen, 
1997) has influenced many research in data mining. It computes 
Th(D, 2', Cam) levelwise in the lattice (L associated to its specialization re- 
lation) by considering first the most general patterns (e.g., the singleton in the 
FIM problem). Then, it alternates candidate evaluation (e.g., frequency count- 
ing or other checks for anti-monotonic constraints) and candidate generation 
(e.g., building larger itemsets from discovered interesting itemsets) phases. 
Candidate generation can be considered as the computation of the negative 
border of the previously computed collection. Candidate pruning is a major 
issue and it can be performed partly during the generation phase or just after: 
indeed, any candidate whose one generalization does not satisfy Cam can be 
pruned safely (e-g., any itemset whose one of its subsets is not frequent can 
be removed). The algorithm stops when it can not generate new candidates or, 
in other terms, when the most specific patterns have been found (e.g., all the 
maximal frequent itemsets). 

The Apriori algorithm (Agrawal et al., 1996) is clearly the most famous 
instance of this levelwise algorithm. It computes Th(D, 2', Cg-freq, freq) and 
it uses a clever candidate generation technique. A lot of work has been done 
for efficient implementations of Apriori-like algorithms. 
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Pruning based on anti-monotonic constraints has been proved efficient on 
hard problems, i.e., huge volume and high dimensional data sets. The many 
experimental results which are available nowadays prove that the minimal fre- 
quency is often an extremely selective constraint in real data sets. Interestingly, 
an algorithm like AcMiner (Boulicaut et al., 2000; Boulicaut et al., 2003) 
which can compute frequent closed sets (closeness is not an anti-monotonic 
constraint) via the frequent free sets exploits these pruning possibilities. In- 
deed, the conjunction of freeness and minimal frequency is an anti-monotonic 
constraint which enables an efficient pruning in dense andlor highly correlated 
data sets. 

The dual property of monotonicity is interesting as well. A monotonic 
constraint on itemsets is a constraint denoted Cm such that for all itemsets 
S, St E 2': ( S  C_ St A S satisfies Cm) +- St satisfies Cm. A constraint is 
monotonic when its negation is anti-monotonic (and vice-versa). In the item- 
set pattern domain, the maximal frequency constraint or a syntactic constraint 
like A E S are examples of monotonic constraints. 

The concept of border can be adapted to monotonic constraints. The pos- 
itive border Bd+(Cm) of a monotonic constraint Cm is the collection of the 
most general patterns that satisfy the constraint. The theory Th(V, L, Cm) is 
then the set of patterns that are more specific than the patterns of the border 
Bd+(cm). For instance, we have B ~ + ( A  E S) = {A) and the positive border 
of the monotonic maximal frequency constraint is the collection of the small- 
est itemsets which are not frequent in the data. In other terms, a monotonic 
constraint defines also a border in the search space which corresponds to the G 
set in the version space terminology (see Figure 18.1 for an example). 

The recent work has indeed exploited this duality for solving conjunctions 
of monotonic and anti-monotonic constraints (see Section 4.2). 

4. Introducing non Anti-Monotonic Constraints 
Pushing anti-monotonic constraints in the levelwise algorithm always leads 

to less constraint checking. Of course, anti-monotonic constraints are exploited 
into alternative frameworks, like depth-first algorithms. 

However, this is no longer the case when pushing non anti-monotonic con- 
straints. For instance, if an itemset does not satisfy an anti-monotonic con- 
straint Cam, then its supersets can be pruned. But if this itemset does not satisfy 
the non anti-monotonic constraint, then its supersets are not pruned since the 
algorithm does not test Cam on it. Pushing non anti-monotonic constraint can 
therefore lead to less efficient pruning (Boulicaut and Jeudy, 2000; Garofalakis 
et al., 1999). Clearly, we have here a trade-off between anti-monotonic pruning 
and monotonic pruning which can be decided if the selectivity of the various 
constraints is known in advance, which is obviously not the case in most of 
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the applications. Nice contributions have considered boolean expressions over 
monotonic and anti-monotonic constraints. The problem is still quite open for 
optimization constraints. 

4.1 The Seminal Work 
4.1.1 MultipleJoins, Reorder and Direct. Srikant et al. (Srikant 
et al., 1997) have been the first to address constraint-based mining of item- 
sets when the constraint C is not reduced to the minimum frequency con- 
straint Cu-freq. They consider syntactical constraints built on two kinds of 
primitive constraints: Ci(S) = (i E S), and C+(S) = (i # S)  where 
i E Z. They also introduce new constraints if a taxonomy on items is avail- 
able. A taxonomy (also called a is-a relation) is an acyclic relation r on 
Z. For instance, if the items are products like Milk, Jackets.. .the relation 
can state that Milk is-a Beverages, Jackets is-a Outer-wear, . . .The primi- 
tive constraints related to a taxonomy are: Ca(i)(S) = ( S  n ancestor(i) # 0). 
Cd(i)(S) = ( S  n descendant(i) # 0) , and their negations. Functions ancestor 
and descendant are defined using the transitive closure r* of r: we have 
ancestor(i) = {it E Z I r* (it, i)) and descendant(i) = {i' E Z I r* (i, it)). 
These new constraints can be rewritten using the two primitive constraints Ci 
and C+, e.g-* Cdesc(i)(S) = vjEdescendant(i) Cj(S)' 

It is now possible to specify syntactical constraints Csynt as a boolean combi- 
nation of the primitive constraints which is written in disjunctive normal form, 
i.e., Cspt = DI V D2 V . . . V Dm where each DI, is Ckl A Ck2 A .. . A Cknh and 
CI,~ is either Ci or C+ with i E Z. 

Srikant et al. (Srikant et al., 1997) provide three algorithms to compute 
Th,(V, 2=,C,freq) where C = Cu-freq A Cspt. The first two algorithms 
(MultipleJoins and Reorder) use a relaxation of the syntactical constraint. 
They show how to compute from Cspt an itemset T such that every itemset 
S satisfying the Cspt also satisfies the constraint S n T # 0. This constraint 
is pushed in an Apriori-like levelwise algorithm to obtain MultipleJoins and 
Reorder (Reorder is a simplification of MultipleJoins). The third algorithm, 
Direct, does not use a relaxation and pushes the whole syntactical constraint at 
the extended cost of a more complex candidate generation phase. Experimen- 
tal results confirm that the behavior of the algorithms depends clearly of the 
selectivity of the constraints on the considered data sets. 

4.1.2 CAP. The CAP algorithm (Ng et al., 1998) computes the ex- 
tended theory Thx(V7 2', C, freq) for C = Cu-treg ACam ACsu, where Cam is an 
anti-monotonic syntactical constraint and Csu, is a succinct constraint. A con- 
straint C is succinct (Ng et al., 1998) if it is a syntactical constraint and if we 
have itemsets 11, 12,. . . I k  such that C(S) = S c I I A S  9 12A..  . A S  II,. Ef- 
ficient candidate generation techniques can be performed for such constraints 
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which can be considered as special cases of conjunctions of anti-monotonic 
and monotonic syntactical constraints. 

In (Ng et al., 1998), the syntactical constraints are conjunctions of primitive 
constraints which are Ci, Cli and constraints based on aggregates. They indeed 
assume that a value v is associated with each item i and denoted i.v such that 
several aggregate functions can be used: 

MAX(S) = max {i.v I i E S) , MIN(S) = min {i.v I i E S) , 

These aggregate functions enable to define new primitive constraints 
AGG(S)Bn where AGG is an aggregation function, 8 is in {=, <, >) and n is 
a number. In a market basket analysis application, v can be the price of each 
item and we can define aggregate constraints to extract, e.g., itemsets whose 
average price of items is above a given threshold (AVG(S) > 10). Among 
these constraints, some are anti-monotonic (e.g., SUM(S) < 100 if all the 
values are positive, MIN(S) > lo), some are succinct (e.g., MAX(S) > 10, 
IS1 > 3) and others have no special properties and must be relaxed to be used 
in the CAP algorithm (e.g., SUM(S) < 10, AVG(S) < 10). 

The candidate generation function of CAP algorithm is an improvement 
over Direct algorithm. However, it can not use all syntactical constraints like 
Direct (only conjunction of anti-monotonic and succinct constraints can be 
used by CAP). The CAP algorithm can also use aggregate constraints. These 
constraints could also be used in Direct but they would need to be rewritten in 
disjunctive normal form using Ci and Cli. This rewriting stage can be computa- 
tionally expensive such that, in practice, we can not push aggregate constraints 
into Direct. 

4.1.3 SPIRIT. In (Garofalakis et al., 1999), the authors present several 
version of the SPIRIT algorithm to extract frequent sequences satisfying a reg- 
ular expression (such sequences are called valid w.r.t. the regular expression). 
For instance, if the sequences consist of letters, the valid sequences with re- 
spect to the regular expression a* (bb I cc) e are the sequences that start with 
several a followed by either bbe or cce. In the general case, such a syntac- 
tical constraint is not anti-monotonic. The different versions of SPIRIT use 
more and more selective relaxations of this regular expression constraint. The 
first algorithm, SPIRIT(N), uses an anti-monotonic relaxation of the syntacti- 
cal constraint. This constraint CN is satisfied by sequences s such that all the 
items appearing in s also appear in the regular expression. With our running 
example, CN(s) is true if s is built on letters a, b, c, and e only. A constraint 
CL is used by the second algorithm, SPIRIT(L). It is satisfied by a sequence 
s if s is a legal sequence w.r.t. the regular expression. A sequence s is legal 
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if we can find a valid sequence st such that s is a suffix of sf. For instance, 
cce is a legal sequence w.r.t. our running example. The SPIRIT(V) algorithm 
uses the constraint Cv which is satisfied by all contiguous sub-sequences of a 
valid sequence. Finally, the SPIRIT(R) algorithm uses the full constraint CR 
which is satisfied only by valid sequences. For the three first algorithms, a final 
post-processing step is necessary to filter out non-valid sequences. There is a 
subset relationship between the theories computed by these four algorithms: 
Th(D, L, CR A &req) G Th(D, L, CV A Cu-freq) G Th(v ,  L, CL A Cu-fres) G 
Th(V, L,CN A Cu-freq). Clearly, the first two algorithms are based mostly on 
minimal frequency pruning while the two last ones exploit further regular ex- 
pression pruning. Here again, only a prior knowledge on constraint selectivity 
enables to inform the choice of one of the algorithms, i.e., one of the pruning 
strategies. 

4.2 Generic Algorithms 
We now sketch some important results for the evaluation of quite general 

forms of inductive queries. 

4.2.1 Conjunction of Monotonic and Anti-Monotonic Constraints. 
Let us assume that we use constraints that are conjunctions of a monotonic 
constraint and an anti-monotonic one denoted Cam A Cm. The structure of 
Th(V, L,Cam A Cm) is well known. Given the positive borders Bd+(Cam) 
and Bd+(Cm), the patterns belonging to Th(V, L,Cam A Cm) are exactly the 
patterns that are more specific than a pattern of Bd+(Cm) and more general 
than a pattern of Bd+(Cam). This kind of convex pattern collection is called a 
Version Space and is illustrated on Fig. 18.1. 

Several algorithms have been developed to deal with Cam A Cm. The generic 
algorithm presented in (Boulicaut and Jeudy, 2000) computes the extended 
theory for a conjunction Cam A Cm. It is a levelwise algorithm, but instead 
of starting the exploration with the most general patterns (as it is done for 
anti-monotonic constraints), it starts with the minimal itemsets (most general 
patterns) satisfying Cm, i.e., the itemsets of the border Bd+(Cm). This is a 
generalization of MultipleJoins, Reorder and CAP: the constraint T n S # 0 
used in MultipleJoins and Reorder is indeed monotonic and succinct con- 
straints used in CAP can be rewritten as the conjunction of a monotonic and 
an anti-monotonic constraints. 

Since Bd+(Cam) et Bd+(Cm) characterize the theory of Cam A Cm, these 
borders are a condensed representation of this theory. The Molfea algorithm 
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3 ABE 
4 A m  
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Rgure 18.1. This figure shows the itemset lattice associated to D (the subscript number is 
the frequency of each itemset in V). The itemsets above the black lime satisfy the mono- 
tonic constraint Cm(S) = (B E S) V (CD s S) and the itemsets below the dashed line 
satisfy the anti-monotonic constraint Cam = C2-freq. The black iternsets belong to the the- 
ory Th(V, 2',Cam A em). They are exactly the itemsets that are subsets of an element of 
Bd+(Cam) = {ABCD, ABE, CE) and supersets of an element of Bd' (Cm) = {A, CD). 

and the Dualrniner algorithms extract these two borders. They are interesting 
algorithms for feature extraction. 

The Molfea algorithm presented in (Kramer et al., 2001; De Raedt and 
Kramer, 2001) extract linear molecular fragments (i.e., strings) in a a par- 
titioned database of molecules (say, active vs. inactive molecules). They 
consider conjunctions of a minimum frequency constraint (say in the active 
molecules), a maximum frequency constraint (say in the inactive ones) and 
syntactical constraints. The two borders are constructed in an incremental 
fashion, considering the constraints one after the other, using a level-wise algo- 
rithm for the frequency constraints and Mellish algorithm (Mellish, 1992) for 
the syntactical constraints. The Dualrniner algorithm (Bucila et al., 2003) uses 
a depth-first exploration similar to the one of Max-Miner whereas Dualrniner 
deals with Cam A Cm instead of just Cam. 

In (Bonchi et al., 2003C), the authors consider the computation of not only 
borders but also the extended theory for Cam A Cm. In this context, they show 
that the most efficient approach is not to reason on the search space only but 
both the search space and the transactions from the input data. They have a 
clever approach to data reduction based on the monotonic part. Not only it 
does not affect anti-monotonic pruning but also they demonstrate that the two 
pruning opportunities are mutually enhanced. 

4.22 Arbitrary Expression over Monotonic and Anti Monotonic Con- 
straints. The algorithms presented so far cannot deal with an arbitrary 
boolean expression consisting of monotonic and anti-monotonic constraints. 
These more general constraints are studied in (De Raedt et al., 2002). Using 
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the basic properties of monotonic and anti-monotonic constraints, the authors 
show that such a constraint can be rewritten as (Caml A Cml) V (Camz A Cmz) V 
. . . V (Cam, A Cm,). The theory of each conjunction (Cami A Cmi) is a version 
space and the theory w.r.t. the whole constraint is a union of version spaces. 
The theory of each conjunction can be computed using any algorithm described 
in the previous sections. Since there are several ways to express the constraint 
as a disjunction of conjunctions, it is therefore desirable to find an expression 
in which the number of conjunction is minimal. 

4.2.3 Conjunction of Arbitrary Constraints. When constraints are 
neither anti-monotonic nor monotonic, finding an efficient algorithm is dif- 
ficult. The common approach is to design a specific strategy to deal with a 
particular class of constraints. Such algorithms are presented in the next sec- 
tion. A promising generic approach has been however presented recently. It is 
the concept of witness presented in (Kifer et al., 2003) for itemset mining. This 
paper does not describe a mining algorithm but rather a pruning technique for 
non anti-monotonic and non monotonic constraints. Considering a sub-lattice 
A of 2', the problem is to decide whether this sub-lattice can be pruned. A 
sub-lattice is characterized by'its maximal element M and its minimal element 
m, i.e., the sub-lattice is the collection of all itemsets S such that m G S g M. 
To prune this sub-lattice, one must prove that none of its elements can satisfy 
the constraint C. To check this, the authors introduce the concept of negative 
witness: a negative witness for C in the sub-lattice A is an itemset W such that 
+(W) + VX E A, lC(X). Therefore, if the constraint is not satisfied by 
the negative witness, then the whole sub-lattice can be pruned. Finding wit- 
nesses for anti-monotonic or monotonic constraints is easy : m is the witness 
for all anti-monotonic constraints and M for all monotonic ones. The authors 
then show how to compute efficiently witnesses for various tough constraints. 
For instance, for AVG(S) > a, a witness is the set mU{i E M I i.v > a). The 
authors also gives an algorithm (linear in the size of Z) to compute a witness 
for the difficult constraint (VAR(S) > a )  where VAR denotes the variance. 

4.3 Ad-hoc Strategies 
Apart from generic algorithms, many algorithms have been designed to cope 

with specific classes of constraints. We select only two examples. 
The FIC algorithm (Pei et al., 2001) does a depth-first exploration of the 

itemset lattice. It is very efficient due to its clever data structure, a prefix-tree 
used to store the database. This algorithm can compute the extended theory 
for a conjunction Cam A Cm A C' where C' is convertible anti-monotonic or 
monotonic. A constraint C' is convertible anti-monotonic if there exists an 
order on the items such that, if itemsets are written using this order, every 
prefix of an itemset satisfying C' satisfies C'. For instance, AVG(S) > a 
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is convertible anti-monotonic if the items i are ordered by decreasing value 
i.v. The main problem with convertible constraints is that a conjunction of 
convertible constraints is generally not convertible. 

Another example of an ad-hoc strategy is used in the c-Spade algorithm 
(Zaki, 2000). This algorithm is used to extract constrained sequences where 
each event in the sequences is dated. One of the constraints, the max - gap 
constraint, states that two consecutive events occurring in a pattern must not 
be further apart than a given maximum gap. This constraint is neither anti- 
monotonic nor monotonic and a specific algorithm has been designed for it. 

4.4 Other Directions of Research 
Among others, let us introduce here three important directions of research. 

4.4.1 Adaptive Pruning Strategies. We mentioned the trade-off be- 
tween anti-monotonic pruning which is known to be quite efficient and prun- 
ing based on non anti-monotonic constraints. Since the selectivity of the var- 
ious constraints is generally unknown, a quite exciting challenge is to look 
for adaptive strategies which can decide of the pruning strategy dynamically. 
(Bonchi et al., 2003A; Bonchi et al., 2003B) propose algorithms for fre- 
quent itemsets under syntactical monotonic constraints. (Albert-Lorincz and 
Boulicaut, 2003) considers frequent sequence mining under regular expres- 
sion constraints. These are promising approaches to widen the applicability of 
constraint-based mining techniques in real contexts. 

4.4.2 Combining Constraints and Condensed Representations. A 
few papers, e.g., (Boulicaut and Jeudy, 2000; Bonchi and Lucchese, 2004), 
deal with the problem of extracting constrained condensed representation. In 
these works, the aim is to compute a condensed representation of the extended 
theory Thx(D, 2',Cam A Cm, freq). In (Boulicaut and Jeudy, 2000), the au- 
thors use free itemsets, i.e., their algorithm computes the extended theory 
Thz(V, 2',cam A Cm A Cfree, freq). In (Bonchi and Lucchese, 2004), the au- 
thors use closed itemsets, i.e., their algorithm computes the extended theory 
Thx(D, 2',Cam A Cm A Cclos, freq). However, in these two works, the defini- 
tion of free sets and closed sets have been modified to be able to regenerate the 
extended theory Thz(D, 2*, Cam A Cm, freq) from the extracted theories. This 
kind of research combines the advantages of both condensed representations 
and constrained mining which result in very efficient algorithms. 

4.4.3 Constraint-based Mining of more Complex Pattern 
Domains. Most of the recent results have concerned simple local pat- 
tern discovery tasks like the ones based on itemsets or sequences. We believe 
that inductive querying is much more general. Many open problems are how- 
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ever to be addressed. For instance, even constraint-based mining of association 
rules is already much harder than constraint-based mining of itemsets (Laksh- 
manan et al., 1999; Jeudy and Boulicaut, 2002). The recent work on the MINE 
RULE query language (Meo et al., 1998) is also typical of the difficulty to op- 
timize constraint-based association rule mining (Meo, 2003). When consider- 
ing model mining under constraints (e.g., classifier design or clustering), only 
very preliminary approaches are available (see, e.g., (Garofalakis and Rastogi, 
2000)). We think that this will be a major issue for research in the next few 
years. For instance, for clustering, it seems important to go further than the 
classical similarity optimization constraints and enable to specify other con- 
straints on clusters (e.g., enforcing that some objects are or are not within the 
same clusters). 

5. Conclusion 
In this chapter, we have considered constraint-based mining approaches, i.e., 

the core techniques for inductive querying. 
This domain has been studied a lot for simple pattern domains like itemsets 

or sequences. Rather general forms of inductive queries on these domains (e.g., 
arbitrary boolean expressions over monotonic and anti-monotonic constraints) 
have been considered. Beside the many ad-hoc algorithms, an interesting ef- 
fort has concerned generic algorithms. Many open problems are still there: 
how to solve tough constraints?, how to design relevant approximation or re- 
laxation schemes? how to combine constraint-based mining with condensed 
representations, not only for simple pattern domains but also more complex 
ones? 

Moreover, within the inductive database framework, the problem is to op- 
timize sequences of queries and typically sequences of correlated inductive 
queries. It is crucial to consider that the optimization of a query and thus 
constraint-based mining must also take into account the previously solved 
queries. Looking for the formal properties between inductive queries, espe- 
cially containment, is thus a major priority. Here again, we believe that con- 
densed representations might play a major role. 

Last but not the least, a quite challenging problem is to consider from where 
the constraints come. The analysts can think in terms of constraints or declara- 
tive specifications which are not supported by the available solvers: an obvious 
example could be unexpectedness or novelty w.ct. some explicit background 
knowledge. To be able to derive appropriate inductive queries based on a lim- 
ited number of primitives (and some associated solvers) from the constraints 
expressed by the analysts is challenging. 
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