
Chapter 32

DATA MINING QUERY LANGUAGES

Jean-Francois Boulicaut
INSA Lyon, URIS CNRS FRE 2672
69621 Villeurbanne cedex, France.
jean-francois.boulicautOinsa-1yort.fr

Cyrille Masson
INSA Lyon, URIS CNRS FRE 2672
69621 Villeurbanne cedex, France.
Cyrille.Masson O insa-lyon.fr

Abstract Many Data Mining algorithms enable to extract different types of patterns from
data (e.g., local patterns like itemsets and association rules, models like classi-
fiers). To support the whole knowledge discovery process, we need for integrated
systems which can deal either with patterns and data. The inductive database
approach has emerged as an unifying framework for such systems. Following
this database perspective, knowledge discovery processes become querying pro-
cesses for which query languages have to be designed. In the prolific field of
association rule mining, different proposals of query languages have been made
to support the more or less declarative specification of both data and pattern ma-
nipulations. In this chapter, we survey some of these proposals. It enables to
identify nowadays shortcomings and to point out some promising directions of
research in this area.

Keywords: Query languages, Association Rules, Inductive Databases.

1. The Need for Data Mining Query Languages
Since the first definition of the Knowledge Discovery in Databases (KDD)

domain in (Piatetsky-Shapiro and Frawley, 1991), many techniques have been
proposed to support these "From Data to Knowledge" complex interactive and
iterative processes. In practice, knowledge elicitation is based on some ex-
tracted and materialized (collections of) patterns which can be global (e.g.,

jfboulicaut
Zone de texte
The Data Mining and Knowledge Discovery Handbook,
O. Maimon and L. Rokach (Eds.), Springer, 2005, pp. 399-416.

716 DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK

decision trees) or local (e.g., itemsets, association rules). Real life KDD pro-
cesses imply complex pre-processing manipulations (e-g., to clean the data),
several extraction steps with different parameters and types of patterns (e.g.,
feature construction by means of constrained itemsets followed by a classifying
phase, association rule mining for different thresholds values and different ob-
jective measures of interestingness), and post-processing manipulations (e.g.,
elimination of redundancy in extracted patterns, crossing-over operations be-
tween patterns and data like the search of transactions which are exceptions
to frequent and valid association rules or the selection of misclassified ex-
amples with a decision tree). Looking for a tighter integration between data
and patterns which hold in the data, Imielinski and Mannila have proposed in
(Imielinski and Mannila, 1996) the concept of inductive database (IDB). In an
IDB, ordinary queries can be used to access and manipulate data, while induc-
tive queries can be used to generate (mine), manipulate, and apply patterns.
KDD becomes an extended querying process where the analyst can control
the whole process since helshe specifies the data andlor patterns of interests.
Therefore, the quest for query languages for IDBs is an interesting goal. It
is actually a long-term goal since we still do not know which are the relevant
primitives for Data Mining. In some sense, we still lack from a well-accepted
set of primitives. It might recall the context at the end of the 60's before the
Codd's relational algebra proposal.

In some limited contexts, researchers have, however, designed data mining
query languages. Data Mining query languages can be used for specifying
inductive queries on some pattern domains. They can be more or less coupled
to standard query languages for data manipulation or pattern postprocessing
manipulations. More precisely, a Data Mining query language, should provide
primitives to (1) select the data to be mined and pre-process these data, (2)
specify the kind of patterns to be mined, (3) specify the needed background
knowledge (as item hierarchies when mining generalized association rules),
(4) define the constraints on the desired patterns, and (5) post-process extracted
patterns.

Furthermore, it is important that Data Mining query languages satisfy the
closure property, i.e., the fact that the result of a query can be queried. Follaw-
ing a classical approach in database theory, it is also needed that the language is
based on a well-defined (operational or even better declarative) semantics. It is
the only way to make query languages that are not only "syntactical sugar" on
top of some algorithms but true query languages for which query optimization
strategies can be designed. Again, if we consider the analogy with SQL, rela-
tional algebra has paved the way towards query processing optimizers that are
widely used today. Ideally, we would like to study containment or equivalence
between mining queries as well.

Data Mining Query Languages 717

Last but not the least, the evaluation of Data Mining queries is in general
very expensive. It needs for efficient constraint-based data mining algorithms,
the so-called solvers (De Raedt, 2003; Boulicaut and Jeudy, 2005). In other
terms, data mining query languages are often based on primitives for which
some more or less ad-hoc solvers are available. It is again typical of a situation
where a consensus on the needed primitives is yet missing.

So far, no language proposal is generic enough to provide support for a
broad kind applications during the whole KDD process. However, in the active
field of association rule mining, some interesting query languages have been
proposed. In Section 2, we recall the main steps of a KDD process based on
association rule mining and thus the need for querying support. In Section 3,
we introduce several relevant proposals for association rule mining query lan-
guages. It contains a short critical evaluation (see (Botta et al., 2004) for a
detailed one). Section 4 concludes.

2. Supporting Association Rule Mining Processes
We assume that the reader is familiar with association rule mining (see, e.g.,

(Agrawal et al., 1996) for an introduction). In this context, data is considered
as a multiset of transactions, i.e., sets of items. Frequent associations rules
are built on frequent itemsets (itemsets which are subsets of a certain percent-
age of the transactions). Many objective interestingness measures can inform
about the quality of the extracted rules, the confidence measure being one of
the most used. Importantly, many objective measures appear to be comple-
mentary: they enable to rank the rules according to different points of view.
Therefore, it seems important to provide support for various measures, includ-
ing the definition of new ones, e.g., application specific ones.

When a KDD process is based on itemsets or association rules, many oper-
ations have to be performed by means of queries. First, the language should
allow to manipulate and extract source data. Typically, the raw data is not al-
ways available as transactional data. One of the typical problems concerns the
transformation of numerical attributes into items (or boolean properties). More
generally, deriving the transactional context to be mined from raw data can be a
quite tedious task (e.g., deriving a transactional data set about WWW resources
loading per session from raw WWW logs in a WWW Usage Mining applica-
tion). Some of these preprocessing are supported by SQL but a programming
extension like PWSQL is obviously needed.

Then, the language should allow the user to specify a broad kind of con-
straints on the desired patterns (e.g., thresholds for the objective measures of
interestingness, syntactical constraints on items which must appear or not in
rule components). So far, the primitive constraints and the way to combine
them is tightly linked with the kinds of constraints the underlying evaluation

718 DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK

engine or solvers can process efficiently (typically anti-monotonic or succinct
constraints). One can expect that minimal frequency and minimal confidence
constraints are available. However, many other primitive constraints can be
useful, including the ones based on aggregates (Ng et al., 1998) or closures
(Jeudy and Boulicaut, 2002; Boulicaut, 2004).

Once rules have been extracted and materialized (e.g., in relational tables),
it is important that the query language provides techniques to manipulate them.
We can wish, for instance, to find a cover of a set of extracted rules (i.e., non
redundant association rules based on closed sets (Bastide et al., 2000)), which
requires to have subset operators, primitives to access bodies and heads of
rules, and primitives to manipulate closed sets or other condensed represen-
tations of frequent sets (Boulicaut, 2004) and (Calders and Goethals, 2002).
Another important issue is the need for crossing-over primitives. It means that,
for instance, we need simple way to select transactions that satisfy or do not
satisfy a given rule.

The so-called closure property is important. It enables to combine
queries, to support the reuse of KDD scenarios, and it gives rise to opportuni-
ties for compiling schemes over sequences of queries (Boulicaut et al., 1999).
Finally, we could also ask for a support to pattern uses. In other terms, once
relevant patterns have been stored, they are generally used by some software
component. To the best of our knowledge, very few tools have been designed
for this purpose (see (Imielinski et al., 1999) for an exception).

We can distinguish two major approaches in the design of Data Mining
query languages. The first one assumes that all the required objects (data and
pattern storage systems and solvers) are already embedded into a common sys-
tem. The motivation for the query language is to provide more understandable
primitives: the risk is that the query

language provides mainly "syntactic sugar" on top of solvers. In that frame-
work, if data are stored using a classical relational DBMS, it means that source
tables are views or relations and that extracted patterns are stored using the re-
lational technology as well. MSQL, DMQL and MINE RULE can be considered
as representative of this approach. A second approach assumes that we have
no predefined integrated systems and that storage systems are loosely coupled
with solvers which can be available from different providers. In that case, the
language is not only an interface for the analyst but also a facilitator between
the DBMS and the solvers. It is the approach followed by OLE DB for DM
(Microsoft). It is an API between different components that also provides a
language for creating and filling extraction contexts, and then access them for
manipulations and tests. It is primarily designed to work on top of SQL Server
and can be plugged with different solvers provided that they comply the API
standard.

Data Mining Query Languages

3. A Few Proposals for Association Rule Mining
3.1 MSQL

MSQL (Imielinski and Virmani, 1999) has been designed at the Rutgers
University. It extracts rules that are based on descriptors, each descriptor being
an expression of the type (Ai = aij), where Ai is an attribute and aij is a
value or a range of values in the domain of Ai. We define a conjunctset as the
conjunction of an arbitrary number of descriptors such that there are no couple
of descriptors built on the same attribute. MSQL extracts propositional rules
of the form A + 13, where A is a conjunctset and B is a descriptor. As a
consequence, only one attribute can appear in the consequent of a rule. Notice
that MSQL defines the support of an association rule A + B as the number of
tuples containing A in the original table and its confidence as the ratio between
the number of tuples containing A et B and the support of the rule.

From a practical point of view, MSQL can be seen as an extension of SQL
with some primitives tailored for association rule mining (given their semantics
of association rules). Specific queries are used to mine rules (inductive queries
starting with GetRules) while other queries are post-processing queries over
a materialized collection of rules (queries starting with S e l e c t R u l e s) . The
global syntax of the language for rule extraction is the following one:

G e t R u l e s (C) [INTO < r u l e b a s e name>]
[WHERE < r u l e c o n s t r a i n t s >]
[SQL-group-by c l a u s e 1
[USING e n c o d i n g - c l a u s e 1

C is the source table and r u l e - c o n s t r a i n t s are conditions on the de-
sired rules, e-g., the kind of descriptors which must appear in rule components,
the minimal frequency or confidence of the rules or some mutual exclusion
constraints on attributes which can appear in a rule. The USING part enables
to discretize numerical values. r u l e b a s e n a m e is the name of the object
in which rules will be stored. Indeed, using MSQL, the analyst can explicitly
materialize a collection of rules and then query it with the following generic
statement where < c o n d i t i o n s > can specify constraints on the body, the
head, the support or the confidence of the rule:

S e l e c t R u l e s (r u l e b a s e name)
[where < c o n d i t i o n s >]

Finally, MSQL provides a few primitives for post-processing. Indeed, it is
possible to use S a t i s f y and V i o l a t e clauses to select rules which are sup-
ported (or not) in a given table.

720 DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK

3.2 MINE RULE

MINE RULE (Meo et al., 1998) has been designed at the University of
Torino and the Politecnico di Milano. It is an extension of SQL which is
coupled with a relational DBMS. Data can be selected using the full power
of SQL. Mined association rules are materialized into relational tables as well.
MINE RULE extracts association rule between values of attributes in a rela-
tional table. However, it is up to the user to specify the form of the rules
to be extracted. More precisely, the user can specify the cardinality of body
and head of the desired rules and the attributes on which rule components can
be built. An interesting aspect of MINE RULE is that it is possible to work
on different levels on grouping during the extraction (in a similar way as the
GROUP BY clause of SQL). If there is one level of grouping, rule support
will be computed w.r.t. the number of groups in the table. Defining a second
level of grouping leads to the definition of clusters (sub-groups). In that case,
rules components can be taken in two different clusters, eventually ordered,
inside a same group. It is thus possible to extract some elementary sequential
patterns (by clustering on a time-related attribute). For instance, grouping pur-
chases by customers and then clustering them by date, we can obtain rules like
Butter A Milk +- Oil to say that customers who buy first Butter and Milk
tend to buy Oil after. Concerning interestingness measures, MINE RULE en-
ables to specify minimal frequency and confidence thresholds. The general
syntax of a MINE RULE query for extracting rules is:

MINE RULE <TableName> AS
SELECT DISTINCT [<Cardinality>] <Attributes>

AS BODY,
[<Cardinality>] <Attributes>
AS HEAD
[, SUPPORT] [, CONFIDENCE]

FROM <Table> [WHERE <Whereclause> I
GROUP BY <Attributes> [HAVING <HavingClause> I
[CLUSTER BY <Attributes>

[HAVING <HavingClause> I 1
EXTRACTING RULES WITH

SUPPORT:<real>, CONFIDENCE:<real>

3.3 DMQL

DMQL (Han et al., 1996) has been designed at the Simon Fraser Univer-
sity, Canada. It has been designed to support various rule mining extrac-

Data Mining Query Languages 72 1

tions (e.g., classification rules, comparison rules, association rules). In this
language, an association rule is a relation between the values of two sets of
predicates that are evaluated on the relations of a database. These predicates
are of the form P (X , c) where P is a predicate taking the name of an at-
tribute of a relation, X is a variable and c is a value in the domain of the
attribute. A typical example of association rule that can be extracted by DMQL
is buy(X, milk) A t m n (X , Berlin) + buy(X, beer). An important possibil-
ity in DMQL is the definition of meta-patterns, i.e., a powerful way to restrict
the syntactic aspect of the extracted rules (expressive syntactic constraints).
For instance, the meta-pattern buy+(X, Y) A town(X, Berlin) + buy(X, 2)
restricts the search to association rules concerning implication between bought
products for customers living in Berlin. Symbol + denotes that the predicate
buy can appear several times in the left part of the rule. Moreover, beside the
classical frequency and confidence, DMQL also enables to define thresholds on
the noise or novelty of extracted rules. Finally, DMQL enables to define a hierar-
chy on attributes such that generalized association rules can be extracted. The
general syntax of DMQL for the extraction of association rules is the following
one:

Use database (database-name)

{use hierarchy (hierarchy-name)
For (attribute))

Mine associations [as (pattern-name)]

[Matching (metapattern) I

From (relation(s)) [Where (condition)]

[Order by (order-list) I
[Group by (grouping1ist)I [Having (condition)]

With (interest-measure)
Threshold = value

3.4 OLE DB for DM

OLE DB for DM has been designed by Microsoft Corporation (Netz et al.,
2000). It is an extension of the OLE DB API to access database systems. More
precisely, it aims at supporting the communication between the data sources

722 DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK

and the solvers that are not necessarily implemented inside the query evalua-
tion system. It can thus work with many different solvers and types of patterns.
To support the manipulation of the objects of the API during a KDD process,
OLE DB for DM proposes a language as an extension to SQL. The concept
of OLE DB for DM relies on the definition of Data Mining Models (DMM),
i.e. object that correspond to extraction contexts in KDD. Indeed, whereas the
other language proposals made the assumption that the data almost have a suit-
able format for the extraction, OLE DB for DM considers it is not always the
case and let the user defines a virtual object that will have a suitable format
for the extraction and that will be populated with the needed data. Once the
extraction algorithm has been applied on this DMM, the DMM will become
an object containing patterns or models. It will then be possible to query this
DMM as a rule base or to use it as a classifier. The global syntax for creating
a DMM is the following:

CREATE MINING MODEL <DMM name>
(<columns definition>)
USING <algorithm>
[(<algorithm parameters>)]

For each column, it is possible to specify the data type and if it is the target
attribute of the model to be learnt in case of classification. Moreover, a column
can correspond to a nested table, which is useful when populating the mining
model with data taken in tables linked by a one-to-many relationship. For the
moment, OLE DB for DM is implemented in the SQL Server 2000 software
and it provides only two mining algorithms: one for decision trees and one for
clustering. However, the 2005 version of SQL server should provide neural
network and association rule extractors. This latter one will enable to define
minimal and maximal rule support, minimal confidence,and minimal and max-
imal sizes of itemsets on which the rules are based. Chapter 64 presents OLE
DB for DM in details.

3.5 A Critical Evaluation
Let us now emphasize the main advantages and drawbacks of the different

proposals. A detailed evaluation of these four languages has been performed
on a simple but realistic association rule mining scenario (Botta et al., 2004).
We summarize the results of this study and it enables to point some important
problems that must be addressed on our way to query languages for inductive
databases.

The advantages of the proposed languages is that they are all designed as
extensions of SQL. It facilitates the work for database experts and it is useful
for data manipulation (or the needed standard queries). They all satisfy the clo-

Data Mining Query Languages 723

sure property. Indeed, even if all the languages do not systematically provide
operators for manipulating extracted rules, it is always possible to access ma-
terialized collections of rules using SQL queries. Notice, however, that most
of the needed pre-processing or post-processing techniques will need not only
SQL queries but also PLISQL statements. Some languages provide primitives
to simplify some typical preprocessing, e.g., the discretization of numerical
values. Even if is quite preliminary, it is an important support for the practical
use of the association rule mining technique. Finally, the concept of OLE DB
for DM is quite relevant as it enables external providers to plug-in new solvers
to the existing systems.

The first major limitation of the proposed languages is the poor support to
pre- and post-postprocessing operations. Indeed, they are essentially designed
around the extraction step and mainly provide primitives for rule extractions,
these primitives being generally fixed, e.g., the possibilities to specify mini-
mal thresholds for a few selected objective measures of interestingness or to
define syntactical constraints on the rules. Only MSQL and OLE DB for DM
propose restricted mechanisms for discretization. Typical preprocessing tech-
niques for, e.g., sampling or boosting, are not supported. It has been shown
that pre-processing processes for KDD are tedious phases for which the use
of integrated tools and operators is needed (see, e.g., the MINING MART "En-
abling End-User Datawarehouse Mining" EU funded project IST-1999- 11993
(Morik and Scholz, 2004)). The lack of primitives for post-processing is also
obvious. Only MSQL provides a SelectRules operator which enables to
query rule databases and primitives for crossing-over operations between rules
and data. The others rely on SQL and its programming extensions for access-
ing and manipulating the rules. For instance, using MINE RULE, extracted
rules are stored in relational tables that have to be queried with SQL. In that
case, writing a query which simply returns tuples of a table which satisfy a
given rule can be very complex because of SQL mechanisms for handling sub-
set relationships (see (Botta e t al., 2004) for examples). Not only the SQL
post-processing queries are hard to write but also difficult to optimize given
the current state of the art for SQL optimization. A solution can come from
query languages dedicated to pattern database manipulations. It is the case
of RULE-QL (Tuzhilin and Liu, 2002) which extends SQL with operators al-
lowing to access rules components and to specify subset relationships. It is
thus easier to write queries that, for instance, select rules that have a left part
contained in the consequent of another rule. RULE-QL can be seen as a good
complement to languages like MINE RULE. More generally, some basic re-
search is needed on pattern database querying where patterns can be rules,
clusters, classifiers, etc. An interesting work in this direction is done by the
PANDA "Patterns for Next-Generation Database Systems" EU funded Work-

724 DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK

ing Group IST/FET-2001-33058 (Theodoridis and Vassiliadis, 2004; Catania
et al., 2004).

The second main drawback of the proposed languages is that they appear
to be quite ad hoc proposals. By this term, we mean that they have been pro-
posed on top of some specific algorithms or solvers. The available constraints
or conjunction of constraints are the one for which solvers were available at
the time of design. When considering the evaluation architecture (described,
e.g., for MINE RULE), we can see that different solvers cope with specific
conjunctions of constraints on the association rules. This is also the case for
DMQL and OLE DB for DM proposals, i.e. languages that can extract several
types of patterns. For instance, with DMQL, each type of rule that

can be extracted is indeed related to a particular solver.
To summarize, primitives are missing and the integration of new primitives

by the analyst is not possible. This is obviously due to the lack of consensus on
a good collection of primitives. This is true for simple pattern domains like as-
sociation rules but also for more complex ones. It is interesting to note that the
semantics of the association rules for the different query language proposals is
not the same. When looking at the details, we can see that even simple evalua-
tion functions like frequency can be defined differently. In other terms, we still
lack from a consensus on what is an association rule and what is the seman-
tics of a constrained association rule. The situation is the same for other kinds
of patterns, e.g., see the many different semantics for constrained sequential
patterns which have been proposed the last 10 years.

We believe that looking for a formal semantics of Data Mining query lan-
guages is crucial for the development of the field. Indeed, if we draw a parallel
with the development of standard database query languages, we know that (ex-
tended) relational algebra have played a major role for their design but also
the implementation of efficient query optimizers. The same goal should be
taken if we wish to develop Data Mining query languages that are not just
"syntactic sugar" on top of solvers. For instance, based on the MINE RULE
formal semantics, it has been possible to analyze how to optimize queries and
also to exploit properties on the relationship between queries. Thanks to data
dependencies in the source tables, (Meo, 2003) shows that containment and
dominance relations between queries can be used to speed-up the evaluation of
new mining queries.

It was one of the main goals of the CINQ "consortium on knowledge discov-
ery by Inductive Queries" EU funded project ISTIFET-2000-26469 to make a
breakthrough in this direction. Considering several pattern domains (e.g., as-
sociation rules, sequences, molecular fragments), they have been looking for
useful primitives, new ways to combine them, and not only ad-hoc but also
generic solvers for complex inductive queries (e.g., arbitrary boolean expres-
sions over monotonic and anti-monotonic constraints (De Raedt et al., 2002)).

Data Mining Query Languages 725

A simple formal language is sketched in (De Raedt, 2003) to describe both
data and pattern manipulations via inductive queries. Some recent contribu-
tions to database support for Data Mining are collected in (Meo et al., 2004).
It contains, among others, extended contributions of the first two workshops
organized by the CINQ project.

4. Conclusion
In this chapter, we have considered Data Mining query languages issues. To

support the whole knowledge discovery process, we need for integrated sys-
tems which can deal either with patterns and data. Designing such systems is
the goal of the emerging inductive database approach. Following this database
perspective, knowledge discovery processes become querying processes for
which query languages have to be designed. On one hand, interesting con-
ceptual, or say abstract, proposals have been made like (Giannotti and Manco,
1999; De Raedt, 2003; Catania et al., 2004). On another hand, concrete query
languages have been designed and implemented for specific pattern domains,
mainly association rules (Han et al., 1996; Meo et al., 1998; Imielinski and
Virmani, 1999; Netz et al., 2000). The first approach emphasizes the need for
general-purpose primitives and is looking for generic approaches in combin-
ing these primitives and designing generic solvers. The second approach is
pragmatic: providing an immediate support to practitioners by means of better
Data Mining tools. Doing so, the primitives are often tailored to some spe-
cific pattern domain, or even some application domain. Ad-hoc solvers are
designed for an efficient evaluation of concrete queries. Standards like PMML
((http://www.dmg.org) are also immediately useful for practitioners and soft-
ware companies. This XML-based language provides a standard format for
representing various patterns and this is important to support interoperability
between various tools. Let us notice however that it does not provide primitives
for pattern manipulation. We strongly believe that both directions are useful
on our road towards inductive databases and inductive database management
systems.

Acknowledgments. The authors want to thank the colleagues of the cInQ
IST-2000-26469 (consortium on knowledge discovery by inductive queries)
for interesting discussions on Data Mining query languages. A special thank
goes to Rosa Meo for her contribution to this domain and the critical evaluation
(Botta et al., 2004).

726 DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK

References
R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkarno. Fast

discovery of association rules. In Advances in Knowledge Discovery and
Data Mining, pages 307-328. AAAI Press, 1996.

Y. Bastide, N. Pasquier, R. Taouil, G. Stumme, and L. Lakhal. Mining minimal
non-redundant association rules using frequent closed itemsets. In Proc. CL
2000, volume 186 1 of LNCS, pages 972-986. Springer-Verlag, 2000.

M. Botta, J.-F. Boulicaut, C. Masson, and R. Meo. Query languages support-
ing descriptive rule mining: a comparative study. In Database Technologies
for Data Mining - Discovering Knowledge with Inductive Queries, volume
2682 of LNCS, pages 27-54. Springer-Verlag, 2004.

J.-F. Boulicaut. Inductive databases and multiple uses of frequent itemsets:
the cInQ approach. In Database Technologies for Data Mining - Discover-
ing Knowledge with Inductive Queries, volume 2682 of LNCS, pages 3-26.
Springer-Verlag, 2004.

J.-F. Boulicaut and B. Jeudy. Constraint-based Data Mining. In Data Min-
ing and Knowledge Discovery Handbook. Chapter 18, this volume, Kluwer,
2005.

J.-F. Boulicaut, M. Klemettinen, and H. Mannila. Modeling KDD processes
within the inductive database framework. In Proc. DaWaK'99, volume 1676
of LNCS, pages 293-302. Springer-Verlag, 1999.

T. Calders and B. Goethals. Mining all non-derivable frequent itemsets. In
Proc. PKDD, volume 2431 of LNCS, pages 74-85. Springer-Verlag, 2002.

B. Catania, A. Maddalena, M. Mazza, E. Bertino, and S. Rizzi. A framework
for Data Mining pattern management. In Pmc. PKDD'04, volume 3202 of
LNAI, pages 87-98. Springer-Verlag, 2004.

L. De Raedt. A perspective on inductive databases. SIGKDD Explorations,
4(2):69-77,2003,

L. De Raedt, M. Jaeger, S. Lee, and H. Mannila. A theory of inductive query
answering. In Proc. IEEE ICDM'02, pages 123-130,2002.

F. Giannotti and G. Manco. Querying inductive databases via logic-based user-
defined aggregates. In Proc. PKDD'99, volume 1704 of LNCS, pages 125-
135. Springer-Verlag, 1999.

J. Han, Y. Fu, W. Wang, K. Koperski, and 0. Zaiane. DMQL: a Data Min-
ing query language for relational databases. In R. Ng, editor, Pmc. ACM
SIGMOD Workshop DMKD'96, Montreal, Canada, 1996.

T. Imielinski and H. Mannila. A database perspective on knowledge discovery.
Communications of the ACM, 39(11):58-64, November 1996.

T. Imielinski and A. Virmani. MSQL: A query langugage for database mining.
Data Mining and Knowledge Discovery, 3(4):373-408,1999.

Data Mining Query Languages 727

T. Imielinski, A. Virmani, and A. Abdulghani. DMajor-application program-
ming interface for database mining. Data Mining and Knowledge Discov-
ery, 3(4):347-372,1999.

B. Jeudy and J.-F. Boulicaut. Optimization of association rule mining queries.
Intelligent Data Analysis, 6(4):34 1-357,2002.

R. Meo. Optimization of a language for Data Mining. In Proc. ACM SAC'03 -
Data Mining track, pages 437444,2003.

R. Meo, P. L. Lanzi, and M. Klemettinen, editors. Database Technologies
for Data Mining - Discovering Knowledge with Inductive Queries, volume
2682 of W C S . Springer-Verlag, 2004.

R. Meo, G. Psaila, and S. Ceri. An extension to SQL for mining association
rules. Data Mining and Knowledge Discovery, 2(2):195-224, 1998.

K. Morik and M. Scholz. The Mining Mart approach to knowledge discovery
in databases. In Intelligent Technologies for Information Analysis. Springer-
Verlag, 2004.

A. Netz, S. Chaudhuri, J. Bernhardt, and U. Fayyad. Integration of Data Mining
and relational databases. In Proc. VLDB'OO, pages 719-722, Cairo, Egypt,
2000. Morgan Kaufmann.

R. Ng, L. V. Lakshmanan, J. Han, and A. Pang. Exploratory mining
and pruning optimizations of constrained associations rules. In Proc.
ACM SIGMOD'98, pages 13-24,1998.

G. Piatetsky-Shapiro and W. J. Frawley. Knowledge Discovery in Databases.
AAAIIMIT Press, 1991.

Y. Theodoridis and P. Vassiliadis, editors. Proc. of Pattern Representation and
Management PaRMa 2004 co-located with EDBT 2004. CEUR Workshop
Proceedings 96 Technical University of Aachen (RWTH), 2004.

A. Tuzhilin and B. Liu. Querying multiple sets of discovered rules. In Proc.
ACM SIGKDD'02, pages 5240,2002.

VI

ADVANCED METHODS

